OPRM1和CYP3A基因多态性对芬太尼镇痛效应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【背景与目的】
     芬太尼是我国常用的术后静脉镇痛药物,但临床发现芬太尼术后镇痛的需求量和不良反应存在明显的个体差异。研究提示遗传因素可能通过改变受体或代谢酶的表达等机制影响阿片类药物的药动学和药效学,进而导致其临床效应的个体差异。本研究旨在通过分析μ阿片受体(μopioid receptor,OPRM1)基因A118G、CYP3A4~*1G和CYP3A5~*3多态性和CYP3A酶活性,探讨妇科患者全麻术后静脉自控镇痛芬太尼需求量和不良反应个体差异的遗传因素,为临床芬太尼术后镇痛的个体化用药提供参考。
     【材料与方法】
     1.研究对象与分组
     204例妇科择期全麻下腹式子宫全切术或子宫肌瘤剔除术患者,年龄20-50岁,体重指数在正常范围(1±20%),ASAⅠ或Ⅱ级,行术后静脉镇痛者。排除标准:有吸烟、酗酒史,糖尿病、严重心血管疾病、肾脏病、肝脏病史,慢性疼痛史、长期使用镇痛药物、术前1个月内服用过肝脏CYP3A酶诱导剂或抑制剂的患者。根据各基因型检测结果将患者分为野生型纯合子、突变型杂合子和突变型纯合子三组。
     2.麻醉与镇痛
     所有患者经医院伦理委员会同意并签署知情同意书后进入试验。不使用术前药,入室后使用电刺激仪进行测痛,重复测定3次痛阈和耐痛阈,各取其平均值。所有患者用统一的全身麻醉方法,静脉注射咪达唑仑、异丙酚、瑞芬太尼和琥珀酰胆碱麻醉诱导;麻醉维持:静脉输注瑞芬太尼和异丙酚,间断静脉注射阿曲库铵;手术结束时停用所有麻醉药,待患者神志清醒,自主呼吸恢复满意后拔除气管导管,行疼痛视觉模拟评分(visual analog scale,VAS)并记录,接6300型CADD-Legacy电子镇痛泵行芬太尼静脉病人自控镇痛(patient-controlledintravenous analgesia,PCIA)。观察并记录术后即刻和第1、2个24h内平均VAS评分、芬太尼消耗量以及术后镇痛不良反应的发生情况。
     镇痛泵内药液配方:芬太尼1.0 mg、氟哌利多5 mg,加生理盐水至100 ml。PCIA设置:背景剂量0.5 ml/h、追加剂量2 ml/次、锁定时间5 min、芬太尼最大限量145μg/h。VAS评分≤3分定义为镇痛有效,若PCIA每小时最大剂量仍不能满足镇痛需要(VAS>3分),则辅用其他镇痛药物并将该病例从试验中剔除。
     3.基因多态性检测
     抽取外周静脉血2 ml,采用酚-氯仿法提取基因组DNA;采用聚合酶链反应-限制性片段长度多态性分析(PCR-RFLP)技术,对OPRM1 A118G、CYP3A4~*1G和CYP3A5~*3多态性位点进行检测分析。通过PCR扩增产物直接测序验证基因型检测方法的可靠性。
     4.酶活性检测
     麻醉诱导静脉注射0.1 mg/kg咪达唑仑60 min时抽取外周静脉血5 ml,离心取上层血浆,液相色谱-质谱检测法测定血浆中咪达唑仑(MDZ)及其代谢产物1-羟基咪达唑仑(1′-OH MDZ)浓度。以1′-OH MDZ:MDZ作为CYP3A酶活性的指标。
     5.统计学分析
     数据采用SPSS13.0软件进行处理,计量资料以(?)±s表示,以x~2检验检测等位基因和基因型分布是否符合Hardy-Weinberg平衡;x~2检验或Fisher's精确概率检验检测不同种族间基因多态性分布的差异;多组间数据进行单因素方差分析(ANOVA),各组间比较采用LSD法。不同基因型间芬太尼消耗量的比较采用协方差分析以排除其它影响因素。计量资料变量之间的关系采用直线相关分析,突变等位基因与芬太尼消耗量之间的相关性采用等级相关分析。检验水准为α=0.05。
     【结果】
     1.一般情况
     204例女性患者中,术前电刺激痛阈测定值为2.0±0.6 mA;术前耐痛阈测定值为5.1±2.0 mA。术后即刻VAS评分较高(5.7±1.4),随PCIA实施达到有效镇痛。术后第1个24 h平均VAS评分为2.2±0.8分,芬太尼消耗量为396.2±210.0μg;术后第2个24 h平均VAS评分为1.3±0.4,芬太尼消耗量为190.9±43.2μg。使用芬太尼镇痛时术后恶心呕吐的发生率为28.92%;瘙痒的发生率为0.49%;轻度镇静的发生率为1.47%;未见其他不良反应。
     2.妇科患者中OPRM1 A118G、CYP3A4~*1G和CYP3A5~*3的等位基因频率
     OPRM1 A118G、CYP3A4~*1G和CYP3A5~*3等位基因在妇科手术患者中的发生频率分别为32.0%、29.9%和69.4%,等位基因和基因型分布符合Hardy-Weinberg平衡(P>0.05)。OPRM1 A118G等位基因的发生频率高于非裔美国人(1.6%~2.8%)和高加索人(10.5%~16.4%),低于日本人(48.5%)和印度人(47%)(P<0.05),与已有中国健康人群中报道的发生频率(35.1%)相近(P>0.05)。CYP3A4~*1G等位基因的发生频率与日本人(24.9%)相近(P>0.05)。CYP3A5~*3等位基因的发生频率低于白种人群(91.7%),高于黑种人群(47.5%)(P<0.05)。
     3.OPRM1 A118G多态性对妇科患者术前痛阈、耐痛阈和芬太尼镇痛效应的影响
     按OPRM1 A118G基因型分组后野生型纯合子(A/A)、突变型杂合子(A/G)和突变型纯合子(G/G)三组间一般情况比较差异无统计学意义(P>0.05);术后即刻及24 h平均VAS评分差异无统计学意义(P>0.05)。三组间痛阈差异无统计学意义(P>0.05);耐痛阈差异有统计学意义(P<0.05),A/A组(5.6±2.4 mA)高于A/G组(4.9±1.3 mA),A/G组高于G/G组(3.8±1.0 mA)。术后24 h芬太尼消耗量三组间差异有统计学意义(P<0.05),G/G组(507.9±290.2μg)高于A/G组(412.0±189.8μg)和A/A组(363.6±198.8μg);术后24 h芬太尼消耗量与OPRM1 118G等位基因数量呈正相关(r=0.20,P<0.05)。术前痛阈或耐痛阈与术后芬太尼消耗量之间无相关性(P>0.05)。三组间术后镇痛不良反应发生率差异无统计学意义(P>0.05)。
     4.CYP3A4~*1G多态性对妇科患者CYP3A酶活性和术后芬太尼镇痛效应的影响
     按CYP3A4~*1G基因型分组后野生型纯合子(CYP3A4~*1/~*1)、突变型杂合子(CYP3A4~*1/~*1G)和突变型纯合子(CYP3A4~*1G/~*1G)三组间一般情况比较差异无统计学意义(P>0.05);术后即刻及24 h平均VAS评分差异无统计学意义(P>0.05)。三组间术后24 h芬太尼消耗量差异有统计学意义(P<0.05),CYP3A4~*1G/~*1G组(260.0±101.1μg)低于CYP3A4~*1/~*1G组(414.1±238.5μg)和CYP3A4~*1/~*1组(407.4±187.4μg);术后24 h芬太尼消耗量与CYP3A4~*1G等位基因数量呈负相关(r=0.14,P<0.05)。CYP3A酶活性比较三组间差异有统计学意义(P<0.05),CYP3A4~*1G/~*1G组CYP3A酶活性(0.34±0.15)低于CYP3A4~*1/~*1组(0.46±0.14)和CYP3A4~*1/~*1G组(0.46±0.12)。三组间术后镇痛不良反应发生率差异无统计学意义(P>0.05)。
     5.CYP3A5~*3多态性对妇科患者CYP3A酶活性和术后芬太尼镇痛效应的影响
     按CYP3A5~*3基因型分组后野生型纯合子(CYP3A5~*1/~*1)、突变型杂合子(CYP3A5~*1/~*3)和突变型纯合子(CYP3A5~*3/~*3)三组间一般情况比较差异无统计学意义(P>0.05);三组术后即刻及24 h平均VAS评分差异无统计学意义(P>0.05)。三组间术后24 h芬太尼消耗量差异无统计学意义(P>0.05);三组间CYP3A酶活性比较差异无统计学意义(P>0.05);三组间术后镇痛不良反应发生率差异无统计学意义(P>0.05)。
     6.CYP3A4/CYP3A5单体型对妇科患者术后芬太尼镇痛效应的影响
