中国汉族人特应性皮炎全基因组关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     特应性皮炎(atopic dermatitis, AD) ,是一种反复发作的慢性炎症性皮肤病。其特征是皮肤瘙痒,皮损多形性并有渗出倾向,常伴有哮喘、过敏性鼻炎及血清IgE增高等,在儿童和青少年中较多见。近三十年来,AD发病率呈逐年上升趋势,较之前增长达2-3倍之多,在儿童中已达到15%-30%,在成人中达到2%-10%。本病病因和发病机制尚不清楚。国内外通过大量的人群、家系及双生子研究均表明遗传因素是构成AD易感性的主要因素,属多基因遗传病。
     多年来,国内外学者主要应用全基因组连锁研究(Genome-wide linkage studies)、候选基因研究(Candidate genes studies)等研究策略搜寻AD的易感基因,并取得了一些进展。但这些研究均存在着一定的局限性,如全基因组连锁研究应用的微卫星标记信息量有限,所定位区域往往较大,很难从其中找出真正的易感基因。同时,全基因组连锁研究主要是针对家系研究,因而所发现的疾病易感位点是否能够代表散发病例尚不清楚。对于候选基因研究,其选取候选基因主要根据研究者们认为最有可能导致疾病发生的易感基因,其分析的位点过少,故不可避免的存在着局限性,不可能全面搜寻到AD的易感基因。
     2005年以后,随着人类基因组计划(HGP)和人类基因组单体型图计划(HapMap)的相继完成,以及高通量基因分型技术的飞速发展和分型费用的降低,使得在大规模人群中开展全基因组关联研究(genome-wide association study, GWAS)成为可能。这种研究方法对全基因组范围内的SNP(single nucleotide polymorphism)进行总体的分析,能够更有效的发现和疾病有关联的基因。GWAS是目前寻找复杂疾病易感基因的最有效方法之一。多项研究的成功有力证明了GWAS搜寻复杂疾病易感基因的有效性,也为AD易感基因的搜寻提供了新的思路和方法。2009年,Esparza-Gordillo等对德国人群进行了大规模的GWAS研究,发现11q13.5(C11orf30)为AD的易感位点。
     AD在不同人种间存在遗传异质性,主要表现在发病率和患病率以及临床表现存在一定的差异。由于多数AD研究主要是在欧洲高加索白人中进行的,因而这些AD遗传易感基因/位点与中国人群的关联性尚不清楚。因此对AD在中国人群中的易感基因研究很有必要。本研究首次在中国汉族人群中应用GWAS方法在全基因组范围内对AD的易感基因进行筛查,以期发现AD的易感基因。
     目的:
     在中国汉族人群中,利用全基因组关联分析研究方法在全基因组范围内搜寻与AD关联的遗传变异,鉴定中国汉族人AD的易感基因/位点。
     方法:
     (1)初筛阶段:在中国汉族人群中,利用Illumina Human 610-Quad全基因组SNP分型芯片对1012个AD病例和1362个对照进行SNPs分型。
     (2)验证阶段:①验证第一阶段:经过严格的数据质控和统计分析,从初筛阶段选择最有意义的67个SNPs,使用Sequenom平台在二个独立的中国人群中进行验证(北部人群:1119个病例和1203个对照;南部人群:2505个病例和6762个对照);
     ②验证第二阶段:从验证第一阶段中选取了19个SNPs,进一步加大样本量使用Sequenom平台在二个独立的中国人群中进行验证(北部人群:276个正常对照;南部人群:3956个正常对照)。之后,将上述附加的对照和之前已分型的对照数据及病例进行合并分析(验证第一、二阶段北部人群总计:1119个病例和1479个对照;验证第一、二阶段南部人群总计:2505个病例和10718个对照;GWAS初筛阶段人群总计:1012个病例和1362个对照),以发现了达到全基因组显著关联性水平SNPs(P<5×10~(-8));
     ③验证第三阶段:将上一阶段发现的有意义的SNPs进一步在德国的人群中使用TaqMan进行验证(1,806个病例和3,256个正常对照)。
     结果:
     (1)在验证第一阶段中,在中国汉族人群的3624例患者和7965例对照中对67个SNPs进行基因分型。将验证第一阶段的结果和GWAS结果合并分析后显示,位于2个易感位点的3个SNPs达到了全基因组关联显著水平(P<5×10~(-8)):①位于1q21.3(FLG)易感位点上的2个SNPs的rs3126085/rs11204971 (关联性分别为P_(combined)=5.75×10~(-12), OR=0.83; P_(combined)=5.02×10~(-9), OR=0.86);②位于5q22.1(TMEM232 /SLC25A46)易感位点上的1个SNP rs7701890 (P_(combined)=4.33×10~(-8), OR=1.23);
     (2)在验证第二阶段中,对从验证第一阶段中选取的19个SNPs在附加的4232对照中进行分型,之后与第一阶段的样本进行合并分析,最后再与GWAS数据综合分析后发现了位于3个易感位点区域(1q21.3, 5q22.1和20q13.33)内的7个SNPs达到全基因组显著水平:①位于1q21.3(FLG)易感位点上的2个SNPs rs3126085/rs11204971 (关联性分别为P_(combined)=5.90×10~(-12), OR=0.82; P_(combined)=1.20×10~(-10), OR=0.85);②位于5q22.1(TMEM232/SLC25A46)易感位点上的4个SNPs rs7701890/rs10067777/rs13360927/rs13361382 (关联性分别为P_(combined)=3.15×10~(-9), OR=1.24; P_(combined)=1.20×10~(-8), OR=1.24; P_(combined)=2.45×10~(-8), OR=1.22; P_(combined)=4.02×10~(-8), OR=1.22);③位于20q13.33(TNFRSF6B/ZGPAT)易感位点上的1个SNP rs6010620 (P_(combined)=3.0×10~(-8), OR=1.17)。此外,尚有1个提示性的易感位点,即位于10q21.2(ZNF365)易感位点上的SNP rs2393903 (P_(combined)=1.05×10~(-7), OR=1.15);
