猪产肠毒素型大肠杆菌F41受体基因的精细定位与鉴别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产肠毒素大肠杆菌(enterotoxigenic Escherichia coli ETEC)是引发新生及断奶仔猪腹泻和水肿的主要致病菌。ETEC主要存在五种血清型,包括F4、F41、F5、F6和F18。ETEC F41作为其中的一种血清型,是引起仔猪腹泻的重要病原菌之一,其通过表面表达的黏附素与猪小肠上皮细胞的特异性受体结合,释放肠毒素进而引起大量电解质和水渗入肠腔,从而导致仔猪腹泻。
     本课题组前期利用183个微卫星标记在大规模白色杜洛克×二花脸资源家系群体中开展全基因组扫描,将ETECF41受体基因初步定位在猪4号染色体SW2509和S0301标记间约6.04 Mb的区域。在此基础上,本研究通过在SSC4 QTL目标区域增加7个微卫星标记,对其在同一资源群体(包括816个F2个体及所有Fo与F1个体)中开展基因分型,进一步将ETEC F41受体基因精细定位至标记SW2509至KVL2754之间约2.42 Mb的区域,为鉴别ETEC F41受体目的基因奠定了良好的工作基础。
     在所定位的2.42 Mb目标区域中,采用比较基因组学分析,揭示该区域目前存在21个基因,从中选取6个可能的位置候选基因(包括ST3GAL1、TMEM71、ASAP1、NDRG1、ZFAT、KCNQ3基因)通过半定量RT-PCR检测其在猪空肠组织中的表达,结果表明这6个基因在空肠中均表达。进一步结合ETEC F41受体的理化特性选择ST3p-半乳糖α-2,3唾液酸转移酶1(ST3GAL1)基因作为ETEC F41受体的重要位置候选基因加以研究。采用5'RACE和3'RACE技术,分离了ST3GAL1基因全长1637 bp的cDNA序列,其中开放阅读框(Open Reading Frame, ORF)为1032 bp,编码343个氨基酸。通过比较测序法在ST3GAL1基因内共鉴别到62个多态位点,其中2个错义突变(ST3GAL1 c.284T>A和ST3GAL1 c.661A>G),11个同义突变,49个内含子上的突变。采用PCR-RFLP和PCR-SNaPshot方法对ST3GAL1 c.284T>A(位于第1外显子)、c.477C>T(位于第2外显子)及c.661A>G(位于第3外显子)等3个多态位点在白色杜洛克×二花脸资源家系所有个体中进行多态性检测。传递不平衡检测表明除c.477C>T位点外,另两个多态位点的等位基因及所有单倍型均与ETEC F41的易感性呈极显著相关(P<0.01)。为此,本实验选择两个强关联的SNPs位点(ST3GAL1c.284T>A及c.661A>G)进一步在287头中、西方猪种远缘群体中开展遗传多态性分析,采用Case Control力法分析,结果表明ST3GAL1 c.284T>A及c.661A>G两个多态位点在中、西方猪种远缘群体中与ETEC F41黏附表型关联性均不显著。由此提示ST3GAL1基因与ETECF41黏附表型的关联性可能存在群体异质性,另外ST3GAL1基因可能不是目的基因而仅是与目的基因处于一定连锁不平衡状态的一个标记位点。
     为了获得更高的基因定位精度,本研究采用猪全基因组高通量60K SNP芯片对白色杜洛克×二花脸资源群体开展全基因组关联分析(Genome-wide association study, G WAS),以精细定位ETEC F41受体基因位点。GWAS结果显示,与ETEC F41黏附表型具有最显著关联的SNP位点为H3GA0011673 C>T(P=1.09E-09),与其临近的两个多态位点为ASGA0017715 T>C和ASGA0017733 C>T。进一步对这三个多态位点在287头中、西方猪种中采用PCR-SNaPshot方法进行多态性检测,结果表明仅ASGA0017733 C>T多态位点在西方猪种中与ETEC F41黏附表型显著关联。由此提示,ASGA0017733 C>T位点可能是与目的基因处于连锁不平衡的一个重要标记,这为进一步开展位置候选基因研究奠定良好的基础。
     ASGA0017733 C>T位点位于ZFAT基因第3内含子上,结合受体生理生化分析,本实验选择ZFAT (zinc finger and AT hook domain containing)作为ETEC F41受体位置候选基因进一步深入研究。采用RACE技术分离得到长4108 bp的猪ZFAT cDNA序列,开放阅读框(ORF)长3393 bp,编码1130个氨基酸。通过比较测序在ZFAT基因编码区鉴别到c.60C>T、c.630A>C、c.660T>C、c.1077T>C、c.1416T>C、c.2337T>C及c.2935G>C共7个多态位点,其中1个为错义突变,6个为同义突变。采用PCR-SNaPshot技术检测这7个多态位点在中、西方猪种远缘群体287个个体中的多态性。连锁不平衡(Linkage Disequilibrium, LD)分析表明大多数SNP位点均存在不同程度的连锁不平衡,但在西方猪种中的LD程度高于中国地方猪种。关联性分析表明:在中国地方猪种中仅2337T>C位点与ETEC F41黏附表型显著相关(P<0.05);而在西方猪种中,除c.630A>C和c.660T>C位点与ETEC F41黏附表型相关性不显著外,其余5个多态位点与ETEC F41黏附表型显著相关(P<0.05),表明这些多态位点可能位于ETEC F41受体基因之中或与其处于连锁不平衡状态,这些结果为ETECF41受体基因的精细定位提供了重要的分子标记。
     本研究不仅证实了与ETEC F41侵染相关的主效QTL位于猪4号染色体上,而且进一步将目标区域缩小至标记SW2509-KVL2754(5.56 Mb-7.98 Mb)间,为最终确定ETEC F41受体目的基因及其因果突变奠定了重要的前期工作基础。通过对位置候选基因ST3GAL1和ZFAT基因的克隆及多态性分析,鉴别到的与ETEC F41黏附表型显著相关的位点为利用标记辅助选择(MAS)开展抗ETEC F41腹泻病分子遗传育种提供了很好的分子标记。
Enterotoxigenic Eschoerchia coli (ETEC) is a main pathogen causing diarrhea and edema in neonatal and post-weaned piglets. ETEC have five main serologic variants including F4、F41、F5、F6 and F18. ETEC F41 is one of the major serologic variants causing diarrhea in piglets by adhesion with the specific receptor of epithelial cells of small intestine, releasing enterotoxin and forcing large volume of electrolyte and water entering into gut cavity, resulting in diarrhea and edema.