     CYP3A4/CYP3A5构成单体型时,根据是否携带CYP3A4~*1和CYP3A5~*3将患者分为四组,携带CYP3A4~*1和CYP3A5~*1/~*1组、携带CYP3A4~*1和CYP3A5~*3组、携带CYP3A4~*1G/~*1G和CYP3A5~*1/~*1组、携带CYP3A4~*1G/~*1G和CYP3A5~*3组。四组间一般情况比较差异无统计学意义(P>0.05);术后24 h芬太尼消耗量四组间差异有统计学意义(P<0.05),携带CYP3A5~*1/~*1和CYP3A4~*1组术后芬太尼消耗量高于其余各组;携带CYP3A5~*3和CYP3A4~*1G/~*1G组术后芬太尼消耗量降低;四组间术后镇痛芬太尼不良反应的发生率差异无统计学意义(P>0.05)。
     7.OPRM1 A118G和CYP3A4~*1G多态性对芬太尼镇痛效应的交互作用
     根据是否携带OPRM1 118A和CYP3A4~*1等位基因将患者分为四组,携带OPRM1 118A和CYP3A4~*1G/~*1G组、携带OPRM1 118A和CYP3A4~*1组、携带OPRM1 118G/G和CYP3A4~*1G/~*1G组、携带OPRM1 118G/G和CYP3A4~*1组。四组间一般情况比较差异无统计学意义(P>0.05);术后24 h芬太尼消耗量四组间差异有统计学意义(P<0.05),携带OPRM1 118G/G和CYP3A4~*1者术后芬太尼消耗量高于其余各组;四组间术后镇痛芬太尼不良反应的发生率差异无统计学意义(P>0.05)。
     【结论】
     1.OPRM1 A118G多态性与术前电刺激耐痛阈降低有关,且呈基因剂量依赖效应;术后24 h芬太尼消耗量与OPRM1 118G等位基因数量呈正相关;本课题首次研究了芬太尼静脉镇痛效应与OPRM1 A118G多态性的关系;
     2.术后24 h芬太尼消耗量与CYP3A4~*1G等位基因数量呈负相关:CYP3A5~*3多态性对术后芬太尼消耗量无明显影响。CYP3A4/CYP3A5构成单体型时,携带CYP3A4~*1G/CYP3A5~*3者术后芬太尼消耗量降低。本研究首次证明了芬太尼静脉镇痛效应与CYP3A4~*1G多态性相关;
     3.OPRM1 A118G和CYP3A4~*1G多态性间存在交互作用,携带OPRM1 118G/G和CYP3A4~*1者术后芬太尼消耗量显著增高。
Background and Objective
     Fentanyl is a synthetic opioid widely used for analgesia.The analgesia effect of fentanyl varies in different individuals,which makes it difficult to know the appropriate dose for a particular patient.Recent advances in genetic research indicated that genetic polymorphisms may also contribute to the patient's variability in response to opioid treatment.This study was performed to observe the impact ofμ-opioid receptor gene A118G,CYP3A4~*1G and CYP3A5~*3 polymorphisms on fentanyl effect for intravenous analgesia.The present study provides an important foundation and theoretical evidence for the gene-directed rationalization and individualization of medication in the pain treatment.
     Materials and Methods
     1.Subjects
     Total two hundred and four subjects,aged 20-50 yr,within±20%of ideal body weight,and having an American Society of Anesthesiologists(ASA) physical status ofⅠorⅡ,undergoing selective abdominal total hysterectomy or myomectomy with general anesthesia were included.Exclusion criteria included the following:known history of psychiatric disease,significant cardiovascular disease,hepatic or renal dysfunction,diabetes mellitus,alcohol or drug abuse,chronic analgesic use, pregnancy or nursing.Subjects who have consumed drugs known to inhibit or induce the expression of CYP3A enzymes in two weeks were also excluded.The study design was approved by Institutional Ethics Committee of Zhengzhou University.The subjects were divided into three groups according to the genotypes.
     2.Anesthetic Technique and Analgesia
     Preoperatively,the pain threshold and pain tolerance threshold were measured using electrical stimulation.To familiarize the subjects with the assessment method,a training session was given in the preoperative holding area.The pain threshold(PT) and pain tolerance threshold(PTT) for each patient was obtained by the mean of three successive measurements,with a time interval of 5 min.A standardized,general anesthesia technique was used for all subjects.General anesthesia was induced with 0.1mg/kg midazolam,0.5 mg/kg propofol,2μg/kg remifentanyl and 1 mg/kg succinylcholine.Atracurium 0.6 mg/kg was administered intravenously as an initial dosage immediately after tracheal intubation was confirmed and then 0.1-0.2 mg/kg was administered as repeated boluses.During the operation,remifentanyl(0.1-0.2μg/kg/min) and propofol(6-8 mg/kg/h) were used for maintenance of anesthesia. Intravenous fentanyl patient-controlled analgesia(PCA) was provided postoperatively for satisfactory analgesia.The degrees of pain during PCA treatment were assessed with visual analog scale(VAS).The fentanyl consumption and occurrence of any adverse effects in the first 24 h postoperatively were recorded.
