双亲性无规—交替共聚物自组装及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子科学家们在双亲性嵌段共聚物自组装方面开展了许多有意义的工作,取得了骄人的成绩。本课题组则以非嵌段共聚物为“组装基元”通过非共价键作用构建非共价键胶束NCCM,开辟了颇具特色的自组装研究新天地。大分子自组装发展至今,研究热点逐渐向功能性组装基元设计,自组装体的功能化及其应用研究领域转移,但大多研究的构建单元还是以嵌段共聚物为主。但由于其合成相对困难,故规模化应用受到限制。
     无规共聚物简单易得、来源丰富,较之于嵌段共聚物而言更有潜在的应用价值,已有科学家包括我们小组开始关注无规共聚物自组装研究并有论文发表,但无规共聚物胶束是否也能通过分子设计、引入功能基团以构建响应性功能化胶束并最终将其推向实际应用?这是本论文关注的一个问题。根据无规共聚物链结构特点,其组装体的亲疏水微区分布比较无序,不存在类似于嵌段共聚物胶束的核壳结构,但胶束外层亲水微区比较富集,内部疏水微区比较富集,这就使得胶束表面具有双亲性。
     100年前Pickering等最先发现固态胶体颗粒有表面活性,可以稳定乳状液。但直到上世纪90年代随着纳米科技的发展,颗粒乳化剂才逐渐成为众多化学家关注的热点,在以无机和无机/有机杂化颗粒乳化剂研究方面取得了丰硕成果。这些颗粒乳化剂表面同时有亲水和疏水微区存在,其接触角一般在60°-120°范围内,可以稳定的存在于油水界面上。表面具有双亲性的组装胶束是否也可以作为颗粒乳化剂?因此我们提出是否可以利用无规共聚物胶束具有表面活性的特点构建聚合物软颗粒乳化剂,并系统研究其乳化及应用。这是本论文要研究的另一个问题。
     围绕上面提出的两个主要问题,本论文研究工作以“非嵌段共聚物”--无规-交替共聚物为主要研究对象,根据聚合物颗粒乳化剂的表面活性特性要求,从链结构与组装体微结构间的关系着手、设计并合成一系列简单易得的非嵌段双亲性无规-交替共聚物,并在聚合物链上引入响应性基元赋予其环境响应性。以该无规-交替共聚物为组装构筑基元通过自组装途径制备结构稳定且具有表面活性的大分子胶体粒子,对其作为颗粒乳化剂的功能进行研究,由此开辟了聚合物软颗粒乳化剂制备和应用的新途径。
     本论文研究的主线是:首先以结构确定且具有最短亲/疏水“链段”的功能化交替双亲共聚物经自组装得到稳定的表面活性胶体粒子,确认其具有良好的乳化性能,是一种新型的软颗粒乳化剂;其次,制备了链结构部分无序且引入光交联功能的无规-交替链结构双亲共聚物,通过自组装、光交联得到的胶体粒子同样具有表面活性。进一步拓展思路,合成了链结构完全无序且具有多重响应性基元的无规双亲共聚物,在选择性溶剂中自组装得到了具有多重响应性的表面活性胶体粒子,乳化性能良好。最后,结合生物大分子,我们研究了链结构也呈无规分布的大豆分离蛋白(简称SPI,一种天然的胶体粒子)及其接枝改性物的乳化性能,证实了表面接枝改性可以提高大豆分离蛋白的乳化性。研究结果表明,具有短亲/疏水“链段”的非嵌段双亲性共聚物胶体粒子没有亲水壳疏水核式的核壳结构,但其表面仍有疏水微区存在,且亲水微区富集,因此而具有双亲性即表面活性。上述研究表明双亲性无规-交替共聚物自组装制备表面活性胶体粒子的方法具有一定的普适性,可以适用于制备多种表面活性胶体粒子。
     具体研究工作包括以下几部分:
     1、双亲性交替共聚物P(St-alt-MAn)的合成、改性及自组装研究
     以甲苯为溶剂,通过自由基共聚合法合成了交替共聚物聚(苯乙烯-alt-马来酸酐)P(St-alt-MAn),并用多巴胺氨解得到双亲性共聚物P(St-alt-MA-Dopa)。在选择性溶剂(DMF/水)中,对P(St-alt-MAn)及P(St-alt-MA-Dopa)进行溶液自组装,可以得到稳定的球形纳米胶体粒子,P(St-alt-MA-Dopa)胶体粒子具有pH响应性、离子响应性和表面活性,是一种新型的聚合物软颗粒乳化剂,以P(St-alt-MA-Dopa)胶体溶液为水相,甲苯为油相,均质乳化后可以得到稳定的水包油型Pickering状乳液。