     In a previous study, we performed a whole genome scan to detect QTL for ETEC F41 receptor using a large scale White Duroc×Erhualian intercross resource population with 183 microsatellite markers covering the entire genome. A major locus for ETEC F41 receptor was mapped to a 6.04-Mb region between SW2509 and S0301 on pig chromosome 4 (SSC4). Basing on the previous study, additional 7 microsatellite markers in the QTL region on chromosome 4 were genotyped across the three-generation pedigree comprising of 19 founders,68 F1 and 816 F2 animals. The ETEC F41 receptor locus was then refined to a region of 2.42 Mb between SW2509 and KVL2754 on SSC4. This result paved an important road to identify the ETEC F41 receptor gene.
     According to the human-pig comparative genomic map, there are 21 annotated genes in the refined region. Six positional candidate genes including ST3GAL1. TMEM71、ASAP1、NDRG1、ZFAT、KCNQ3 were subjected to expression analysis in the small intestinal tissues with semi-quantitative RT-PCR. The results indicated that all these genes were expressed in jejunum. According to the biological characteristics of the ETEC F41 receptor, ST3GAL1 was selected as one of candidate genes for further study. The 1,637-bp full-length cDNA of porcine ST3GLAL1 was isolated by 5'RACE and 3'RACE assays, which encodes a 343-amino acids protein. A total of 62 polymorphisms including 2 missense mutations (ST3GAL1c.284T>A and ST3GALIc.661A>G),11 synonymous variants and 49 intronic polymorphisms were identified by comparative sequencing using genomic DNA of four founder animals. Of the 62 polymorphisms, ST3GAL1 c.284T>A (in exon 1), c.477C>T (in exon 2) and c.661A>G (in exon 3) were genotyped on all animals of the White Duroc×Erhualian resource population. Transmission disequilibrium test showed that all alleles and haplotypes except for c.477C>T had strong association with susceptibility to ETEC F41 (P< 0.01). Furthermore, ST3GAL1 c.284T>A and c.661A>G were genotyped in 287 purebred outbred piglets from three Western commercial breeds and Chinese indigenous breeds. Case-control analysis showed that both the two polymorphisms were not associated with ETEC F41 adhesion phenotypes. The results indicated that different association of ST3GAL1 with ETEC F41 adhesion phenotypes in deferent populations was likely caused by population heterogeneity, alternatively, ST3GAL1 was not a major gene controlling diarrhea caused by ETEC F41 in pigs, it was only a locus having linkage disequilibrium with the resposible gene.
     To improve the mapping resolution, the White Duroc×Erhualian intercross were genotyped with Illumina porcine 60k DNA chips. Genome-wide association (GWAS) results showed that the most significantly linked locus was H3GA0011673 C>T (P= 1.09E-09) at 6167551 bp on SSC4 followed by ASGA0017715 T>C and ASGA0017733 C>T. The three polymorphisms were genotyped on 287 outbred pigs. The case-control analysis indicated that ASGA0017733 C>T was associated with ETEC F41 adhesion phenotypes of Western commercial pigs. The result suggested that ASGA0017733 C>T polymorphic locus probably located in the responsible gene or is an important marker which was in high linkage disqulibrium with the causal gene. These results provided good basis for positional cloning of the gene encoding the ETEC F41 receptor.
     The ASGA0017733 C>T polymorphism maps to intron 3 of the ZFAT gene. According to the properties of ETEC F41 receptor, ZFAT was selected as a positional candidate gene for furtherly analysis. The 4108-bp cDNA of ZFAT was isolated by RACE assay, which contains a 3393-bp open reading frame encoding a protein of 1130 amino acids. A total of 7 SNPs including one missense mutation and six synonymous variants (c.60C>T, c.630A>C, c.660T>C, c.1077T>C, c.1416T>C, c.2337T>C and c.2935G>C) were detected by comparative sequencing using cDNA of susceptible and resistant animals. All animals of outbred populations were genotyped for the seven ZFAT polymorphisms. Linkage disequilibrium (LD) analysis indicated that strong linkage disequilibrium existed among most of ZFAT polymorphisms. Moreover, LD was higher in Western commercial pigs than that in Chinese indigenous pigs. The results of association analysis showed that only c.2337T>C had significant (P< 0.05) association with susceptibility to ETEC F41 adhesion phenotypes in Chinese native pigs. In comparison, five polymorphisms except for c.630A>C and c.660T>C had association with susceptibility to ETEC F41 in Western commercial pigs (P< 0.05). These closely associated loci (c.60C>T, c.1077T>C, c.1416T>C, c.2337T>C and c.2935G>C) could benefit fine mapping of the gene encoding the ETEC F41 receptor.
     This study further convinced the major QTL for susceptability to ETEC F41 on pig SSC4 and refined the critical region to the SW2509-KVL2754 interval (5.56 Mb-7.98 Mb). The results shed new insights into the final identification of the ETEC F41 receptor genes and their casuative mutation(s). The novel informatic and significant markers of ST3GAL1 and ZFAT could be used to select disease resitance to ETEC F41 in pigs by marker assisted selection (MAS) schemes.
引文
1. Abecasis G.R., Noguchi E., Heinzmann A., Traherne J. A., Bhattacharyya S., Leaves N. I., Anderson G. G., Zhang Y.M., Lench N. J., Carey A., Cardon L.R. Moffatt M.F.& Cookson W.O.C. Extent and distribution of linkage disequilibrium in three genomic regions. American Journal of Human Genetics 2001,68(1):191-197.
    2. Andersson L.& Georges M. Domestic-animal genomics:deciphering the genetics of complex traits. Nature Reviews Genetics 2004,5(3):202-212.
    3. Andersson L. Genome-wide association analysis in domestic animals:a powerful approach for genetic dissection of trait loci. Genetica 2009,136(2):341-349.