     The analgesic solution in the PCA pump(6300 CADD-Legacy,USA) contained 100 ml normal saline and 1 mg fentanyl,5 mg droperidol.The PCA pump was programmed to give a 2ml bolus of fentanyl solution with 5 min lockout time,0.5 ml/h background infusion and maximum 145μg per hour.
     3.Genotyping assays
     Venous blood samples(2 ml) were collected from all subjects in this study.DNA was extracted from leukocytes using a standard phenol/chloroform procedure. Genotyping of OPRM1 A118G and CYP3A4~*1G,CYP3A5~*3alleles was conducted by polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP).
     4.Evaluation of CYP3A activity
     CYP3A activity was measured by plasma 1'-hydroxymidazolam:midazolam (1'-OHMDZ:MDZ) ratio at 60 min after intravenous administration of 0.1 mg/kg midazolam for induction of anesthesia.Midazolam and 1'-hydroxymidazolam concentrations were determined using liquid chromatography-mass spectrometry method(LC-MS).
     5.Statistical analysis
     SPSS 13.0 software was used for statistical analyses.The allele frequencies were estimated from the observed numbers of each specific allele.Chi-square test was used to verify Hardy-Weinberg equilibrium.One-way analysis of variance was used to assess whether significant differences exist between the three genotypes.Data for the fentanyl consumption were compared among the genotype group using one-way analysis of variance with post hoc Bonferroni correction for multiple comparisons was performed before and after adjusted for age,weight and remifentanil consumption in the operation.The incidences of any adverse effects were analyzed using Chi-square test or Fisher exact test.Theαwas set at 0.05.
     Results
     1.General information
     Among the 204 subjects,the preoperative pain threshold was 2.0±0.6 mA,and the pain tolerance threshold was 5.1±2.0 mA.The VAS pain score immediately after surgery was 5.7±1.4.At 24 h after surgery,it was 2.2±0.8.The fentanyl consumption was 396.2±210.0μg and 190.9±43.2μg in the postoperative first and second 24 h, respectively.The incidence of PONV within 24 h in our study was 28.92%.
     2.Frequencies of OPRM1 A118G,CYP3A4~*1G and CYP3A5~*3 alleles
     The frequencies of OPRM1 118G,CYP3A4~*1G and CYP3A5~*3 alleles in Chinese gynecologic patients were 0.320,0.299 and 0.694,respectively.The allele frequencies were in Hardy-Weinberg equilibrium(P>0.05).
     3.Association of OPRM1 A118G gene polymorphism with preoperative pain tolerance and fentanyl analgesic effect
     There were no significant differences in general information among the three genotype groups(P>0.05).PTT was statistical different between A/A(5.6±2.4 mA) and A/G(4.9±1.3 mA) groups,between A/G and G/G(3.8±1.0 mA) groups and between A/A and A/G groups(P<0.05).However,PT did not show a significant difference among the three genotypes(P>0.05).Subjects in G/G group(507.9±290.2μg) consumed significantly more fentanyl than subjects in A/A(363.6±198.8μg) and A/G(412.0±189.8μg) groups in the first 24 h postoperatively(P<0.05).Fentanyl consumption increased in accordance with the number of OPRM1 118G alleles (P<0.05 for linear trend).There was no significant difference in incidences of adverse events among the different genotype groups(P>0.05).
     4.Association of CYP3A4~*1G gene polymorphism with CYP3A activity and fentanyl analgesic effect
     There were no significant differences in general information among the three genotype groups(P>0.05).The subjects with the CYP3A4~*1G/~*1G genotype (260.0±101.1μg) need less fentanyl to achieve pain control than subjects carrying the CYP3A4~*1/~*1(407.4±187.4μg) and CYP3A4~*1/~*1G(414.1±238.5μg) genotypes (P<0.05).Fentanyl consumption increased in accordance with the number of ~*1G alleles(P<0.05 for linear trend).The activity of CYP3A in ~*1G/~*1G group(0.34±0.15) was lower than in ~*1/~*1(0.46±0.14) and ~*1/~*1G(0.46±0.12) groups(P<0.05).There was no significant difference in incidences of adverse events among the different genotype groups(P>0.05).
     5.Association of CYP3A5~*3 gene polymorphism with CYP3A activity and fentanyl analgesic effect
     There were no significant differences in general information among the three genotype groups(P>0.05).There were no significant differences in postoperative fentanyl consumptions or in CYP3A activity among the three genotype groups (P>0.05).There was no significant difference in incidences of adverse events among the different genotype groups(P>0.05).
     6.Effect of CYP3A4/CYP3A5 haplotype on fentanyl analgesic effect
     For CYP3A4/CYP3A5 haplotype,the subjects possessing CYP3A4~*1G/CYP3A5~*3 haplotype(CYP3A4~*1G/~*1G and CYP3A5~*1/~*3 or CYP3A5~*1/~*3) need less fentanyl to achieve pain control than subjects possessing CYP3A4~*1/CYP3A5~*1 haplotype(CYP3A4~*1/~*1 and CYP3A5~*1/~*1)(P<0.05).
     7.Joint effects of OPRM1 A118G and CYP3A4~*1G gene polymorphisms on fentanyl analgesic effect
     To explore the joint effects of genes and the clinical efficacy of fentanyl,we created four groups:(1) ~*1G/~*1G but not G/G;(2) neither G/G nor ~*1G/~*1G;(3) G/G and ~*1G/~*1G;(4) G/G but not ~*1G/~*1G.There was significant difference in fentanyl consumption among the four genotype groups.Carriers of the OPRM1 118G/G and the CYP3A4~*1 genotypes required the most fentanyl dose(P<0.05).There was no significant difference in incidence of adverse events among the different genotype groups(P>0.05).
     Conclusions
     1.The preoperative pain tolerance threshold is lower in OPRM1 118G homozygotes. The OPRM1 A118G polymorphism has a gene-dose-dependent effect on the pain tolerance threshold.Postoperative fentanyl consumption increase in accordance with the number of 118G alleles.This is the first report on the association of OPRM1 A118G polymorphism with the effect of fentanyl for intravenous analgesia.