胶体粒子表面zeta电位绝对值随着胶束溶液pH值的增大而增大,随盐浓度的增大而减小;胶体粒子的粒径随pH值增大而增大。用荧光光谱法表征了P(St-alt-MA-Dopa)胶体粒子的亲疏水性,结果表明胶体粒子的亲水性随pH值的增大而增强,而离子强度的增大对胶体粒子的亲疏水性基本没有影响。P(St-alt-MA-Dopa)胶体粒子在较宽的pH范围内、很低浓度(如0.5 mg/mL)下就表现出良好的乳化性能,酸、碱及盐浓度对P(St-alt-MA-Dopa)胶体粒子的乳化性能有一定影响。以上研究结果初步证实前面提出的问题,即无规-交替共聚物自组装也可以得到具有功能性和响应性的胶体粒子;具有最短亲/疏水“链段”的功能化交替双亲共聚物自组装胶体粒子具有表面活性和乳化性能,是一种新型的软颗粒乳化剂。
     2、双亲性无规-交替共聚物PSMVM的合成及自组装
     以苯乙烯衍生物富电子光敏单体7-(4-乙烯基苄氧基)-4-甲基香豆素(VMn)与苯乙烯(St)、马来酸酐(MAn)为共聚单体,通过自由基共聚得到双亲性无规-交替共聚物聚(苯乙烯-alt-马来酸酐-co-(4-乙烯基苄氯氧基)-4-甲基香豆素-alt-马来酸酐)P(St-alt-MAn)-co-P(VM-alt-MAn) (PSMVM)。在选择性溶剂中该共聚物自组装得到了稳定的具有光、pH、离子响应性的双亲性PSMVM球形胶体粒子,其粒径在50-100 nm间。TEM结果显示粒子具有弥散的微相分离结构,这可能与PSMVM链的无规-交替结构有关。借助于香豆素基团的光交联反应,使粒子固化。胶体粒子在光交联过程中有塌缩变形的趋势,粒径减小,过度光照会引起粒子间聚并发生。紫外光交联后的交联胶体粒子CL-PSMVM较未交联胶体粒子UCL-PSMVM有更好的耐溶剂性。XPS结果分析证实在聚集体表层有相对富集的氧原子,可能是羧基等亲水基团在粒子表面相对富集的结果,起到了稳定胶体粒子的作用。PSMVM胶体粒子因含羧基而具有pH响应性,其zeta电位随pH值的增大而变得更负,但粒径则随pH的增加而增大;增加离子强度可以屏蔽PSMVM胶体粒子的表面电荷致使zeta电位绝对值减小,表面疏水性增加,粒子间聚集使粒径有所增大。本章所得的PSMVM胶体粒子通过光交联实现固定化,对确保聚合物软颗粒乳化剂的制备和应用有实际意义。
     3、双亲性无规-交替共聚物PSMVM胶体粒子乳化行为研究
     本章重点研究对象是无规-交替共聚物PSMVM自组装软颗粒乳化剂。研究了环境对胶体粒子乳化性能的影响,探索了胶体粒子对油性物质的乳化包埋及其在油水界面的吸附行为。实验结果表明,PSMVM胶体粒子作为软颗粒乳化剂,在很低浓度下即可单独稳定甲苯等油相,制得稳定的水包油Pickering乳液。PSMVM胶体粒子在较宽的pH范围内具有良好的乳化性,所形成的乳液滴粒径随pH的增大而减小,pH值大于10时,乳液的稳定性下降,最终导致破乳。光交联对PSMVM胶体粒子的乳化性能有较大影响,交联胶体粒子在pH值2-11范围内乳化性能均优于未交联胶体粒子,且无破乳。加盐有利于提高胶体粒子的乳化性能。用简便的乳化-油相聚合固化的方法,证明PSMVM颗粒乳化剂在油水界面形成粒子膜以保护油滴的稳定,验证了颗粒乳化机理。PSMVM胶体粒子乳状液具有长期稳定性。此外,我们用PSMVM胶体粒子成功地实施了对油性染料的乳化包埋,得到稳定的油性染料乳状液。分子量对PSMVM胶体粒子乳化性能有影响,小分子量PSMVM2胶体粒子制备的乳液在pH值为10左右就发生破乳。
     4、双亲无规共聚物P(DM-co-AA-co-CA)的自组装及其性能研究