    4. Aulchenko Y.S., Ripke S., Isaacs A.,& van Duijn C.M. GenABEL:an R library for genome-wide association analysis. Bioinformatics 2007,23(10):1294-1296.
    5. Baker D.R., Billey L.O.& Francis D.H. (1997) Distribution of K88 Escherichia coli-adhesive and nonadhesive phenotypes among pigs of four breeds. Veterinary Microbiology 1997,54:123-32.
    6. Barendse W., Reverter A., Bunch R.J., Harrison B.E., Barris W.& Thomas M.B. A validated whole-genome association study of efficient food conversion in cattle. Genetics 2007,176: 1893-1905.
    7. Barrett J.C., Hansoul S., Nicolae D.L., Cho J.H., Duerr R.H., Rioux J.D., Brant S.R., Silverberg M.S., Taylor K.D., Barmada M.M., Bitton A., Dassopoulos T., Datta W.L., Green T., Griffiths A.M., Kistner O.M., Jewell D., Satsangi J., Mathew C.G., Parkes M., Georges M.& Daly M.J. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nature Genetics 2008,40:955-962.
    8. Ben-Avi L, Durst R, Shpitzen S, Leitersdorf E, Meiner V. Apolipoprotein E genotyping:accurate, simple, high throughput method using ABI Prism SNaPshot Multiplex System. Journal of Alzheimer's Disease 2004,6(5):497-501.
    9. Berg F., Stern S., Andersson K., Andersson L.& Moller M. Refined localization of the FAT1 quantitative trait locus on pig chromosome 4 by marker-assisted backcrossing. BMC Genetics 2006, 17:7-17. BMC Genet.
    10.Bertschinger H.U., Bachmann M., Mettler C., Pospischil A., Schraner E.M.. Stamm M., Sydler T. & Wild P. Adhesive fimbriae produced in vivo by Escherichia coli O139:K12 (B):H1 associated with enterotoxaemia in pigs. Veterinary Microbiology 1990,25:267-81.
    11.Billey L.O.. Erickson A.K.& Francis D.H. Multiple receptors on porcine intestinal epithelial cells for the three variants of Escherichia coli K88 fimbrial adhesin. Veterinary Microbiology 1998, 59:203-212.
    12.Boyko A.R., Quignon P., Li L., Schoenebeck J.J., Degenhardt J.D., Lohmueller K.E., Zhao K.Y., Brisbin A., Parker H.G, vonHoldt B.M., Cargill M., Auton A., Reynolds A., Elkahloun A.G., CastelhanoM., Mosher D.S., Sutter N.B., Johnson G.S., Novembre J., Hubisz M.J., Siepel A., Wayne R.K., Bustamante C.D.& Ostrander E.A. A Simple Genetic Architecture Underlies Morphological Variation in Dogs. PLoS Biology 2010,8(8):e1000451.
    13.Breslow N. E. Statistics in Epidemiology:The Case-Control Study. Journal of American Statistical Association 1996,91(433):14-28.
    14.Cardon L.R., and Abecasis,G.R., Using haplotype blocks to map human complex trait loci. Trends in genetics 2003,19:135-140.
    15.Charlier C., Coppieters W., Rolling F., Desmecht D., Agerholm J.S., Cambisano N., Carta E., Dardano S., Dive M., Fasquelle C., Frennet J.C., Hanset R., Hubin X., Jorgensen C., Karim L. Kent M., Harvey K., Pearce B.R., Simon P.. Tama N., Nie H.S., Vandeputte S., Lien S., Longeri M., Fredholm M., Harvey R.J.& Georges M. Highly effective SNP-based association mapping and management of recessive defects in livestock. Nature Genetics 2008,40:449-454.
    16. Chen X., Gao s., Jiao X.& Liu X.F. Prevalence of serogroups and virulence factors of Escherichia coli strains isolated from pigs with postweaning diarrhea in eastern China. Veterinary Microbiology 2004,103:13-20.
    17.Clayton D. A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. America Journal of Human Genetics 1999,65:1170-1177.
    18. Cox E.& Houvenaghel A. Comparison of the in vitro adhesion of K88, K99, F41 and P987 positive Escherichia coli to intestinal villi of 4-to 5-week-old pigs. Veterinary Microbiology 1993, 34(1):7-18.
    19.Da Y., VanRaden P.M., Li N., Weller J.I., Schook L.B.& Beattie C.W. Designs of resource families for mapping quantitative trait loci using genetic markers in domestic animals. Journal of Agricultural Biotechnology.1999,7(4):31-48.
    20.Daetwyler H.D., Schenkel F.S., Sargolzaei M.& Robinson J.A. A genome scan to detect quantitative trait loci for economically important traits in Holstein cattle using two methods and a dense single nucleotide polymorphism map. Journal of Dairy Science 2008,91(8):3225-3236.
    21.Daniel F Gudbjartsson, Thorvaldur Thorvaldsson, Augustine Kong, Gunnar Gunnarsson & Anna Ingolfsdottir. Allegro version 2. Nature Genetics 2005,37:1015-1016.
    22.Darvasi A.& Soller M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 1995,141(3):1199-1207.
    23.Darvasi A.& Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behavior Genetics 1997,27(2):125-132.
    24.Darvasi A., Weinreb A., Minke V., Weller J.L.& Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 1993, 134(3):943-951.
    25.De Graaf F.K.& Roorda I. Production, purification, and characterization of the fimbrial adhesive antigen F41 isolated from calf enteropathogenic Escherichia coli strain B41M. Infection and Immunity 1982,36(2):751-758.
    26.Duchet-Suchaux M.F., Bertin A.M.& Menanteau P.S. Susceptibility of Chinese Meishan and European Large White pigs to enterotoxigenic Escherichia coli strains bearing colonization factor K88,987P, K99 or F41. American Journal of Veterinary Research 1991,52(1):40-44.
    27.Dunner S, Charlier C, Farnir F, Browers B.& Georges M.Towards interbreed IBD fine mapping of the mh locus:double-muscling in the Asturiana de los Valles breed involves the same locus as in the Belgian Blue cattle breed. Mammalian Genome 1997,8(6):430-435.