     2.Carrying CYP3A4~*1G decrease the activity of CYP3A4 and patient-controlled intravenous fentanyl consumption.CYP3A5~*3 polymorphism may have no significant impact on fentanyl analgesic effect.For CYP3A4/CYP3A5 haplotype, CYP3A4~*1G/CYP3A5~*3 decrease the consumption of fentanyl for intravenous analgesia.This is the first report on the association of CYP3A4~*1G polymorphism with the effect of fentanyl.
     3.Carriers of the OPRM1 118G/G and the CYP3A4~*1 genotypes require the most fentanyl dose when explored for joint effects of OPRM1 and CYP3A4 genes.
引文
1. Victoria G. Pain care. Nurse Care North American 1994, 29(3):534-544.
    2. Apfelbaum JL, Chen C, Mehta SS, et al. Postoperative pain experience: results from a national survey suggest postoperative pain continues to be undermanaged. Anesth Analg 2003, 97(2):534-540.
    3. Dolin SJ, Cashman JN, Bland JM. Effectiveness of acute postoperative pain management: I. Evidence from published data. Br J Anaesth 2002, 89(3):409-423.
    4. Bisgaard T, Klarskov B, Rosenberg J, et al. Characteristics and prediction of early pain after laparoscopic cholecystectomy. Pain 2001, 90(3):261-269.
    5. Cepeda MS, Carr DB. Women experience more pain and require more morphine than men to achieve a similar degree of analgesia. Anesth Analg 2003, 97(5): 1464-1468.
    6. Tan EC, Lim Y, Teo YY, et al. Ethnic differences in pain perception and patient-controlled analgesia usage for postoperative pain. J Pain 2008, 9(9):849-855.
    7. Kalkman CJ, Visser K, Moen J, et al. Preoperative prediction of severe postoperative pain. Pain 2003, 105(3):415-423.
    8. Lotsch J, Geisslinger G. Are mu-opioid receptor polymorphisms important for clinical opioid therapy? Trends Mol Med 2005, 11(2):82-89.
    9. Nagashima M, Katoh R, Sato Y, et al. Is there genetic polymorphism evidence for individual human sensitivity to opiates? Curr Pain Headache Rep 2007, 11(2):115-123.
    10. Abood ME. Molecular biology of cannabinoid receptors. Handb Exp Pharmacol 2005, (168):81-115.
    11. Lotsch J, Skarke C, Liefhold J, et al. Genetic predictors of the clinical response to opioid analgesics: clinical utility and future perspectives. Clin Pharmacokinet 2004,43(14):983-1013.
    12. Uhl GR, Sora I, Wang Z. The mu-opiate receptor as a candidate gene for pain: Polymorphisms, variations in expression, nociception, and opiate responses. Proc Natl Acad Sci USA 1999, 96(14):7752-7755.
    13. Tan EC, Tan CH, Karupathivan U, et al. Mu opioid receptor gene polymorphisms and heroin dependence in Asian populations. Neuroreport 2003, 14(4):569-572.
    14. Kieffer BL, Gaveriaux-Ruff C. Exploring the opioid system by gene knockout. Prog Neurobiol 2002, 66(5):285-306.
    15. Bond C, LaForge KS, Tian M, et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: Possible implications for opiate addiction. Proc Natl Acad Sci USA 1998, 95(16):9608-9613.
    16. Klepstad P, Rakvag TT, Kaasa S et al. The 118A>G polymorphism in the human mu-opioid receptor gene may increase morphine requirements in patients with pain caused by malignant disease. Acta Anaesthesiol Scand 2004, 48(10):1232-1239.
    17. Sia AT, Lim Y, Lim EC, et al. A118G single nucleotide polymorphism of human mu-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Anesthesiology 2008, 109(3):520-526.
    18. Chou WY, Yang LC, Lu HF, et al. Association of mu-opioid receptor gene polymorphism (A118G) with variations in morphine consumption for analgesia after total knee arthroplasty. Acta Anaesthesiol Scand 2006, 50(7):787-792.
    19. Chou WY, Wang CH, Liu PH, et al. Human opioid receptor A118G polymorphism affects intravenous patient-controlled analgesia morphine consumption after total abdominal hysterectomy. Anesthesiology 2006,105(2):334-337.
    20. Huang CJ, Liu HF, Su NY, et al. Association between human opioid receptor genes polymorphisms and pressure pain sensitivity in females. Anaesthesia 2008, 63(12):1288-1295.
    21.Fillingim RB, Kaplan L, Staud R, et al. The A118G single nucleotide polymorphism of the mu-opioid receptor gene (OPRM1) is associated with pressure pain sensitivity in humans. J Pain 2005, 6(3): 159-167.
    22.Labroo RB,Paine MF,Thummel KE,et al.Fentanyl metabolism by human hepatic and intestinal cytochrome P4503A4:implications for interindividual variability in disposition,efficacy,and drug interactions.Drug Metab Dispos 1997,25(9):1072-1080.
    23.舒炎,周宏灏.细胞色素P450药物氧化代谢酶的遗传药理学进展.见:王永铭,苏定冯,主编.药理学进展.第1版.北京:科学出版社,2000.19.
    24.Zhu B,Liu ZQ,Chen GL,et al.The distribution and gender difference of CYP3A activity in Chinese subjects.Br J Clin Pharmacol 2003,55(3):264-269.
    25.Ozdemir V,Kalow W,Tang BK,et al.Evaluation of the genetic component of variability in CYP3A4 activity:a repeated drug administration method.Pharmacogenetics 2000,10(5):373-388.
    26.Hsieh KP,Lin YY,Cheng CL,et al.Novel mutations of CYP3A4 in Chinese.Drug Metab Dispos 2001,29(3):268-273.
    27.Dai D,Tang J,Rose R,et al.Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos.J Pharmacol Exp Ther 2001,299(3):825-831.
    28.Du J,Yu L,Wang L,et al.Differences in CYP3A4*1G genotype distribution and haplotypes of CYP3A4,CYP3A5 and CYP3A7 in 3 Chinese populations.Clin Chim Acta 2007,383(1-2):172-174.
    29.Hu YF,Tu JH,Tan ZR,et al.Association of CYP3A4*18B polymorphisms with the pharmacokinetics of cyclosporine in healthy subjects.Xenobiotica 2007,37(3):315-327.
    30.Gao Y,Zhang LR,Fu Q.CYP3A4*1G polymorphism is associated with lipid-lowering efficacy of atorvastatin but not of simvastatin.Eur J Clin Pharmacol 2008,64(9):877-882.
    31.Hirano M,Maeda K,Matsushima S,et al.Involvement of BCRP(ABCG2) in the biliary excretion of pitavastatin.Mol Pharmacol 2005,68(3):800-807.
    32.White CM.A review of the pharmacologic and pharmacokinetic aspects of rosuvastatin.J Clin Pharmacol 2002,42(9):963-970.