     (3)在验证第三阶段中,发现20q13.33(TNFRSF6B/ZGPAT)也与德国AD存在关联性(rs6010620, P=2.87×10~(-5), OR=1.25)。
     结论:
     本研究通过大样本量的全基因组关联研究搜寻中国汉族人群AD易感基因,构建了第一个中国汉族人群AD病例-对照的全基因组关联分析数据库。在中国人群中发现了2个新的AD易感基因/位点:5q22.1 (TMEM232/SLC25A46),20q13.33 (TNFRSF6 / ZGPAT);验证出既往欧洲人群和亚洲人群报道的1q21.3(FLG)易感位点;发现了AD一个提示易感位点10q21.2(ZNF365)。此外,发现20q13.33 (TNFRSF6B / ZGPAT)与德国人群AD发病也存在关联性。
Background:
     Atopic dermatitis (AD) is a chronic, relapsing form of inflammatory skin disorder, characterized by a skin itching, skin pantomorphous lesions with exudative tendencies and often accompanied by asthma, allergic rhinitis and elevated serum IgE. Atopic dermatitis is a common skin disease in children and adolescents. The prevalence of atopic dermatitis has doubled or tripled during the past three decades; 15% to 30% of children and 2% to 10% of adults are affected. The etiology and pathogenesis of atopic dermatitis is not clear. The results of a large number of people, family and twin studies show that the genetic factors are the main susceptibility factors to AD, and AD is a polygenic disease.
     In the past years, researches mainly used genome-wide linkage studies, candidate genes studies or other research strategies to search AD susceptibility genes and some progress was made. However, there are limitations in these studies. For example, there are few microsatellite markers in genome-wide linkage studies and the targeted region is large, which is why it is often difficult to identify the real susceptibility genes. Meanwhile, the genome linkage method is a family-based approach, which identified the diseases susceptibility locus. Whether it can represent the sporadic cases is unknown. Similar to candidate genes studies, researchers often selected candidate genes based on available data which suggest an implication of this gene in the disease. So, there are some limitations in candidate genes study, which could not uncover susceptibility genes of AD with a genome wide coverage.
     After 2005, completion of the Human Genome Project (HGP) and the Human Genome Haplotype Mapping Project (HapMap) facilitated the rapid development of high-throughput gene genotyping technologies and the reduction of genotyping costs, which made genome-wide association study become possible in large-scale approaches. The method of genome wide SNP analysis is highly effective to uncover disease susceptibility genes. GWAS is one of the most effective ways currently described to identify susceptibility genes of complex diseases. The success of a large number of GWAS shows a strong efficiency to uncover susceptibility genes of complex diseases, which provide new ideas and methods to search susceptibility genes of AD. In 2009, Esparza-Gordillo et. al. performed a large-scale GWAS study in German population and found that 11q13.5 (C11orf30) is a AD susceptibility locus.