     本章主要以链结构完全无规的聚(甲基丙烯酸二甲胺乙酯-co-丙烯酸-co-香豆素丙烯酸酯化物)P(DM-co-AA-co-CA)为组装基元,在选择性溶剂中自组装可以得到稳定的,具有多重响应性及乳化功能的P(DM-co-AA-co-CA)胶体粒子。实验结果表明,改变外界刺激诸如光、pH、离子强度、温度可以调控胶束的粒径、荷电性、LCST、光响应性、以及乳化性能。P(DM-co-AA-co-CA)胶体粒子同时含有PDM和PAA链段,具有两性聚电解质特点。酸性条件下,该胶体粒子荷正电,而碱性条件下,则显负电;在等电点(pH=8)粒子的静电荷为零,粒径最小,无表面活性故而也没有乳化能力;但在等电点之外的强酸及强碱条件下,P(DM-co-AA-co-CA)胶体粒子都具有良好的乳化性。PDM链段赋予该胶束温敏性,加碱则使其LCST降低,加盐使其LCST提高。离子强度对其乳化性有较复杂的影响;在pH为8.54时胶束溶液的紫外吸收和荧光强度达到最大值;光交联可以提高胶体粒子本身的稳定性及乳化性能。
     5、大豆分离蛋白-g-PAMPAS接枝物的合成及溶液性质研究
     首先以巯基乙胺为链转移剂,过硫酸铵为引发剂,进行单体2-丙烯酰胺基-2-甲基丙磺酸(AMPS)的溶液聚合得到氨基封端聚2-丙烯酰胺基-2-甲基丙磺酸(H2N-PAMPS);再以1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)催化大豆分离蛋白上的羧基与H2N-PAMPS长链上的端氨基进行缩合反应,得到接枝物SPI-g-NH-PAMPS。实验结果表明,大豆分离蛋白SPI表面接枝含亲水磺酸基团聚AMPS后,由于改变了SPI表面荷电性,从而改善其亲水性。SPI为球蛋白,其粒径约在180 nm左右,而SPI-g-NH-PAMPS聚集体形态则呈核壳结构,在SPI外围可见有一层淡晕状PAMPS接枝壳层,且粒径较SPI增大至200多纳米。接枝物SPI-g-NH-PAMPS等电点消失,在原SPI等电点(pH=4.5)附近的亲水性和乳化性能等均有所提高。
     我们通过对四个具有不同链结构的大分子双亲体系,即交替共聚物、无规-交替共聚物、无规共聚物以及大豆蛋白接枝物的合成、自组装及其功能和乳化性能研究,回答了前面提出的两个主要问题:1、证实了利用简单易得的无规-交替类共聚物通过常规的选择性溶剂自组装,可以得到具有环境响应性的表面活性胶体粒子;2、此类胶体粒子具有良好的乳化性能,可以作为聚合物软颗粒乳化剂应用于Pickering乳液的制备,油性物乳化包埋等。因此,本文在以无规-交替共聚物为组装基元构筑自组装胶体粒子--颗粒乳化剂及其应用方面开辟出一条新路径。此外,与通常报道的表面活性胶体粒子的制备方法--乳液聚合、分散聚合相、表面修饰等相比,自组装更容易通过设计和调整聚合物化学组成和链结构、控制自组装环境来得到形态及性质不同的胶体粒子,更容易通过环境因素控制组装和解组装过程,这有益于胶体粒子乳化机理的研究。
     本研究拓展了聚合物自组装胶束化的研究领域,对最终实现聚合物自组装的商业化或工业化应用有重要意义。
Due to the significance of the great range of potential applications, there has been great progress in the past decade in the research of self-assembly of amphiphilic copolymers. During the past few years, our group has focused on the research of non-covalently connected micelles(NCCM) formed by the non-covalent interaction between non-block copolymers, and has had many successes. Up to now, the hot topic of macromolecular self-assembly has shifted into the design and functionalization of functional assembly units as well as their application in drug delivery, encapsulation, and medical imaging.