    33.Kuehl P,Zhang J,Lin Y,et al.Sequence diversity in CYP3A promoters and characterization of genetic basis of polymorphic CYPP3A5 expression. Nat Genet 2001,27(4):383-391.
    34. Shin PS, Huang JD. Pharmacokinetics of midazolam and l'-hydroxymidazolam in Chinese with different CYP3A5 genotypes. Drug Metab Dispos 2002, 30(12):1491-1496.
    35. Liu TC, Lin SF, Chen TP, et al. Polymorphism analysis of CYP3A5 in myeloid leukemia. Oncol Rep 2002, 9(2):327-329.
    36. Hu YF, He J, Chen GL, et al. CYP3A5*3 and CYP3A4*18 single nucleotide polymorphisms in a Chinese population. Clin Chim Acta 2005, 353(1-2):187-192.
    37. Qiu XY, Jiao Z, Zhang M, et al. Association of MDR1, CYP3A4*18B, and CYP3A5*3 polymorphisms with cyclosporine pharmacokinetics in Chinese renal transplant recipients. Eur J Clin Pharmacol 2008, 64(11): 1069-1084.
    38. Jin M, Gock SB, Jannetto PJ, et al. Pharmacogenomics as molecular autopsy for forensic toxicology: genotyping cytochrome P450 3A4*1B and 3A5*3 for 25 fentanyl cases. J Anal Toxicol 2005, 29(7):590-598.
    39. Thummel KE, Wilkinson GR. In vitro and vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol 1998, 38:389-430.
    40. Nielsen PR, N0rgaard L, Rasmussen LS, et al. Prediction of post-operative pain by an electrical pain stimulus. Acta Anaesthesiol Scand 2007, 51(5): 582-586.
    41. Hsu YW, Somma J, Hung YC, et al. Predicting postoperative pain by preoperative pressure pain assessment. Anesthesiology 2005, 103(3):613-618.
    42. Camu F, Van Aken H, Bovill JG, et al. Postoperative analgesic effects of three demand-dose sizes of fentanyl administered by patient-controlled analgesia. Anesth Analg 1998, 87(4):890-895.
    43. Sommer M, de Rijke JM, van Kleef M, et al. The prevalence of postoperative pain in a sample of 1490 surgical inpatients. Eur J Anaesthesiol 2008, 25(4): 267-274.
    AA. Staahl C, Drewes AM. Experimental human pain models: a review of standardised methods for preclinical testing of analgesics. Basic Clin Pharmacol Toxicol 2004, 95(3): 97-111.
    45. Gracely RH. Pain measurement. Acta anaesthesiol Scand 1999, 43(9): 897-908.
    46.Enggaard TP,Poulsen L,Arendt-Nielsen L,et al.The analgesic effect of codeine as compared to imipramine in different human pain models.Pain 2001,922(1-2):277-282.
    47.黄飞龙,王宁华,谭维溢,等.健康妇女斜方肌与三角肌压痛阈重测信度研究.国外医学·物理医学与康复学分册.2004,24(3):99-100.
    48.Mustafa AA,Lorentz E,Deanna E,et al.Sex Differences in Pain and Hypothalamic-Pituitary-Adrenocortical Responses to Opioid Blockade.Psychosomatic Medicine 2004,66(2):198-206.
    49.Almeida TF,Roizenblatt S,Tufik S.Afferent pain pathways:A neuroanatomical Review.Brain Res 2004,1000(1-2):40-56.
    50.Sambrook J,Fritsch EF,Maniatis T.Molecular cloning a laboratory manual,2nd edn.Cold Spring Harbor Laboratory,Cold Spring Harbor,1989,16-19.
    51.Romberg RR,Olofsen E,Bijl H,et al.Polymorphism of μ-opioid receptor gene (OPRM1:c.118A>G) does not protect against opioid induced respiratory depression despite reduced analgesic response.Anesthesiology 2005,102(3):522-530.
    52.Koch T,Kroslak T,Averbeck M,et al.Allelic Variation S268P of the Human mu-Opioid Receptor Affects Both Desensitization and G Protein Coupling.Mol Pharmacol 2000,58(2):328-334.
    53.Landau R,Kern C,Columb MO,et al.Genetic variability of the mu-opioid receptor influences intrathecal fentanyl analgesia requirements in laboring women.Pain 2008,139(1):5-14.
    54.Beyer A,Koch T,Schr(o|¨)der H,et al.Effect of the A118G polymorphism on binding affinity,potency and agonist-mediated endocytosis,desensitization,and resensitization of the human μ-opioid receptor.J Neurochem 2004,89(3):553-560.
    55.Zhang Y,Wang D,Johnson AD,et al.Allelic expression imbalance of human mu opioid receptor(OPRM1) caused by variant A118G.J Biol Chem 2005,280(38):32618-32624.
    56.Margas W,Zubkoff I,Schuler HG,et al.Modulation of Ca~(2+) channels by heterologously expressed wild-type and mutant human mu-opioid receptors (hMORs) containing the A118G single-nucleotide polymorphism.J Neurophysiol 2007,97(2):1058-1067.
    57.Hayashida M,Nagashima M,Satoh Y,et al.Analgesic requirements after major abdominal surgery are associated with OPRM1 gene polymorphism genotype and haplotype.Pharmacogenomics 2008,9(11):1605-1616.
    58.成碟,徐为人,刘昌孝.细胞色素P450(CYP450)遗传多态性研究进展.中国药理学通报.2006,22(12):1409-1414.
    59.Zhu B,Ou Yang DS,Cheng ZN,et al.Single plasma sampling to predict oral clearance of CYP3A probe midazolam.Acta Pharmacol Sin 2001,22(7):634-638.
    60.朱学慧,娄建石.细胞色素P4503A选择性探针药物的评价.中国临床药理学与治疗学.2004,9(4):365-369.
    61.Wandel C,Bocker R,Bohrer H,et al.Midazolam is metabolized by at least three different cytochromeP450 enzymes.Br J Anaesth 1994,73(5):658-661.
    62.Lown KS,Kolars JC,Thummel KE,et al.Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel.Lack of prediction by the erythromycin breath test.Drug Metab Dispos 1994,22(6):947-955.
    63.Thummel KE,Shen DD,Podoll TD,et al.Use of midazolam as a human cytochrome P4503A probe:Ⅰ.In vitro-in vivo correlations in liver transplant patients.J Pharmacol Exp Ther 1994,271(1):549-556.
    64.Thummel KE,Shen DD,Podoll TD,et al.Use of midazolam as a human cytochromeP4503A probe:Ⅱ.Characterization of inter and intra individual hepatic CYP3A variability after liver transplantation.J Pharmacol Exp Ther 1994,271(1):557-566.