     AD is genetically heterogeneous among different ethnic populations, which is mainly showed by differences in clinical manifestations, the incidence and prevalence rates. However, Many studies were performed in the Caucasian population. It is not clear whether these susceptibility genes/loci have the same function in the Chinese population. Therefore, AD susceptibility genes studies are necessary in the Chinese population. This is the first GWAS realized in the Chinese Han population which identified susceptibility genes of AD in the whole genome.
     Objective:
     To screen for AD associated SNPs with genome-wide coverage and identify susceptibility genes/loci for AD, using the GWAS approach in Chinese Han population.
     Methods:
     (1) Initial GWAS stage: Samples were genotyped by Illumina Human 610-Quard BeadChips in 1,012 cases and 1,362 controls of Chinese Han.
     (2) Replication stage:①Replication in the first stage: After quality control and statistical analysis, we selected 67 SNPs for replication in two independent samples of Chinese Han (Northern population: 1,119 cases and 1,203 controls; Southern population: 2,505 cases and 6,762 controls) by using the Sequenom(?) MassARRAY platform.
     ②Replication in the second stage: we further genotyped the most promising 19 (of the 67 selected) SNPs that showed supportive association evidence in the initial validation study in additional 276 controls for the northern Chinese population and 3,956 controls for the southern Chinese population by using Sequenom(?) MassARRAY platform. Then, for statistical analysis we combined GWAS, replication of the first stage and replication of the second stage together and found several SNPs reached genome-wide significance.
     ③Replication in the third stage: the most significant SNPs of the 67 SNPs were further genotyped in German population (1,806 cases and 3,256 controls) by using TaqMan assays.
     Results:
     (1) In the first stage replication, we genotyped 67 SNPs in 3624 cases and 7965 controls of Chinese Han population. Then, a joint analysis was carried out in the combined GWAS and replication samples of Chinese Han. The replication analysis revealed 3 SNPs within 2 loci showing association with AD at genome-wide significance (P_(combined)<5×10?8): rs3126085/rs11204971 at 1q21.3 (P_(combined)=5.75×10~(-12), OR=0.83; P_(combined)=5.02×10~(-9), OR=0.86, respectively); and rs7701890 at 5q22.1 (P_(combined)=4.33×10~(-8), OR=1.23).
     (2) In the second stage replication, we selected 19 SNPs from the first stage replication and genotyped in additional 4232 controls. Then a joint analysis was carried out in the combined GWAS and two stage replications samples of Chinese Han. The associations at 7 SNPs located in 3 loci (1q21.3, 5q22.1 and 20q13.33) reached genome-wide significance: rs3126085/rs11204971 at 1q21.3 (P_(combined)=5.90×10~(-12), OR=0.82; P_(combined)=1.20×10~(-10), OR=0.85, respectively); rs7701890/rs10067777/rs13360927/ rs13361382 at 5q22.1 (P_(combined)=3.15×10~(-9), OR=1.24; P_(combined)=1.20×10~(-8), OR=1.24; P_(combined)=2.45×10~(-8), OR=1.22; P_(combined)=4.02×10~(-8), OR=1.22, respectively); rs6010620 at 20q13.33. In addition, one promising SNP (rs2393903 at 10q21.2) showed a genome-wide association barely below significance (P_(combined)=1.05×10~(-7), OR=1.15). (3) In the third replication stage, the 20q13.33 locus also showed evidence for association in the Germany sample (rs6010620, P=2.87×10~(-5), OR=1.25).
     Conclusion:
     This study was the first large scale GWAS of AD to uncover susceptibility genes in the Chinese Han population and successfully constructed the first AD cases-controls database of GWAS. Two new susceptibility genes/loci: 5q22.1(TMEM232 /SLC25A46),20q13.33(TNFRSF6B/ZGPAT) were identified in this study. Furthermore, this study identified a susceptibility locus 1q21.3(FLG) which had been reported previously in European population and Asian population. We also found a suggestive susceptibility locus 10q21.2(ZNF365).In addition, the 20q13.33(TNFRSF6B/ZGPAT) locus also showed evidence for association in the German sample.