    28.Erickson A.K., Baker D.R., Bosworth B.T., Casey T.A., Benfield D.A.& Francis D.H. Characterization of porcine intestinal receptors for the K88ac fimbrial adhesin of Escherichia coli as mucin-type sialoglycoproteins. Infection and Immunity 1994,62:5404-5410.
    29.Faibrother J.M., Lariviere S.& Johnson W.M. Pathogenicity of Escherichia coli Q115:K "V165" strains isolated from pigs with diarrhea. Aminal Journal of Veterinary Research 1988, 49(8):1325-1328.
    30.Frydendahl K., Jensen T.K., Andersen J.S., Fredholm M.& Evans G. Association between the porcine Escherichia coli F18 receptor genotype and phenotype and susceptibility to colonization and postweaning diarrhea caused by E.coli 0138:F18. Veterinary Microbiology 2003,93(1):39-51.
    31.Fusco P., A.To, S.To,& C.Brinton, Jr. The purification and characterization of four types of E. coli pili for immunity colonization and adhesion. U.S. Japan Conference on Cholera, XIII, Atlanta, GA 1978,60-70.
    32.Garabal J.I., Vazquez F., Blanco J., Blanco M.& Gonzalez E.A. Colonization antigens of enterotoxigenic Escherichia coli strains isolated from piglets in Spain. Veterinary Microbiology 1997,54(3-4):321-328.
    33.Georges M. Mapping, fine mapping, and molecular dissection of quantitative trait loci in domestic animals. Annual Review of Genomics and Human Genetics 2007,8:131-162.
    34. Gibbons R.A., Sellwood R., Burrows M.& Hunter P.A. Inheritance of resistance to neonatal E. coli diarrhoea in the pig:examination of the genetic system. Theoretical and Applied Genetics 1997,51:65-70.
    35. Goddard M.E.& Hayes B.J. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics 2009,10(6):381-391.
    36. Graham J.& Thompson E. J. Disequlibrium likelihood for fine-scale mapping of a rare allel. American Journal of Human Genetics 1998,63(5):1517-1530.
    37. Grange P.A., Erickson A.K., Levery S.B.& Francis D.H. Identification of an intestinal neutral glycosphingolipid as a phenotype-specific receptor for the K88ad fimbrial adhesin of Escherichia coli. Infection and Immunity1999,67:165-172.
    38. Grange P.A.& Mouricout M.A. Transferrin associated with the porcine intestinal mucosa is a receptor specific for K88ab fimbriae of Escherichia coli. Infection and Immunity 1996, 64:606-610.
    39. Grange P.A., Mouricout M.A., Levery S.B., Francis D.H.& Erickson A.K. Evaluation of Receptor Binding Specificity of Escherichia coli K88 (F4) Fimbrial Adhesin Variants Using Porcine Serum Transferrin and Glycosphingolipids as Model Receptors. Infection and Immunity 2002,70(5):2336-2343.
    40.Green P., Falls K.& Crooks S. Documentation for CRI-MAP, Version 2.4. Washington university school of medicine 1990.
    41. Gudbjartsson D.F., Thorvaldsson T.& Kong A.Allegro version 2. Nature Genetics 2005, 37:1015-1016.
    42.Guinee P.A.M.& Jansen W.H. Behavior of Escherichia coli K antigens K88ab, K88ac, and K88ad in immunoelectrophoresis, double diffusion, and hemagglutination. Infection and Immunity 1979, 23(3):700-705.
    43. Gyimah J.E & Panigrahy B. Adhesin-receptor interactions mediating the attachment of pathogenic Escherichia c o li to chicken tracheal epithelium. Avian Disease 1988,32:74-78.
    44.Haley C.S.& Knott S.A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 1992,69:315-324.
    45.Haley C.S., Knott S.A.& Elsen J.M. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 1994,136(3):1195-1207.
    46.Harald H., Goring H.& Terwilliger J.D. Linkage analysis in the presence of errors Ⅳ:joint pseudomarker analysis of linkage and/or linkage disequilibrium on a mixture of pedigrees and singletons when the mode of inheritance cannot be accurately specified. America Journal of Human Genetics 2000,67(1):258-259.
    47.Harduin-Lepers A., Mollicone R., Delannoy P.& Oriol R. The animal sialyltransferases and sialytransferase-related genes:a phylogenetic approach. Glycobiology 2005,15(8):805-817.
    48.Harel J., Lapointe H., Fallara A., Lortie L.A., Bigras-Poulin M., Lariviere S.& Fairbrother J.M. Detection of genes for fimbrialantigens and enterotoxins associated with Escherichia coli serogroups isolated from pigs with diarrhea. Journal of Clinical Microbiology 1991, 29(4):745-752.
    49.Hoeschele I.& Vanranden P. Bayesian analysis of linkage between genetic markers and quantitative trait loci. Ⅰ. Prior knowledge. Theoretical and Applied Genetics 1993a,85:953-960.
    50.Hoeschele I.& Vanranden P. Bayesian analysis of linkage between genetic markers and quantitative trait loci. Ⅱ. Combining prior knowledge with experiment evidence. Theoretical and Applied Genetics 1993b,85:946-952.
    51. Isaacson R.E. K99 surface antigen of Escherichia coli. Purification and partial characterization. Infection and Immunity1997,15:272-279.
    52.Isaacson R.E.& Richter P. Escherichia coli 987P Pilus:Purification and partial characterization J Bacteriol.1981,46(2):784-789.
    53.Jansen R.C.& Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics 1994,136:1447-1455.
    54. Jin L.Z.& Zhao X. Intestinal receptors for adhesive fimbriae of enterotoxigenic Escherichia coli (ETEC) K88 in swine. Applied Microbiology and Biotechnololgy2000,54(3):311-318.
    55.Jergensen C.B., Cirera S., Anderson S.I.. Archibald A.L., RaudseppT., Chowdhary B., Edfors-Lilja I., Andersson L.& Fredholm M. Linkage and comparative mapping of the locus controlling susceptibility towards E. coli F4ab/ac diarrhea in pigs. Cytogentics Genome Research 2003,102:157-162.