    65.Villeneuve JP,L'Ecuyer L,De Maeght S,et al.Prediction of cyclosporine clearance in liver transplant recipients by the use of midazolam as a cytochrome P450 3A probe.Clin Pharmacol Ther 2000;67(3):242-248.
    66.He P,Court MH,Greenblatt DJ,et al.Factors influencing midazolam hydroxylation activity in human liver microsomes.Drug Metab Dispos 2006,34(7):1198-1207.
    67.Wolbold R,Klein K,Burk O,et al.Sex is a major determinant of CYP3A4 expression in human liver.Hepatology 2003,38(4):978-988.
    68.Kest B,Sarton E,Dahan A.Gender differences in opioid-mediated analgesia:animal and human studies.Anesthesiology 2000,93(2):539-547.
    69.Tateishi T,Watanabe M,Moriya H,et al.No ethnic difference between Caucasian and Japanese hepatic samples in the expression frequency of CYP3A5 and CYP3A7 proteins.Biochem Pharmacol 1999,57(8):935-939.
    70.Domanski TL,Finta C,Halpert JR,et al.cDNA cloning and initial characterization of CYP3A43,a novel human cytochrome P450.Mol Pharmacol 2001,59(2):386-392.
    71.Westlind A,Malmebo S,Johansson I,et al.Cloning and tissue distribution of a novel human cytochrome P450 of the CYP3A subfamily,CYP3A43.Biochem Biophys Res Commun 2001,281(5):1349-1355.
    72.De Waziers I,Cugnenc PH,Yang CS,et al.Cytochrome P450 isoenzymes,epoxide hydrolase and glutathione transferases in rat and human hepatic and extrahepatic tissue.J Pharmacol Exp Ther 1990,253(1):387-394.
    73.Shimada T,Yamazaki H,Mimura M,et al.Interindividual variations in human liver cytochrome P450 enzyme involved in the oxidation of drugs,carcinogens and toxic chemicals:Studies with liver microsomes of 30 Japanese and 30Caucasians.J Pharmacol Exp Ther 1994,270(1):414-423.
    74.Fukushima-Uesaka H,Saito Y,Watanabe H,et al.Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotype in a Japanese population.Human Mutation 2008,26(1):100-108.
    75.Hustert E,Haberl M,Burk O,et al.The genetic determinants of the CYP3A5polymorphism.Pharmacogenetics 2001,11(9):773-779.
    76.Chou FC,Tzeng SJ,Huang JD.Genetic polymorphism of cytochrome P450 3A5in Chinese.Drug Metab Dispos 2001,29(9):1205-1209.
    77.Xie HG,Wood AJJ,Kim RB,et al.Genetic variability in CYP3A5 and its possible consequences.Pharmacogenomics 2004,5(3):243-272.
    78.周宏灏,主编.遗传药理学.第1版.北京:科学出版社,2001.98-100.
    79.周宏灏.分子遗传药理学.见:周宏灏,主编.分子药理学.第1版.哈尔滨:黑龙江科学技术出版社,1999.224-251.
    80.Sata F,Sapone A,Elizondo G,et al.CYP3A4 allelic variants with amino acid substitutions in exon 7 and 12:evidence for an allelic variant with altered catalvtic activity.Clin Pharmacol Ther 2000,67(1):48-56.
    81.Eiselt R,Domanski TL,Zibat A,et al.Identification and functional characterization of eight CYP3A4 protein variants.Pharmacogenetics 2001,11(5):447-458.
    82.储小曼,曹文,闵佩清等.肾移植病人中CYP3A4基因多态性对环孢素A代谢的影响.中国临床药理学杂志.2003,19(6):421-425.
    83.Chia YY,Kuo MC,Liu K,et al.Does postoperative pain induce emesis? Clin J Pain 2002,18(5):317-323.
    84.Stanley G,Appadu B,Mead M,et al.Dose requirements,efficacy and side effects of morphine and pethidine delivered by patient-controlled analgesia after gynaecologicaI surgery.Br J Anaesth 1996,76(4):484-486.
    85.Campa D,Gioia A,Tomei A,et al.Association of ABCB1/MDR1 and OPRM1gene polymorphisms with morphine pain relief.Clin Pharmacol Ther 2008,83(4):559-566.
    86.Reyes-Gibby CC,Shete S,Rakvag T,et al.Exploring joint effects of genes and the clinical efficacy of morphine for cancer pain:OPRM1 and COMT gene.Pain 2007,130(1-2):25-30.
    1. Nagashima M, Katoh R, Sato Y, et al. Is there genetic polymorphism evidence for individual human sensitivity to opiates? Curr Pain Headache Rep 2007, 11(2):115-23.
    2. Hsiao P. Verapamil P-glycoprotein transport across the rat blood-brain barrer; cyclosporine, a concentration inhibition analysis, and comparison with human data. J Pharmacol Exp Ther 2006, 317(2):704-710.
    3. Thiebaut F, Tsuruo T, Hamada H, et al. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA 1987, 84(21): 7735-7738.
    4. Aquilante CL, Letrent SP, Pollack GM, et al. Increased brain P-glycoprotein in morphine tolerant rats. Life Sci 2000, 66(4):47-51.
    5. Letrent SP, Polli JW, Humphreys JE, et al. P-glycoprotein mediated transport of morphine in brain capillary endothelial cells. Biochem Pharmacol 1999, 58(6):951-957.
    6. Wandel C, Kim R, Wood M, et al. Interaction of morphine, fentanyl, sufen-tanil, alfentanil and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology 2002, 96(4):913-920.
    7. Schinkel AH, Wagenaar E, van Deemter L, et al. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 1995, 96(4): 1698-1705.
    8. Xie R, Hammarlund-Udenaes M, de Boer AG, et al. The role of P-glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis studies in mdrla (-/-) and mdrla (+/+) mice. Br J Pharmacol 1999, 128(3):563-568.
    9. Henthorn TK, Liu Y, Mahapatro M, et al. Active transport of fentanyl by the blood-brain barrier. J Pharmacol Exp Ther 1999, 289(2): 1084-1089.
    10. Lotsch J, Tegeder I, Angst MS, et al. Antinociceptive effects of morphine-6-glucuronide in homozygous MDR1a P-glycoprotein knockout and in wildtype mice in the hotplate test. Life Sci 2000, 66(24): 2393-2403.
    11. Campa D, Gioia A, Tomei A, et al. Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin Pharmacol Ther 2008, 83(4):559-566.
    12. Crettol S, Deqlon JJ, Besson J, et al. ABCB1 and cytochrome P450 genotyes and phenotyes: influence on methadone plasma levels and response to treatment. Clin Pharmacol Ther 2006, 80(6):668-681.