引文
[1]. Williams H, Flohr C. How epidemiology has challenged 3 prevailing concepts about atopic dermatitis. J Allergy Clin Immunol. 2006;118(1):209-13.
    [2]. Novak N, Bieber T. Allergic and nonallergic forms of atopic diseases. J Allergy Clin Immunol. 2003;112(2):252-62.
    [3]. Kiyohara C, Tanaka K, Miyake Y. Genetic susceptibility to atopic dermatitis. Allergol Int. 2008; 57(1): 39-56.
    [4]. Thomsen SF, Ulrik CS, Kyvik KO, et al. Importance of Genetic Factors in the Etiology of Atopic Dermatitis: A Twin Study. Allergy Asthma Proc. 2007; 28(5): 535-9.
    [5]. Esparza-Gordillo J, Weidinger S, Folster-Holst R, et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat Genet. 2009; 41(5): 596-601.
    [6]. Ciaccio CE, Portnoy JM. Strategies for primary prevention of atopy in children. Curr Allergy Asthma Rep. 2008; 8(6): 493-9.
    [7]. Lee YA, Wahn U, Kehrt R, et al. A major susceptibility locus for atopic dermatitis maps to chromosome 3q21. Nat Genet. 2000;26(4):470-3.
    [8]. Cookson WO, Ubhi B, Lawrence R, et al. Genetic linkage of childhood atopic dermatitis to psoriasis susceptibility loci. Nat Genet. 2001;27(4):372-3.
    [9]. Bradley M, Soderhall C, Luthman H, et al. Susceptibility loci for atopic dermatitis on chromosomes 3, 13, 15, 17 and 18 in a Swedish population. Hum Mol Genet. 2002;11(13):1539-48.
    [10]. Haagerup A, Bjerke T, Schiotz PO, et al. Atopic dermatitis—a total genome-scan for susceptibility genes. Acta Derm Venereol. 2004;84(5):346-52.
    [11]. Guilloud-Bataille M, Bouzigon E, Annesi-Maesano I, et al. Evidence for linkage of a new region (11p14) to eczema and allergic diseases. Hum Genet. 2008;122(6):605-14.
    [12]. Enomoto H, Noguchi E, Iijima S, et al. Single nucleotide polymorphism-based genome-wide linkage analysis in Japanese atopic dermatitis families. BMC Dermatol. 2007;7:5.
    [13]. Barnes KC. An update on the genetics of atopic dermatitis: scratching the surface in 2009. J Allergy Clin Immunol. 2010;125(1):16-29.e1-11; quiz 30-1.
    [14]. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005; 6(2): 95-108.
    [15]. Hattersley AT, McCarthy MI. What makes a good genetic association study? Lancet. 2005; 366(9493): 1315-23.
    [16]. Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005; 308(5720): 385-9.
    [17]. Chang YT, Lee WR, Yu CW,et al. No association of cytokine gene polymorphisms in Chinese patients with atopic dermatitis. Clin Exp Dermatol. 2006 ;31(3):419-23.
    [18]. Han JW, Zheng HF, Cui Y,et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet. 2009;41(11):1234-7.
    [19]. Stacey SN, Manolescu A, Sulem P,et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet. 2007;39(7):865-9.
    [20]. Wellcome Trust Case Control Consortium; Australo-Anglo-American Spondylitis Consortium (TASC), Burton PR, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet. 2007;39(11):1329-37.
    [21]. Chen J, Zheng H, Bei JX et al. Genetic structure of the Han Chinese population revealed by genome-wide SNP variation. Am J Hum Genet. 2009; 85(6): 775-85.
    [22]. Xu S, Yin X, Li S et al. Genomic dissection of population substructure of Han Chinese and its implication in association studies. Am J Hum Genet. 2009; 85(6): 762-74.
    [23]. Hanifin, J.M., Rajka, G.. Diagnostic features of atopic dermatitis. Acta Derm Venereol(Stockh). 1980;92(Suppl):44-7.
    [24]. Purcell S, Neale B, Todd-Brown K et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81(3): 559-75.
    [25]. Barrett JC, Fry B, Maller J et al. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21(2): 263-5.
    [26]. DerSimonian, R. and N. Laird, Meta-analysis in clinical trials. Control Clin Trials. 1986; 7(3): 177-88.