    56.Jules H.S., Grunchec J.A.& Knott S. A web application to perform linkage disequilibrium and linkage analyses on a computational grid. Bioinformatics 2009,25(11):1377-1383.
    57. Kaplan N.L., Hudson R.R.& Langley C.H.1989. The hitchhiking effect revisited. Genetics 1989, 123:887-899.
    58.Karlsson E.K., Baranowska I., Wade C.M., Hillbertz N.H.C., Michael C.Z., Anderson N., Biagi T.M., Patterson N., Pielberg G.R., Kulbokas E.J., Comstock K.E., Keller E.T., Mesirov J.P., von Euler H., Andersson L.& Lindblad-Toh K. Efficient mapping of mendelian traits in dogs through genome-wide association. Nature Genetics 2007,39(11):1321-1328.
    59.Kim K.s., Larsen N., Short T., Plastow G.& Rothschild M.F. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mammalian Genome 2000,11(2):131-135.
    60.Kolbehdari, D. Wang Z., Grant J.R., Murdoch B., Prasad A., Xiu Z., Marques E., Stothard P.& Moore S.S. A whole-genome scan to map quantitative trait loci for conformation and functional traits in Canadian Holstein bulls. Dairy Science 2008,91:2844-2856.
    61.Koyanagi M., Nakabayashi K., Fujimoto T., Gu N., Baba I., Takashima Y., Doi K. K., Harada H., Kato N., Sasazuki T.& Shirasawa S.J. ZFAT expression in B and T lymphocytes and identification of ZFAT-regulated genes. Genomics 2008,91:451-457.
    62.Kruglyak L.& Lander E.S. A nonparameteric approach for mapping quantitative trait loci. Genetics 1995,139:1421-1428.
    63.Kyogashima M., Ginsburg V.& Krivna H.C., Escherichia coli K99 binds to N-glycolylisaloParagloboside and N-glycolyl-GM3 found in Piglet small intestine. Archives of Biochemistry and Biophysics1989,270(1):391-397.
    64. Lander E.S.& Botstein D.B. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989,121:185-199.
    65.Liu X., Zhang H., Li H., Li N., Zhang Y., Zhang Q., Wang S., Wang Q.& Wang H. Fine-mapping quantitative trait loci for body weight and abdominal fat traits:effects of marker density and sample size. Poultry Science 2008,87(7):1314-1319.
    66. Matthew S., Nicholas J. S.& Peter D. Documentation for PHASE, version 2.1. Department of Statistics, University of Washington, Seattle 2004.
    67.McCarthy M.I., Abecasis G.R., Cardon L.R., Goldstein D.B., Little J., Ioannidis J.P.A.& Hirschhorn J.N. Genome-wide association studies for complex traits:consensus, uncertainty and challenges. Nature Reviews Genetics 2008,9(5):356-369.
    68. Meijerink E., Fries R., Vogeli P., Masabanda J., Wigger G.& Stricker C. Two a (1,2) fucosyltransferase genes on porcine chromosome 6q 11 are closely linked to the blood group inhibitor(S) and Escherichia coli F18 receptor (ECF18R) Loci. Mammalian Genome 1997, 8:736-741.
    69.Meijerink E., Neuenschwander S., Fries R., Dinter A., Bertschinger H.U., Stranzinger G.& Vogeli P. A DNA polymorphism influencing alpha(1,2)fucosyltransferase activity of the pig FUT1 enzyme determines susceptibility of small intestinal epithelium to Escherichia coli F18 adhesion. Immunogenetics 2000,52:129-136.
    70.Melin L., Mattsson S., Katouli M.& Wallgren P. Development of post-weaning Diarrhoea in piglets. Relation to Presence of Escherichia coli Strains and Rotavirus. Journal of Veterinary Medicine.2004,B51:12-22.
    71.Meuwissen T.H., Karlsen A., Lien S., Olsaker I.& Goddard M.E. Fine mapping of a Quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics 2002,161:373-379.
    72.Mikawa S., Morozumi T., Shimanuki S., Hayashi T., Uenishi H., Domukai M., Okumura N.& Awata T. Fine mapping of a swine quantitative trait locus for number of vertebrae and analysis of an orphan nuclear receptor, germ cell nuclear factor (NR6A1). Genome Research 2007,17: 586-593.
    73.Moon H.W., Hoffman L.J., Cornick N.A., Booher S.B.& Bosworth B.T. Prevalences of some virulence genes among Escherichia coli isolates from swine presented to a diagnostic laboratory in Iowa. Journal of Veterinary Diagnostic Investigation 1999,11:557-560.
    74.Morris J.A., Stevens A.E.& Sojka W.J. Isoelectric point of cell-free K99 antigen exhibiting hemagglutinating properties. Infection and Immunity 1978,9(3):1097-1098.
    75.Morris J.A., Thorns C, Scott A.C., Sojka W.J.& Wells G.A. Adhesion in vitro and in vivo associated with adhesive antigen (F41) Produced by a K99 mutant of the reference strain Escherichia coli B41. Inefetion Immunity 1982,36(3):1146-1153.
    76.Moseley S.L., Dougan G., Schneider R.A.& Moon H.W. Cloning of chromosomal DNA encoding the F41 adhesin of enterotoxigenic Escherichia coli and genetic homology between adhesions F41 and K88. Journal of Bacteriology 1986,167(3):799-804.
    77.Nagy B., Casey T.A.& Moon H.W. Phenotype and genotype of Escherichia coli from pigs with postweaning diarrhea in Hungary. Journal of Clinical Microbiology 1990,28(4):651-653.
    78.Nagy B.& Fekete P.Z. Enterotoxigenic Escherichia coli (ETEC) in farm animals. Veterinary Research 1999,30(2-3):259-284.
    79.Nagy B.& Fekete P.Z. Enterotoxigenic Escherichia coli in veterinary medicine. International Journal of Medical Microbiology 2005,295(6-7):443-454.
    80. Nagy B., Moon H.W.& Isaacson R.E. Colonization of porcine small intestine by Escherichia coli: ileal colonization and adhesion by pig enteropathogens that lack K88 antigen and by some acapsular mutants. Infection and Immunity 1976,13(4):1214-1220.