    13. Coulbault L, Beaussier M, Verstuyft C, et al. Environmental and genetic factors associated with morphine response in the postoperative period. Clin Pharmacol Ther 2006, 79(4):316-324.
    14. Lotsch J, Skarke C, Grosch S, et al. The polymorphism A118G of the human mu-opioid receptor gene decreases the clinical activity of morphine-6-glucuronide but not that of morphine. Pharmacogenetics 2002, 12(1):3-9.
    15. Bond C, LaForge KS, Tian M, et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci U S A 1998, 95(16):9608-9613.
    16. Befort K, Filliol D, Decaillot FM, et al. A single nucleotide polymorphic mutation in the human mu-opioid receptor severely impairs receptor signaling. J Biol Chem 2001,276(5):3130-3137.
    17. Lotsch J, Skarke C, Liefhold J, et al. Genetic predictors of the clinical response to opioid analgesics: clinical utility and future perspectives. Clin Pharmaeokinet 2004,43(14):983-1013.
    18. Chou WY, Yang LC, Lu HF, et al. Association of mu-opioid receptor gene polymorphism (A118G) with variations in morphine consumption for analgesia after total knee arthroplasty. Acta Anaesthesiol Scand 2006, 50(7):787-792.
    19. Chou WY, Wang CH, Liu PH, et al. Human opioid receptor Al 18G polymorphism affects intravenous patient-controlled analgesia morphine consumption after total abdominal hysterectomy. Anesthesiology 2006,105(2):334-337.
    20. Reyes-Gibby CC, Shete S, Rakvag T, et al. Exploring joint effects of genes and the clinical efficacy of morphine for cancer pain: OPRM1 and COMT gene. Pain 2007, 130(1-2):25-30.
    21. Sia AT, Lim Y, Lim EC, et al. A118G single nucleotide polymorphism of human mu-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Anesthesiology 2008, 109(3):520-526.
    22.Caraco Y,Maroz Y,Davidson E.Variability in alfentanil analgesia maybe attribute to polymorphism in the mu-opiod receptor gene.Clin Pharmacol Ther 2001,69:63.
    23.Skarke C,Darimont J,Schmidt H,et al.Analgesic effects of cytomorphine and morphine-6-glucuronide in a transcutaneous hydromorelectrical pain model in healthy volunteers.Clin Pharmacol Ther 2003,73(1):107-121.
    24.L(o|¨)tsch J,Zimmermann M,Darimont J,et al.Does the A118G polymorphism at the mu-opioid receptor gene protect agianst morphine-6-glucuronide toxicity?Anesthesiology 2002,97(4):814-819.
    25.Landau R,Giraud R,Delrue V,et al.Spinal anesthesia for cesarean delivery in a woman with a surgically corrected type Ⅰ Arnold Chiari malformation.Anesth Analg 2003,97(1):253-255.
    26.Romberg RR,Olofsen E,Bijl H,et al.Polymorphism of mu-opioid receptor gene (OPRMI:c.118A>G) does not protect against opioid-induced respiratory depression despite reduced analgesic response.Anesthesiology 2005,102(3):522-530.
    27.Town T,Abdullah L,Crawford F,et al.Association of a functional mu-opioid receptor allele(118A) with alcohol dependency.Am J Med Genet 1999,88(5):458-461.
    28.Schinka JA,Town T,Abdullah L,et al.A functional polymorphism within the mu-opioid receptor gene and risk for abuse of alcohol and other substances.Mol Psychiatry 2002,7(2):224-228.
    29.Franke P,Wang T,Nothen MM,et al.Nonreplication of association between mu-opioid receptor geng A118G polymorphism and substance dependence.Am J Med Genet 2001,105(1):114-119.
    30.Gelernter J,Kranzler H,Cubells J.Genetics of two mu-opioid receptor gene exon1 polymorphisms:population studies,and allele frequencies in alcohol-and drug-dependent subject.Mol Psychiatry 1999,4(5):476-483.
    31.苑成梅,方贻儒,赵敏等.海洛因依赖临床特征与u阿片受体基因多态的关联.中国药物依赖性杂志.2004,13(1):22-25.
    32.Szeta CY,Tang NL,Lee DT,et al.Association between mu-opioid receptor gene polymorphism and Chinese heroin addicts.Neuroreport 2001,12(6):1103-1106.
    33.Liem EB,Lin CM,Suleman MI,et al.Anesthetic requirement is increased in redheads.Anesthesiology 2004,101(2):279-283.
    34.Liem EB,Joiner TV,Tsueda K,et al.Increased sensitivity to thermal pain and reduced subcutaneous lidocaine efficacy in redheads.Anesthesiology 2005,102(3):509-514.
    35.Mogil JS,Ritchie J,Smith SB,et al.Melanocortin-1 receptor gene variants affect pain and mu-opioid analgesia in mice and humans.J Med Genet 2005,42(7):583-587.
    36.何荣芝,黄焕森,高崇荣.基因导向阿片类药物个体化用药新模式.中国疼痛医学杂志.2007,13(1):49-51.
    37.Iohom G,Fitzgerald D,Cunningham AJ.Principles of pharmacogenetics—implications for the anaesthetist.Br J Anaesth 2004,93(3):440-450.
    38.Levo A,Koski A,Ojanpera I,et al.Post-mortem SNP analysis of CYP2D6 gene reveals correlation between genotype and opioid drug(tramadol) metabolite ratios in blood.Forensic Sci Int 2003,135(1):9-15.
    39.Borlak J,Hemmml R,Erb K,et al.A rapid and simple CYP2D6 genotyping assay-case study with the analgetic tramadol.Metabolism 2003,52(11):1439-1443.
    40.Gan SH,Ismail R,Wan Adnan WA,et al.Correlation of tramadol pharmacokinetics and CYP2D6*10 genotype in Malaysian subjects.J Pharm Biomed Anal 2002,30(2):189-195.
    41.Stamer UM,Lehnen K,Hothker F,et al.Impact of CYP2D6 genotype on postoperative tramadol analgesia.Pain 2003,105(1-2):231-238.
    42.Wang GX,Zhang H,He FF,et al.Effect of CYP2D6*10 C188T polymorphism on postoperative tramadol analgesia in a Chinese population.Eur J Clin Pharmacol 2006,62(11):927-931.
    43.Gonzalez FJ,Schmid BJ,Umeno M,et al.Human P450PCN1:sequence,chromosome localization,and direct evidence through cDNA expression that P450PCN1 is nifedipine oxidase.DNA 1988,7(2):79-86.
    44.Rebbeck TR,Jaffe JM,Walker AH,et al.Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4.J Natl Cancer Inst 1998,90(12):1225-1229.
    45.Hsieh KP,Lin YY,Cheng CL,et al.Novel mutations of CYP3A4 in Chinese.Drug Metab Dispos 2001,29(3):268-273.