    [27]. Mantel, N. and W. Haenszel, Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959; 22(4): 719-48.
    [28]. Barnes KC. An update on the genetics of atopic dermatitis: scratching the surface in 2009. J Allergy Clin Immunol. 2010;125(1):16-29.e1-11; quiz 30-1.
    [29]. Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995; 11(3): 241-7.
    [30]. Goring HH, Terwilliger JD, Blangero J. Large upward bias in estimation of locus-specific effects from genomewide scans. Am J Hum Genet 2001; 69(6): 1357-69.
    [31]. Sabatti C, Service S, Freimer N. False discovery rate in linkage and association genome screens for complex disorders. Genetics. 2003; 164(2): 829-33.
    [32]. Hirschhorn JN, Lohmueller K, Byrne E et al. A comprehensive review of genetic association studies. Genet Med. 2002; 4(2): 45-61.
    [33]. Palmieri F. The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch. 2004;447(5):689-709.
    [34]. Wan X, Shi G, Semenuk M, et al. DcR3/TR6 modulates immune cell interactions. J Cell Biochem. 2003;89(3):603-12.
    [35]. Zhang J, Salcedo TW, Wan X, et al. Modulation of T-cell responses to alloantigens by TR6/DcR3. J Clin Invest. 2001;107(11):1459-68.
    [36]. You RI, Chang YC, Chen PM,et al. Apoptosis of dendritic cells induced by decoy receptor 3 (DcR3). Blood. 2008;111(3):1480-8.
    [37]. Hsu TL, Chang YC, Chen SJ, et al. Modulation of dendritic cell differentiation and maturation by decoy receptor 3. J Immunol. 2002;168(10):4846-53.
    [38]. Chang YC, Hsu TL, Lin HH, et al. Modulation of macrophage differentiation and activation by decoy receptor 3. J Leukoc Biol. 2004;75(3):486-94.
    [39]. Chen CC, Yang YH, Lin YT, et al. Soluble decoy receptor 3: increased levels in atopic patients. J Allergy Clin Immunol. 2004;114(1):195-7.
    [40]. Li R, Zhang H, Yu W, et al. ZIP: a novel transcription repressor, represses EGFR oncogene and suppresses breast carcinogenesis. EMBO J. 2009 ;28(18):2763-76.
    [41]. Mascia F, Mariani V, Girolomoni G,et al. Blockade of the EGF receptor induces a deranged chemokine expression in keratinocytes leading to enhanced skin inflammation. Am J Pathol. 2003;163(1):303-12.
    [42]. O'Regan GM, Sandilands A, McLean WH, et al. Filaggrin in atopic dermatitis. J Allergy Clin Immunol. 2009;124(3 Suppl 2):R2-6.
    [43]. Gan SQ, McBride OW, Idler WW, et al. Organization, structure, and polymorphisms of the human profilaggrin gene. Biochemistry. 1990;29(40):9432-40.
    [44]. Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441-6.
    [45]. Zhang H, Guo Y, Wang W, et al. Mutations in the filaggrin gene in Han Chinese patients with atopic dermatitis. Allergy. 2011;66(3):420-7.
    [46]. Wang Q, Du X, Meinkoth J,et al. Characterization of Su48, a centrosome protein essential for cell division. Proc Natl Acad Sci U S A. 2006;103(17):6512-7.
    [47]. Barrett JC, Hansoul S, Nicolae DL,et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet. 2008;40(8):955-62.
    [48]. Schreiber S, Rosenstiel P, Albrecht M,et al. Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nat Rev Genet. 2005;6(5):376-88.
    [49]. the Wellcome Trust Case Control Consortium. Genome-wide association study of14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007; 447(7145): 661-78.
    [50]. Thomson W, Barton A, Ke XY, et al. Rheumatoid arthritis association at 6q23. Nat Genet. 2007; 39(12): 1431-3.
    [51]. Barton A, Thomson W, Ke XY, et al. Rheumatoid arthritis susceptibility loci at chromosomes 10p15, 12q13 and 22q13. Nat Genet. 2008; 40(10): 1156-9.
    [52]. Zeggini E, Scott LJ, Saxena R,et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008; 40(5): 638-45.
    [53]. Browning SR. Missing data imputation and haplotype phase inference for genome-wide association studies. Hum Genet. 2008; 124(5): 439-50.