    81.Nagy B, Whipp S C, Imbereehts H. Biological relationship between F18ab and F18ac fimbriae of enterotoxigenic and verotoxigenic Escherichia coli, from weaned Pigs with oedema disease or diarrhea. Microbiology and Pathology 1997,22(1):1-11.
    82.Nakajima T., Jorde L.B., Ishigami T., Umemura S., Emi M., Lalouel J.M.& Inoue I. Nucleotide diversity and haplotype structure of the human angiotensinogen gene in two populations. American Journal of Human Genetics 2002,70(1):108-123.
    83.Nakazawa M., Sugimoto C., Isayama Y.& Kashiwazaki M. Virulence factors in Escherichia coli isolated from piglets with neonatal and post-weaning diarrhea in Japan. Veterinary Microbiology 1987,13(4):291-300.
    84.Nataro J.P.& Kaper J.B. Diarrheagenic Escherichia coli. Clinical Microbiology Reviews 1998,11: 142-201.
    85.Nezer C., Collette C., Moreau L., Brouwers B., Kim J., Giuffra E., Buys N., Andersson L.& Georges M. Haplotype sharing refines the location of an imprinted QTL with major effect on muscle to a 250-kb chromosome segment the porcine IGF2 gene. Genetics 2003,165:277-285.
    86.Ojeda A., Huang L. S., Ren J., Angiolillo A., Cho I.C., Lemus-Flores C., Makuza S.M., Folch J.M. & Perez-Enciso M. Selection in the Making:A Worldwide Survey of Haplotypic Diversity Around a Causative Mutation in Porcine IGF2. Genetics 2008,178:1639-1652.
    87.(?)rskov I.,(?)rskov F. SoJKA W. J.& LEACH J.M. Simultaneous occurrence of E.coli B and L antigens in strains of diseased swine. Acta Pathologica Microbiologica Scandinavica 1961, 53(4):404-422.
    88.Palaisa K., Morgante M., Tinggey S.& Rafalski A. Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. The Proceedings of the National Academy of Science of the USA 2004,101:9885-9890.
    89.Peng Q. L., Ren J., Yan X. M., Huang X., H. Tang,Wang Y. Z., Zhang B.& Huang L. S. The g.243A>G mutation in intron 17 of MUC4 is significantly associated with susceptibility/resistance to ETEC F4ab/ac infection in pigs. Animal Genetics 2007,38:397-400.
    90.Pollinger J.P, Bustamante C.D, Fledel-Alon A., Schmutz S., Gray M.M.& Wayne R. Selective sweep mapping of genes with large phenotypic effects. Genome Reserch 2005,15(12):1809-1819.
    91.Python P., Jorg H., Neuenschwander S., Asai-Coakwell M., Hagger C., Burgi E., Bertschinger H.U.& Stranzinger G. Vogeli P. Inheritance of the F4ab, F4ac and F4ad E. coli receptors in swine and examination of four candidate genes for F4acR. Journal Animal Breeding Genetics 2005,122 (Suppl1):5-14.
    92.Ren J., Duan Y.Y., Qiao R.M., Yao F. Zhang Z.Y., Yang B., Guo Y.M, Xiao S.J., Wei R.X., Ouyang Z.X., Ding N.S., Ai H.S.& Huang L.S. A missense mutation in PPARD causes a major QTL effect on ear size in pigs. Plos Genetics 2011(doi:10.1371.pgen.1002043).
    93.Ren J., Guo Y. M., Ma J. W.& Huang L.S. Growth and meat quality QTL in pigs with special reference to a very large White Duroc ×Erhualian resource population. Proc.8WCGALP. Brazil 2006, poster ID:13-11.
    94.Ren J., Mao H., Zhang Z., Xiao S., Ding N.& Huang L. A 6-bp deletion in the TYRP1 gene causes the brown colouration phenotype in Chinese indigenous pigs. Heredity 2010:1-7.
    95.Rippinger P., Bertschinger, H.U., Imberechts, H., Nagy, B., Sorg, I., Stamm, M., Wild, P.Witting W. Designations F18AB and F18AC for the related fimbrial types F107,2134P and 8813 of escherichia coli isolated from porcine postweaning diarrhoea and from oedema disease. Veterinary Microbiology 1995,45:281-295.
    96. Riquet J., Coppieters W., Cambisano N., Arranz J.J., Berzi P., Davis S.K., Grisart B., Farnir F.D.R., Karim L., Mni M., Simon P., Taylor J.F., Vanmanshoven P., Wagenaar D., Womack J.E.& Georges M. Fine-mapping of quantitative trait loci by identity by desent in outbred population: application to milk production in dairy cattle. Proceedings of the National Academy of Sciences USA 1999,96(16):9252-9257.
    97. Risch N.& Merikangas K. The future of genetic studies of complex human disease. Science 1996, 273:1516-1517.
    98. Rodolphe F.& Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics 1993,134(4):1277-1288.
    99. Rothschild M. F.& Jacobeon C. The estrogen receptor locus is associated with a major gene influencing litter size in pigs. The Proceedings of the National Academy of Science of the USA. 1996,93(1):201-203.
    100. Rubin C.J., Zody M.C., Eriksson J., Meadows R.S., Sherwood E., Webster M.T.,Jiang L., Ingman M., Sharpe T., Ka S., Hallbook F., Besnier F., Carlborg O., Bedhom B., Tixier-Boichard M., Jensen P., Siegel P., Lindblad-Toh K.& Andersson L. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 2010,464:587-591.
    101. Rutter J.M., Burrows M.R., Sellwood R.& Gibbons R.A. A genetic basis for resistance to enteric disease caused by E. coli. Nature 1975,257:135-136.
    102. Samani N.J., Erdmann J., Hall A.S., Hengstenberg C., Mangino M., Mayer B., Dixon R.J., Meitinger T., Braund P., Wichmann H.E., Barrett J.H., Konig I.R., Stevens S.E., Szymczak S., Thompson J.R.& Schunkert H. Genome wide association analysis of coronary artery disease. The New England of Journal of Medicine 2007,357(5):443-453.