     As yet, most self-assemblies are based on amphiphilic block copolymers, owning to their well-defined architectures and narrow polydispersities. However, the synthesis of block copolymers is relatively inconvenient, which limits their large-scale applications. Compared with block copolymer, random copolymers are abundant in sources, easy to obtain and are of more potential value in large-scale applications. Although random copolymers have,relatively ill-defined structures compared to block copolymers, there have been some publications of random copolymer self-assembly into stable and ordered aggregations. One main aspect of this dissertation is whether or not the random copolymer micelle could be endowed with responsiveness via molecular design and functionalization and whether it would be possible to finally turn the random copolymer micelle into a practical application. According to the structure of random copolymers, we speculate that the hydrophilic/hydrophobic micro-domains of the assembly should be of disordered distribution with enriched hydrophilic microdomain at the surface of micelle and should be enriched hydrophobic micro-domain inside the micelle, which makes them amphiphilic.
     As early as a century ago, Pickering has already discovered that the solid colloid particles possessed surface activity and could stabilize emulsions. However it is not until the development of nanotechnology in the 1990s,had the particle emulsifiers become the focus of attention and scored great usage in the field of inorganic and organic/inorganic hybrid particle emulsifiers. With both hydrophilic and hydrophobic micro-domains on its surface, particle emulsifiers have contacted angles normally in the range of 60°120°and can lie stably at the oil/water interface. We would like to consider and focus on whether the amphiphilic assembly micelle could also be used as a particle emulsifier. In this case, we proposed that we could obtain polymeric soft emulsifier by taking advantage of the surface activity of random copolymer micelle and systematically studied its emulsification as well as the application, which is the another point of research focus of this thesis.
     Based on those two areas of research foci mentioned above, we have designed and synthesized a series of simple and readily available amphiphilic non-block random alternating copolymers, in which responsive units have been incorporated to acquire stimuli-responsive property. Macromolecular colloid particles with structural stability and surface activity were obtained from the self-assembly of these randomly alternating copolymers as assembly units, and their function as particle emulsifiers was also studied and therefore we developed a new strategy to prepare polymeric soft particle emulsifier for application.
     The main framework and feature of this thesis are:(1) stable surface-active colloid particles were prepared from the self-assembly of functional alternating copolymers with determined structure and shortest hydrophilic/hydrophobic chain segments to confirm that they possess good emulsification property and form a novel kind of soft particle emulsifier; (2) surface-active colloid particles were prepared from the self-assembly and photo-crosslinking of randomly alternating amphiphilic photo-crosslinkable copolymers with partly disordered chain structure; (3) multi-sensitive surface active colloid particles with good emulsification properties were prepared from the self-assembly of completely disordered random amphiphilic copolymers with multi-sensitive units in selective solvents; (4) finally combining with biological macromolecules, the emulsification property of soy protein isolate(SPI) and its graft copolymers with random structures were examined, which confirmed the improvement of emulsification property after the graft modification of SPI. The results showed that the colloid particles of non-block amphiphilic copolymer with short hydrophilic/hydrophobic chain segments did not demonstrate the typical core-shell structure, whereas hydrophobic micro-domains still existed on the surface of the colloid particles, imparting surface activity to them. Therefore these results showed that the present methodology of preparing surface active colloid particles from the self-assembly of amphiphilic random-alternating copolymer is general and has a wide range of applications. The main contents of this thesis are as follows:
     1. Synthesis, modification and self-assembly of the amphiphilic alternating copolymer P(St-alt-MAn)
     Using toluene as solvent, an alternating copolymer P(St-alt-MAn) was prepared by free radical polymerzation which then underwent ammonolysis with dopamine to obtain an amphiphilic alternating copolymer P(St-alt-MA-Dopa). In selective solvent, both P(St-alt-MAn) and P(St-alt-MA-Dopa) assembled into stable spherical colloid particles. The P(St-alt-MA-Dopa) colloid particles showed the pH-sensitivity and ion responsitivity as well as surface activity. In addition, the P(St-alt-MA-Dopa) colloid particle was a novel polymeric soft particle emulsifier:with P(St-alt-MA-Dopa) solution as water phase and toluene as oil phase, stable Pickering oil-in-water emulsions were produced. The absolute zeta potential value of the colloid particle increased with the increase of pH and decreased with the increase of salt concentrations; the size of the colloid particles increased with the increase of pH. The hydrophobility of the P(St-alt-MAn-Dopa) colloid particle was determined by fluorescence technique and the result showed that the increasing pH led to the increase of hydrophilicity, whereas the ionic strength had little effect on its hydrophobility. The P(St-alt-MA-Dopa) colloid particle exhibited good emulsifying property within a wide range of pH and very low concentration (0.5 mg/mL) and the pH and salt concentration had some influence on its emulsification property. The above results preliminarily attest our proposed conjectures:functional and responsive colloid particles can also be prepared from the assembly of random-alternating copolymers; functional alternating amphiphilic copolymer with the shortest hydrophilic/hydrophobic chain segments can self-assemble into a surface active colloid particle with emulsification property, which makes it a novel soft particle emulsifier.