    [1]. Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet.1995;11(3):241-7.
    [2]. Lee YA, Wahn U, Kehrt R, et al. A major susceptibility locus for atopic dermatitis maps to chromosome 3q21. Nat Genet. 2000;26(4):470-3.
    [3]. Cookson WO, Ubhi B, Lawrence R, et al. Genetic linkage of childhood atopic dermatitis to psoriasis susceptibility loci. Nat Genet. 2001;27(4):372-3.
    [4]. Bradley M, Soderhall C, Luthman H, et al. Susceptibility loci for atopic dermatitis on chromosomes 3, 13, 15, 17 and 18 in a Swedish population. Hum Mol Genet. 2002;11(13):1539-48.
    [5]. Haagerup A, Bjerke T, Schiotz PO, et al. Atopic dermatitis—a total genome-scan for susceptibility genes. Acta Derm Venereol. 2004;84(5):346-52.
    [6]. Guilloud-Bataille M, Bouzigon E, Annesi-Maesano I, et al. Evidence for linkage of a new region (11p14) to eczema and allergic diseases. Hum Genet. 2008;122(6):605-14.
    [7]. Enomoto H, Noguchi E, Iijima S, et al. Single nucleotide polymorphism-basedgenome-wide linkage analysis in Japanese atopic dermatitis families. BMC Dermatol. 2007;7:5.
    [8]. Christensen U, Moller-Larsen S, Nyegaard M, et al. Linkage of atopic dermatitis to chromosomes 4q22,3p24 and 3q21. Hum Genet. 2009;126(4):549-57.
    [9]. Ober C, Hoffjan S. Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun. 2006;7(2):95-100.
    [10]. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273(5281):1516-7.
    [11]. Nickel RG, Casolaro V, Wahn U et al. Atopic dermatitis is associated with a functional mutation in the promoter of the C-C chemokine RANTES. J Immunol. 2000;164(3):1612-6.
    [12]. Liu H, Chao D, Nakayama EE, et al. Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc. Natl. Acad. Sci. U.S.A. 1999;96(8):4581-5.
    [13]. Bai B, Tanaka K, Tazawa T et al. Association between RANTES promoter polymorphism -401A and enhanced RANTES production in atopic dermatitis patients. J Dermatol Sci. 2005;39(3):189-91.
    [14]. Kaburagi Y, Shimada Y, Nagaoka T, et al. Enhanced production of CC-chemokines (RANTES, MCP-1, MIP-1alpha, MIP-1beta, and eotaxin) in patients with atopic dermatitis. Arch Dermatol Res. 2001;293(7):350-5.
    [15]. He SH, Xie H, Zhang XJ, Wang XJ. Inhibition of histamine release from human mast cells by natural chymase inhibitors. Acta Pharmacol Sin. 2004;25(6):822-6.
    [16]. Tomimori Y, Tsuruoka N, Fukami H, et al. Role of mast cell chymase in allergen-induced biphasic skin reaction. Biochem Pharmacol. 2002;64(7):1187.
    [17]. Lazaar AL, Plotnick MI, Kucich U, et al. Mast cell chymase modifies cell-matrix interactions and inhibits mitogen-induced proliferation of human airway smooth muscle cells. J Immunol. 2002;169(2):1014-20.
    [18]. Weidinger S,Rummier L,Klopp N,et a1.Association study of mast cell chymase polymorphisms with atopy.Allergy.2005;60(10):1256-61
    [19]. Obara W, Kawa Y, Ra C , et al. T cells and mast cells as a major source of interleukin - 13 in atopic dermatitis. Dermatology. 2002 ;205(1):11-7.
    [20]. Metwally SS , Mosaad YM, Abdel - Samee ER , et al. IL - 13 gene expression inpatients with atopic dermatitis : relation to IgE level and to disease severity. Egypt J Immunol. 2004 ;11 (2) :171 - 177.
    [21]. Hummelshoj T, Bodtger U, Datta P, et al. Association between an interleukin-13 promoter polymorphism and atopy. Eur J Immunogenet. 2003;30(5):355-9.
    [22]. Tsunemi Y, Saeki H, Nakamura K, et al. Interleukin-13 gene polymorphism G4257A is associated with atopic dermatitis in Japanese patients. J Dermatol Sci. 2002;30(2):100-7.