    103. Schnaar L.R.Glycosphingolipids in cell surface recognition. Glycobiology 1991, 1(5):477-485.
    104. Sellwood R., Gibbons R.A., Jones G.W.& Rutter J.M. Adhesion of enteropathogenic Escherichia coli to pig intestinal brush borders:the existence of two pig phenotypes. Journal of Medical Microbiology 1975,8(3):405-411.
    105. Shi Y.Y.& He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Research 2005, 15(2):97-98.
    106. Slatkin M. Disequilibrium mapping of a quantitative-trait locus in an expanding population. American Journal of Human Genetics 1999,64(6):1765-1773.
    107. Smith H.W.& Linggood M.A. Further observations on Escherichia coli enterotoxins with particular regard to those produced by atypical piglet strains and by calf and lamb strains:the transmissible nature of these enterotoxins and of a K antigen possessed by calf and lam strains. Journal of Medicine. Microbiology 1972,5:243-250.
    108. Soerlind O., Thafvelin B.& Mollby R. Virulence factors in Escherichia coli strains isolated from Swedish piglets with diarrhea. Journal of Clinical Microbiology 1988,26(5):879-884.
    109. Sohn Y.S.& Chae C. Lectin-binding capacity of glycoconjugates in Escherichia coli 09:K103: NM,987P+ST+-infected porcine lower small intestines. Journal of Veterinary Medical Science 2000,62(5):543-547.
    110. Spielman R.S., McGinnis R.E., Ewens W.J. Transmission test for linkage disequilibrium:the insulin gene region and insulin-dependent diabetes mellitus (IDDM). America Journal of Human Genetics 1993,52:506-516.
    111. Takashima S., Tachia Y., Nakagama T., Hamamoto T.& Tsuji S. Quantitative analysis of expression of mouse sialyltransferase genes by competitative PCR. Biochemical and Biophysical Research Communications 1999,260:23-27.
    112. Takashima S. Characterization of Mouse Sialyltransferase Genes:Their Evolution and Diversity. Bioscience Biotechnology and Biochemistry 2008,72(5):1155-1167.
    113.Teneberg S., Willemsen P., de Graaf F.K.& Karlsson K.A. Receptor-active glycolipids if epithelial cells of the small intestine of yong and adult pigs in relation to susceptibility to infection with Escherichia coli K99. FEBS LETTERS 1990,263(1):10-14.
    114. Theo H.E., Karlsen A.M., Lien S., Olsaker I.& Goddard M.E. Fine Mapping of a Quantitative Trait Locus for Twinning Rate Using Combined Linkage and Linkage Disequilibrium Mapping. Genetics 2002,161:373-379.
    115. Van Laere A.s., Nguyen M., Braunschweig M., Nezer C., Collette C., Moreau L., Archibald A.L. HaleyC.S., Buys N., Tally M., Andersson G., George M.& Andersson L. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 2003,425:832-836.
    116. Van Loosdrecht M.C.M., Lyklema J., Norde W.& Zehnder A.J. Influence of interfaces on microbial activity. Microbiology Review 1990,54:75-87.
    117. Van Zijderveld F.G., van Zijderveld-van Bemmel A.M.& Bakker D. The F41 adhesin of enterotoxigenic Escherichia coli:inhibition of adhesion by monoclonal antibodies. Veterinary Quartly,1998,20:S73-78.
    118. Vogeli P., Bertschinger H.u., Stamm M., Stricker C., Hagger C., Fries R., Rapacz J.& Stranzinger G. Genes specifying receptors for F18 fimbriated Escherichia coli causing oedema disease and postweaning diarrhea in pigs, map to chromosome 6. Animal Genetics 1996,27(5):321-328.
    119. Vu-Khac H., Holoda E.& Pilipcinec E. Distribution of virulence genes in Escherichia coli strains isolated from diarrhoeic piglets in the Slovak Republic. Journal of Veterinary Medicine series B-Infectious Diseases and Veterinary Public Health 2004,51(7):343-347.
    120. Weller J.I. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics 1986,42:627-640.
    121. Wu R.l., Ma C.X.& Casella G. Joint Linkage and Linkage Disequilibrium Mapping of Quantitative Trait Loci in Natural Populations. Genetics 2002,160:779-792.
    122. Xiong M.& Guo S. Fine-scale mapping of quantitative trait loci using historical recombinations. Genetics 1997,145:1201-1218.
    123. Yan X.M., Huang X., Ren J., Ouyang J., Yang M., Han P.& Huang L.S. Adhesion phenotypes of pigs of Chinese and Western breeds and a White Duroc-Erhualian crossbreed with regard to susceptibility to enterotoxigenic Escherichia coli with fimbrial adhesins K99,987P, and F41. American Journal of Veterinary Research 2011,72 (1):80-84.
    124. Yan X. M., Huang X., Ren J., Zou Z.Z., Yang S.J., Ouyang J., Zeng W. H., Yang B., Xiao S.J.& Huang L.S. Distribution of Escherichia coli F4 adhesion phenotypes in pigs of 15 Chinese and Western breeds and a White Duroc × Erhualian intercross. Journal of Medical Microbiology 2009,58(8):1112-1117.
    125. Yang B., Huang X., Yan X.M., Ren J, Yang S.J., Zou Z. Z., Ouyang J, Zeng W. H., Huang W.B.& Huang L.S. Detection of quantitative trait loci for porcine susceptibility to enterotoxigenic Escherichia coli F41 in a White Duroc × Chinese Erhualian resource population. Animal 2009,3: 946-950.
    126. Zeng Z.B. Precision mapping of quantitative trait loci. Gentics,1994,135:1457-1468.
    127. Zhang B., Ren J., Yan X. M., Huang X., Ji H. Y., Peng Q. L., Zhang Z. Y.& Huang L. S. Investigation of the porcine MUC13 gene:isolation, expression, polymorphisms and their strong association with susceptibility to enterotoxigenic E. coli F4ab/ac. Animal Genetics.2008,39: 258-266.
    128. Zondervan K.T.& Cardon L.R. The complex interplay among factors that influence allelic association. Nature Reviews Genetics 2004,5:89-100.
    129.曹国文,姜永康.中草药抗猪大肠杆菌制剂的研制与效果观察.黑龙江畜牧兽医2002, 10:33-34.