     2. The synthesis and self-assembly of amphiphilic random alternating PSMVM copolymers
     A new amphiphilic random alternating-like copolymer PSMVM P(St-alt-MAn)-co-(VM-alt-MAn) was prepared through free radical copolymerization with St, coumarin-containing styrene monomer (VM) and MAn as monomers. The copolymer self-assembled into a stable amphiphilic spherical colloid particle (50-100 nm diameter) in selective solvent, which has photo, pH and ionic strength sensitivity. The transmission electron microscopy (TEM) showed that the PSMVM colloid particle exhibited dispersion microphase separation structure which was possibly related to the structure of PSMVM. The UV irradiation led to the cross-linking of coumarin group inside PSMVM particle and the TEM showed that the colloid particle had a tendency of collapse deformation and smaller size with the increasing irradiation time and the over-irradiation led to aggregation of the colloid particles. Compared with the uncrosslinked colloid particles (UCL-PSMVM), the crosslinked colloid particles (CL-PSMVM) showed better solvent resistance. The XPS results confirmed that there were relatively enriched oxygen at the surface of the aggregate and it may be caused by the accumulation of hydrophilic carboxyl acid group on the surface of particles which stabilized the colloid particles. The carboxyl group of PSMVM imparted pH sensitivity to PSMVM colloid particle:the zeta potential became more negative and the size increased with increasing pH value. The addition of NaCl could shield the surface charge of the PSMVM colloid particle and thus led to a decrease in absolute zeta potential value and an increase in hydrophobility and size of the colloid particle. In this part, the immobilization of the PSMVM colloid particles was achieved by crosslinking and could be further inferred that it would have practical significance in the preparation and application of polymeric soft particle emulsifier.
     3.Emulsification behavior of amphiphilic random alternating PSMVM copolymer colloid particle
     The focus of this section was soft particle emulsifier from self-assembling random alternating copolymer. The effect of environment on the emulsification behavior of PSMVM colloid particle was studied and the entrapment of oil substance as well as its absorption behavior on the oil/water interface was also explored. The results showed that PSMVM particle could serve as soft particle to stabilize oil phase such as toluene at very low concentration, resulting in stable oil-in-water Pickering emulsion. The colloid particle had good emulsification property in a wide pH range and the size of the emulsion droplet decreased with increasing pH, however the stability of emulsion declined leading to demulsification when pH value exceeded 11. After UV crosslinking, the obtained crosslinked PSMVM colloid particle showed improved emulsification property and demulsification was not observed in the pH range of 2-11. We also observed that the addition of salt improved the emulsification property. Using the simple emulsion and then solidification by the polymerization of oil phase, the PSMVM colloid particles were immobilized on the surface of the solid oil latex, which indicated that PSMVM colloid particles formed a particle film at the oil/water interface to stabilize the oil droplet, confirming the emulsion mechanism. The PSMVM colloid particle emulsion had longterm stability. Furthermore, successful entrapment of oil dye by the PSMVM colloid particle as emulsifier has been achieved and stable emulsions have been obtained. The molecular weight of PSMVM also had effects on its emulsification property and for the colloid particle with low molecular weight, demulsification occurred at pH=10.
     4.Self-assembly and property of amphiphilic random copolymer P(DM-co-AA-co-CA)
     A completely random copolymer P(DM-co-AA-co-CA) were synthesized via free radical copolymerization of coumarin-containing acrylic acid monomer (CA), together with dimethylaminoethyl methacrylate(DM) and acrylic acid(AA). In the selective solvent the copolymer P(DM-co-AA-co-CA) self-assembled into multi-sensitive colloid particle with emulsification property. The results showed that the size, charge, LCST and emulsification of the colloid particle could be controlled through the tuning of the external stimuli such as light, pH, ionic strength and temperature. The PDM and PAA segment in P(DM-co-AA-co-CA) endowed it amphoteric polyelectrolyte characteristics and the charge of the colloid particle was positive in acid condition and negative in base condition. At its isoelectric point (pH=8), the P(DM-co-AA-co-CA) colloid particle was neutral and become the smallest, and it almost lost surface activity, as a consequence its emulsification property disappeared. However, the P(DM-co-AA-co-CA) colloid particle had good emulsification in both acid and base environment and a stable oil-in-water emulsion could be obtained. The PDM chain segment endows the colloid particle thermosensitivity:the addition of salt increased low critical solotion temperature (LCST) whereas the addition of base led to the decrease of the LCST. The ionic strength had a complex influence on its emulsification property. The UV absorption and fluorescence intensity of the micelle solution reached the maximum at pH 8.54. In addition, the photo-crosslinking improved the stability and emulsification property of the colloid particles.