    [23]. Liu X, Nickel R, Beyer K et al. An IL13 coding region variant is associated with a high total serum IgE level and atopic dermatitis in the German multicenter atopy study (MAS-90). J Allergy Clin Immunol. 2000;106(1 Pt 1):167-70.
    [24]. He JQ, Chan-Yeung M, Becker AB, et al. Genetic variants of the IL13 and IL4 genes and atopic diseases in at-risk children. Genes Immun. 2003;4(5):385-9.
    [25]. Sugiura K, Hiramoto K, Shamoto M, et al. Immunological cell situation in the skin of atopic model mice. J Eur Acad Derm Venereol. 2004;18(2):148-52.
    [26]. Kawashima T, Noguchi E, Arinami T, et al. Linkage and association of an interleukin 4 gene polymorphism with atopic dermatitis in Japanese families. J Med Genet. 1998; 35(6):502-4.
    [27]. Hosomi N, Fukai K, Oiso N, et al. Polymorphisms in the promoter of the interleukin-4 receptor alpha chain gene are associated with atopic dermatitis in Japan. J Invest Dermatol. 2004;122(3):843-5.
    [28]. Callard RE, Hamvas R, Chatterton C, et al. Avon Longitudinal Study of Parents and Children. An interaction between the IL-4R alpha gene and infection is associated with atopic eczema in young children. Clin Exp Allergy. 2002;32(7):990-3.
    [29]. Oiso N, Fukai K, Ishii M. Interleukin 4 receptor alpha chain polymorphism Gln551Arg is associated with adult atopic dermatitis in Japan. Br J Dermatol. 2000;142(5):1003-6.
    [30]. Komatsu N, Takata M, Otsuki N, et al. Elevated stratum corneum hydrolytic activity in Netherton syndrome suggests an inhibitory regulation of desquamation by SPINK5-derived peptides. J Invest Dermatol. 2002;118(3): 436-43.
    [31]. Mitsudo K, Jayakumar A, Henderson Y, et al. Inhibition of serine proteinasesplasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis. Biochemistry. 2003;42(13):3874-81.
    [32]. Ekholm IE, Brattsand M, Egelrud T. Stratum corneum tryptic enzyme in normal epidermis: a missing link in the desquamation process? J Invest Dermatol. 2000;114(1):56-63.
    [33]. Ueda H, Howson JM, Esposito L, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423(6939):506-11.
    [34]. Walley AJ, Chavanas S, Moffatt MF, et al. Gene polymorphism in Netherton and common atopic disease. Nat Genet. 2001;29(2):175-8.
    [35]. Gan SQ, McBride OW, IdlerWW, et al. Organization, structure, and polymorphisms of the human profilaggrin gene. Biochemistry. 1990;29(40):9432-40.
    [36] Cork MJ, Robinson DA, Vasilopoulos Y, et al. New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions. J Allergy Clin Immunol. 2006;118(1):3-21;quiz 22-3.
    [37]. Callard RE, Harper JI. The skin barrier, atopic dermatitis and allergy: a role for Langerhans cells? Trends Immunol. 2007;28(7):294-8.
    [38]. Holgate ST. Epithelium dysfunction in asthma.. J Allergy Clin Immunol. 2007;120(6):1245-6.
    [39]. Holgate ST. The epithelium takes centre stage in asthma and atopic dermatitis. Trends Immunol. 2007;28(6):248-51.
    [40]. Elias PM, Hatano Y, Williams ML. Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms. J Allergy Clin Immunol. 2008;121(6):1337-43.
    [41]. Hammad H, Lambrecht BN. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol. 2008;8(3):193-204.
    [42]. O’Regan GM, Sandilands A, McLean WH, Irvine AD. Filaggrin in atopic dermatitis. J Allergy Clin Immunol. 2008;122(4):689-93.
    [43]. Sandilands A, Terron-Kwiatkowski A, Hull PR, et al. Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat Genet. 2007;39(5):650-4.
    [44]. Zhang H, Guo Y, Wang W,et al. Mutations in the filaggrin gene in Han Chinese patients with atopic dermatitis. Allergy.2011;66(3):420-7.
    [45]. Esparza-Gordillo J, Weidinger S, F?lster-Holst R, et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat Genet.2009;41 (5): 596-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700