    130.陈慧勇.利用中国荷斯坦牛定位BTA6上影响产奶性状的QTLs[博士学位论文].北京:中国农业大学,2005.
    131.陈太平,郭景煜.大肠杆菌F41菌株的分离鉴定和F41与K99纤毛抗原的特性观察.中国农业科学1986,6:77-84.
    132.陈甜甜,杨忠福,刘建柱.猪大肠杆菌病研究进展.猪业科学2008,8:20-25.
    133.戴功,王丽梅,杨新颖,耿美玉.多聚唾液酸转移酶研究进展.中国生物工程杂志2005,25(9):24-28.
    134.丁向东.利用系谱传递不平衡检验精细定位QTL用.[博士学位论文],北京:中国农业大学,2004.
    135.房海,王世若,大肠埃希氏菌.石家庄:河北科学技术出版社,1997.
    136.高研,李卫芬,马国霞.产肠毒素大肠杆菌主要致病因子及其致病机理的研究进展.上海畜牧兽医通讯2006,5:2-5.
    137.郭蓓丽.猪x染色体上背膘性状QTL的精细定位及位置候选基因SERPIN7、OGT和ASCL4的研究.[硕士学位论文],南昌:江西农业大学动物科技学院,2009.
    138.黄萌,蔡琳. Haploview与PHASE在单体型研究中的应用.福建医科大学学报,2009,43(4):310-313.
    139.黄培堂,李丰生,王叙甫,钟声,徐秀英,张群伟,王焕金,陈明,王翠芬.表达K99和F41双价保护性抗原工程菌株的构建及免疫效果研究.中国科学1993,23(9):960-965.
    140.李玉华.仔猪大肠杆菌F4受体基因的精细定位.[博士学位论文].北京:中国农业大学,2006.
    141.刘会英.利用连锁不平衡信息精细定位QTL:[博士学位论文].北京:中国农业大学,2003.
    142.刘俊翼.浅谈大肠杆菌病在畜群生产中的诊断与防治.养殖与饲料.2008,2:35-36.
    143.刘鑫,施启顺,柳小春,蒋隽,黄生强.不同猪种肠毒素大肠杆菌(ETEC)F4受体的微卫星标记遗传效应分析.遗传.2006,28(8):945-948.
    144.陆承平.兽医微生物学.北京:中国农业出版社,2001.
    145.鲁绍雄,连林生.畜禽数量性状基因座位的精细定位.中国牛业科学2006,32(1):38-42.
    146.毛辉荣.猪7号染色体四肢骨骼长度QTL精细定位及中国地方猪种棕褐毛色的遗传解析.[博士学位论文].南昌:江西农业大学,2010.
    147.彭秋玲.猪MUC4基因的定位、SNP鉴别及其与产肠毒素大肠杆菌(ETEC)F4ab/ac侵染易感性的相关性分析.[硕士学位论文],南昌:江西农业大学动物科技学院,2006.
    148.钱进,章雄文,丁健.唾液酸转移酶对肿瘤中唾液酸化结构的影响.生命科学2006,18(3):227-232.
    149.施启顺.猪肠毒性大肠杆菌(ETEC)病抗病育种研究.国外畜牧科技1999,26(4):51-53.
    150.涂欣,石立松,汪樊,王擎.全基因组关联分析的进展与反思.生理科学进展2010,41(2):87-94.
    151.王多福,魏玉明.仔猪大肠杆菌灭活苗的研制及效果观察.中国动物检疫2000,37:29-30.
    152.王红宁.仔猪腹泻成因及综合防治技术措施.中国畜牧杂志2006,42(6):58-60.
    153.王启明.仔猪水肿病的病因及防治措施.养猪2008,3:48.
    154.王士长,何若钢.益生素(活菌和死菌)防治哺乳仔猪下痢.黑龙江畜牧兽医2000,1:23-24.
    155.王勇强,张沅,张勤.家畜数量性状基因定位研究进展.中国畜牧杂志2000,36(1):41-42.
    156.卫广森.新生仔猪大肠杆菌性腹泻K88ac-ST1-LT8三价基因工程灭活疫苗的研究与应用.[博士学位论文].南京:南京农业大学,2004.
    157.肖朝文,傅永福AT-hook蛋白的研究进展.中国农业科技导报2009,11(5):12-16.
    158.肖石军.猪产肉及抗病性状的遗传基础与育种应用研究.[博士学位论文],南昌:江西农业大学动物科技学院,2010.
    159.徐云碧,朱立煌.分子数量遗传学.北京:中国农业出版社,1994.
    160.杨斌.利在白色杜洛克×二花脸杂交的F2群体中定位产肠毒素大肠杆菌F41、987P和K99的受体基因位点.[硕士学位论文],南昌:江西农业大学动物科技学院,2008.
    161.杨公社 猪生产学.北京:中国农业出版社,2002,54-106.
    162.杨正时.动物病原性大肠杆菌与大肠杆菌病.中国兽医科技1987,6:25-29.
    163.赵东欣.锌指蛋白ZNF191(243-368)的表达、纯化及其性质研究[博士学位论文].上海:复旦大学,2006.
    164.赵坤,王三虎,张婷,赵恒章,高杰,姜桂枝.豫北地区猪源致病性大肠杆菌的耐药性研究.河南科技学院学报:自然科学版2008,36(1):59-61.
    165.张景六,蔡瑞珠,洪孟民.带有K88与K99两种伞毛抗原基因的重组质粒的构建.生物工程学报1985,1(2):34-40.
    166.张勤.基因组学世代的数量遗传学,第11次全国动物遗传育种学术会议论文集,合肥,中国农业出版社,2001,151-157.
    167.张勤.采用IBD方法在家畜群体中进行QTL精细定位.第六届动物遗传学讨论论会论文集,北京,2002.
    168.张英,董国雄,江美娟.对FC株猪源性肠毒素型大肠杆菌致病因子的研究.畜牧兽医学报,1990,21(1):61-73.
    169.治洪,余淑懿.神经节苷脂及其结合的唾液酸与恶性肿瘤.中国卫生检验杂志2008,18(6):1222-1223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700