     5.Synthesis and aqueous solution properties of soy protein isolate graft copolymers SPI-g-NH-PAMPS
     Graft copolymers based on soy protein isolate with amino-terminated poly(2-acrylanmido-2-methyl propane sulfonic acid) (SPI-g-NH-PAMPS) were prepared by a grafting reaction between the free carboxylic acid groups of soy protein isolate (SPI) and the amino groups of poly(2-acrylanmido-2-methyl propane sulfonic acid) (H2N-PAMPS) using 1-(3-(dimethylamino)propyl)-3-ethyl-carbodiimide hydrochloride/N-Hydroxy-succinimide as the condensing agents in a buffer solution. The results showed that the hydrophilicity of SPI was improved after the graft reaction, which was attributed to that the hydrophilic sulfonic groups of the grafted H2N-PAMPS chains change the surface charge of SPI. SPI belonged to globulin and its size was around 180nm, whereas SPI-g-NH-PAMPS aggregates presented core-shell structure with a light halo PAMPS grafting shell around SPI and the size increased to ca.200 nm. The graft polymer SPI-g-NH-PAMPS showed no isoelectric point and its hydrophilicity and emulsification properties were improved at the isoelectric point of SPI (pH 4.5).
     In conclusion, we have synthesized four kinds of macromolecular amphiphilic systems with different chain structures, namely alternating copolymer, random alternating copolymer, random copolymer and graft copolymer of SPI and studied their self-assembly and emulsification properties. The above results showed that we have resolved the two research foci we proposed:1) stable and surface active polymer colloid particle could be prepared from the self-assembly of simple and readily available amphiphilic random alternating copolymers in common selective solvent; 2) this colloid particle have good emulsification property and could serve as polymeric soft particle emulsifier to prepare Pickering emulsion and entrap oil substance. Hence, a new methodology in the exploration of preparing particle emulsifier from self-assembling random alternating copolymer for application has been developed in this thesis. In addition, compared to the commonly reported preparation methods of surface active colloid particles—emulsion polymerization, dispersion polymerization and surface modification, self-assembly can more easily produce colloid particles with different shapes and properties by designing and tuning the chemical composition and chain structure as well as self-assembling environment, which allowed us more easily to control the assembly and disassembly process, benefiting the research of the emulsion mechanism of colloid particles.
     Our work has expanded the horizons of research interests in polymer self-assembly micellization and has great significance to ultimately realize its commercial or industrial applications.
引文
1 Haruma K., Functional polymer microspheres [J]. Prog. Polym. Sci.,2000,25 (8):1171.
    2 Zhang L, Eisenberg A., Multiple Morphologies and Characteristics of Crew-Cut Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Solution [J]. Science,1995,268(5218):1728.
    3江明,A.艾森伯格,刘国军,张希等.大分子自组装[M].科学出版社,2006
    4 Zhang L, Eisenberg A., Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions [J]. Macromolecules,1996, 29(27):8805
    5 Zhang L.; Yu, K.; Eisenberg, A., Ion-Induced Morphological Changes in "Crew-Cut" Aggregates of Amphiphilic Block Copolymers [J]. Science,1996,272:1777.
    6 Discher BM, Won Y-Y, Ege DS, Lee JCM, Bates FS, Discher DE, Hammol/Ler DA., Polymersomes:Tough Vesicles Made from Diblock Copolymers [J]. Science,1999, 284(5417):1143.