    46.Lamba JK,Lin YS,Thummel K,et al.Common allelic variants of cytochrome P4503A4 and their prevalence in different populations.Pharmacogenetics 2002,12(2):121-132.
    47.Sata F,Sapone A,Elizondo G,et al.CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12:evidence for all allelic variant with altered catalytic activity.Clin Pharmacol Ther 2000,67(1):48-56.
    48.Eiselt R,Domanski TL,Zibat A,et al.Identification and functional characterization of eight CYP3A4 protein variants.Pharmacogenetics 2001,11(5):447-458.
    49.Dai D,Tang J,Rose R,et al.Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos.J Pharmacol Exp Ther 2001,299(3):825-831.
    50.储小曼,曹文,闵佩清等.肾移植病人中CYP3A4基因多态性对环孢素A代谢的影响.中国临床药理学杂志.2003,19(6):421-425.
    51.Kuehl P,Zhang J,Lin Y,et al.Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression.Nat Genet 2001,27(4):383-391.
    52.Hu YF,Tu JH,Tan ZR,et al.Association of CYP3A4*18B polymorphisms with the pharmacokinetics of cyclosporine in healthy subjects.Xenobiotica 2007,37(3):315-27.
    53.黄敏,汪晖,平洁等.中国大陆汉族人群CYP3A4基因变异分析.中国临床药理学与治疗学.2006,11(3):300-304.
    54.Du J,Yu L,Wang L,et al.Differences in CYP3A4*1G genotype distribution and haplotypes of CYP3A4,CYP3A5 and CYP3A7 in 3 Chinese populations.Clin Chim Acta 2007,383(1-2):172-174.
    55.Gao Y,Zhang LR,Fu Q.CYP3A4*1G polymorphism is associated with lipid-lowering efficacy of atorvastatin but not of simvastatin.Eur J Clin Pharmacol 2008,64(9):877-882.
    56.Labroo RB,Paine MF,Thummel KE,et al.Fentanyl metabolism by human hepatic and intestinal cytochrome P4503A4:implications for interindividual variability in disposition,efficacy,and drug interactions.Drug Metab Dispos 1997,25(9):1072-1080.
    57.Feierman DE,Lasker JM.Metabolism of fentanyl,a synthetic opioid analgesic,by human liver microsomes. Role of CYP3A4. Drug Metab Dispos 1996, 24(9): 932-939.
    58. Lamba JK, Lin YS, Schuetz EG, et al. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002, 54(10):1271-1294.
    59. Hu YF, He J, Chen GL, et al. CYP3A5*3 and CYP3A4*18 single nucleotide polymorphisms in a Chinese population. Clin Chim Acta 2005, 353(1-2):187-192.
    60. Lee SJ, van der Heiden IP, Goldstein JA, et al. A new CYP3A5 variant, CYP3A5*11, is shown to be defectivein nifedipine metabolism in a recombinant cDNA expression system. Drug Metab Dispos 2007, 35(1):67-71
    61.Klees TM, Sheffels P, Thummel KE, et al. Pharmacogenetics Determinant of Human Liver Microsomal Alfentanil Metabolism and the Role of Cytochrome P450 3A5. Anesthesiology 2005, 102(3):550-556.
    62. Jin M, Gock SB, Jannetto PJ, et al. Pharmacogenomics as molecular autopsy for forensic toxicology: genotyping cytochrome P450 3A4*1B and 3A5*3 for 25 fentanyl cases. J Anal Toxicol 2005, 29(7):590-598.
    63. Ahsan H, Chen Y, Whittemore A S, et al. A family-based genetic association study of variants in estrogen-metabolism genes COMT and CYPIBI and breast cancer risk. Breast Cancer Res Treat 2004, 85(2): 121-131.
    64. Aoyama N, Tsunoda M, Imai K. Improved assay for catechol-O-methyltransferase activity utilizing norepinephrine as an enzymatic substrate and reversed-phase high-performance liquid chromatography with fluorescence detection. J Chromatogr A 2005, 1074(1-2):47-51.
    65. Strous RD, Nolan KA, Lapidus R, et al. Aggressive behavior inschizophrenia is associated with the low enzyme activity COMT polymorphism: a replication study. Am J Med Genet B Neuropsychiatr Genet 2003,120(1):29-34.
    66. Strous RD, Bark N, Parsia SS, et al. Analysis of functional cetechol-O-methyltransferase gene polymorphism in schizophrenia: evidence for association with aggressive and antisocial behavior. Psychiatry Res 1997, 69(2-3):71-77.
    67. Tiihonen J, Hallikainen T, Lachman H, et al. Association between the functional variant of the catechol-O-methyltransferase (COMT) gene and type I alcoholism. Mol Psychiatry 1999,4(3):286-289.
    68. Hallikainen T, Lachman H, Saito T, et al. Lack of association between the functional variant of catechol-O-methyltransferase (COMT) gene and early-onset alcoholism associated with severe antisocial behavior. Am J Med Genet 2000, 96(3): 348-352.
    69. Vandenbergh DJ, Rodriguez LA, Miller IT, et al. High-activity catechol-O-methyltransferase allele is more prevalent in polysubstance abusers. Am J Med Genet 1997, 74(4): 439-442.
    70. Horowitz R, Kolter M, Shufman E, et al. Confirmation of an excess of the high enzyme activity COMT val allele in heroin addicts in a family-based haplotype relative risk study. Am J Med Genet 2000, 96(5):599-603.
    71. Zubieta JK, Heitzeq MM, Smith YR, et al. COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science 2003, 299 (5610): 1240-1243.
    72. Coffman BL, Rios GR, King CD, et al. Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos 1997, 25(1):1-4.
    73. Coffman BL, King CD, Rios GR, et al. The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y (268) and UGT2B7H(268). Drug Metab Dispos 1998, 26(1):73-77.
    74. Hirota T, Ieiri I, Takane H, et al. Sequence variability and candidate gene analysis in two cancer patients with complex clinical outcomes during morphine therapy. Drug Metab Dispos 2003, 31(5):677-680.
    75. Vree TB, van Dongen RT, Koopman-Kimenai PM. Codeine analgesia is due to codeine-6-glucuronide, not morphine. J Clin Pract 2000, 54(6):395-398.
    76. Wentland MP, Sun X, Ye Y, et al. Redefining the structure-activity relationships of 2,6-methano-3-benzazocines. Part 2: 8-formamidocyclazocine analogues. Bioorg Med Chem Lett 2003, 13(11):1911-1914.
    77. Wentland MP, YeY, Ciofi CL, et al. Syntheses and opioid receptor binding afinities of 8-amino-2, 6-methano-3-benzazacines. J Med Chert 2003, 46(5): 838-849

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700