    7 Yan X., Liu G. J., Li Z., Preparation and Phase Segregation of Block Copolymer Nanotube Multiblocks [J]. J. Am. Chem. Soc.,2004,126:10059
    8 Pochan, D. J.; Chen, Z.; Cui, Hales, H.; K.; Qi, K.; Wooley, K. L., Toroidal triblock copolymer assemblies [J]. Science,2004,306:94
    9 Butun V., Armes, S. P., The Remarkable "Flip-Flop" Self-Assembly of a Diblock Copolymer in Aqueous Solution [J]. Macromoelcules,2001,34(5):1503
    10 Talingting R. M., Munk P., Webber S. E., Onion-Type Micelles from Polystyrene-block-poly(2-vinylpyridine) and Poly(2-vinylpyridine)-block-poly(ethylene oxide) [J]. Macromolecules,1999,32:1593
    11 Jenekhe S. A., Chen X. L., Self-Assembled Aggregates of Rod-Coil Block Co-polymers and Their Solubilization and Encapsulation of Fullerenes [J]. Science,1998,279: 903
    12 Chen D. Y., Jiang M., Strategies for Constructing Polymeric Micelles and Hollow Spheres in Solution via Specific Intermolecular Interactions [J]. Acc. Chem. Res.,2005, 38(6):494
    13 Du Jianzhong, Chen Yongming, Zhang Yanhong, Han Charles C., Fischer Karl, Schmidt Manfred, Organic/Inorganic Hybrid Vesicles Based on A Reactive Block Copolymer [J]. J. Am. Chem. Soc.,2003,125 (48):14710
    14 Zhang W., Shi L., Ma R., Xu Y., Wu K., Micellization of Thermo-and pH-Responsive Triblock Copolymer of Poly(ethylene glycol)-b-poly(4-vinylpyridine)-b-poly(N-isopropylacrylamide) [J]. Macromolecules,2005,38:8850
    15董建华主编.高分子科学前沿与进展Ⅱ[M].科学出版社,2008,184
    16 Cameron NS, Corbierre MK, Eisenberg A.,1998 E.W.R. Steacie award lecture asymmol/Letric amphiphilic block copolymers in solution:a morphological wonderland [J]. Can. J. Chem.,1999,77(8):1311
    17 Allen C, Eisenberg A., Maysinger D., Copolymer drug carriers:conjugates, micelles and microspheres [J]. S.T.P. Pharma Sciences,1999,9:139
    18 Zhang L, Eisenberg A. Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution [J]. Macromolecules, 1999,32(7):2239
    19 Zhang L, Eisenberg A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution [J]. Polym. Adv. Technol.,1998,9(10-11):677
    20 Zhang L.F., Eisenberg A., Crew-cut aggregates from self-assembly of blends of polystyrene-b-poly(acrylic acid) block copolymers and homopolystyrene in solution [J]. J. Polym. Sci. B.:Polym. Phys.,1999,37(13):1469
    21 Zhang L. F., Eisenberg, A. Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in solutions [J]. Macromolecules, 1996,29(27):8805
    22 Zhang L. F., Eisenberg A. Multiple morphologies and characteristic of "crew-cut" Micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions [J]. J. Am. Chem. Soc.,1996,118(13):3168
    23 Yu K., Zhang L. F., Eisenberg, A. Novel morphologies of "crew-cut" aggregates of amphiphilic diblock copolymers in dilute solution [J]. Langmuir,1996,12(25):5980
    24 Riegel I. C., Eisenberg A., Petzhold C. L., Samios D. Novel bowl-shaped morphology of crew-cut aggregates from Amphiphilic block copolymers of styrene and 5-(N, N-diethylamino)isoprene [J]. Langmuir,2002,18(8):3358
    25 Shen H. W., Eisenberg A. Control of architecture in block-copolymer vesicles [J]. Angew. Chem. Int. Ed.,2000,39(18):3310
    26 Zhang L. F., Bartels C., Yu Y. S., Shen H. W., Eisenberg A., Mesosized Crystal-like structure of hexagonally packed hollow hoops by solution self-assembly of diblock copolymers [J]. Phys. Rev. Lett.,1997,79(25):5034
    27 (a) Guo A., Liu G. J., Tao J., Star polymers and nanospheres from cross-linkable diblock copolymers [J]. Macromolecules,1996,29:2487. (b) Liu G. J., Nanostructures of functional block copolymers [J]. Curr. Opin. Colloid Interface Sci.,1998,3:200. (c) Liu G. J., Yan X. H., Qiu X. P., Li Z., Fractionation and solution properties of PS-b-PCEMA-b-PtBA nanofibers [J]. Macromolecules,2002,35:7742 (d) Liu G. J., Yan X. H., Duncan S., Polystyrene-block-polyisoprene nanofiber fractions.2. Viscometric study [J]. Macromolecules,2003,36:2049
    28 (a) Thurmond K. B., Kowalewski T., Wooley K. L., Water-soluble knedel-like structures:The preparation of shell-cross-linked small particles [J].J. Am. Chem. Soc., 1996,118:7239 (b) Thurmond K. B., Kowalewski T., Wooley K. L., Shell cross-linked knedels:A synthetic study of the factors affecting the dimensions and properties of amphiphilic core-shell nanosphere [J].J. Am. Chem. Soc.,1997,119:6656. (c) Turner J. L Wooley K. L., Nanoscale cage-like structures derived from polyisoprene-containing shell cross-linked nanoparticle templates [J]. Nano Lett.,2004,4:683 (d) Tang C. B., Qi K., Wooley K. L., Matyjaszewski K., Kowalewski T., Well-defined carbon nanoparticles prepared from water-soluble shell cross-linked micelles that contain polyacrylonitrile cores [J]. Angew. Chem. Int. Ed.,2004,43:2783
    29 Du J. Z., Chen Y. M., Hairy nanospheres by gelation of reactive block copolymer micelles [J]. Macromol. Rapid Commun.,2005,26:491
    30 Martin T. J., Prochazka K., Munk P., Webber S. E., pH-Dependent Micellization of Poly(2-vinylpyridine)-block-poly(ethylene oxide) [J]. Macromolecules,1996,29:6071
    31 Liu S. Y., Armes S. P., Polymeric surfactants for the new millennium:A pH-responsive, zwitterionic, schizophrenic diblock copolymer [J]. Angew Chem Int Ed.,2002,41:1413
    32 Kataoka K., Harada A., Nagasaki Y, Block copolymer micelles for drug delivery: Design, characterization and biological significance [J]. Advanced Drug Delivery Reviews, 2001,47(1):113
    33 Weaver J. V. M., Armes S. P., Biitun V., Synthesis and aqueous soluition properties of a well-defined thermo-responsive schizophrenic diblock copolymer [J]. Chem Comm.,2002, 25:1563
    34 Chen D.Y., Peng H.S., Jiang M. A novel one-step approach to core-stabilized nanoparticles at high solid contents [J]. Macromolecules,2003,36:2576.
    35 Peng H.S., Chen D.Y., Jiang M. A One-Pot Approach to the Preparation Organic Core-Shell Nanoobjects with Different Morphologies [J]. Macromolecules,2005,38:3550
    36 Guo M. Y.,, Jiang M. Non-covalently connected micelles (NCCMs):the origins and development of a new concept [J]. Soft Matter,2009,5:495
    37 Liu S. Y., Pan Q. M., Xie J. W., Jiang M., Graft-like hydrogen bonding complexes based on pyridyl-containing polymers and end-functionalized polystyrene oligomers [J]. Polymer,2000,41(18):6919
    38 Zhao H. Y., Gong J., Jiang M., An Y. L., A new approach to self-assembly of polymer blends in solution [J]. Polymer,1999,40:4521
    39 Wang M., Jiang M., Ning F. L., Chen D. Y., Liu S. Y., Duan HW., Block-copolymer-free strategy for preparing micelles and hollow spheres:Self-assembly of poly(4-vinylpyridine) and modified polystyrene [J]. Macromolecules,2002,35:5980
    40 Zhang Y. W., Jiang M., Zhao J. X., Zhou J., Chen D. Y., Hollow spheres from shell cross-linked, noncovalently connected micelles of carboxyl-terminated polybutadiene and poly(vinyl alcohol) in water [J]. Macromolecules,2004,37:1537
    41 Wang J., Jiang M., Polymeric Self-Assembly into Micelles and Hollow Spheres with Multiscale Cavities Driven by Inclusion Complexation [J]. J. Am. Chem. Soc.,2006, 128(11):3703
    42 Yan D., Zhou Y., Hou J. Supramolecular Self-Assembly of Macroscopic Tubes [J]. Science,2004,303:65
    43 Zhou Y., Yan D., Supramolecular Self-Assembly of Giant Polymer Vesicles with Controlled Sizes [J]. Angew. Chem. Int. Ed,2004,43:4896
    44 Zhou Y., Yan D. Real-Time Membrane Fission of Giant Polymer Vesicles [J]. Angew. Chem. Int. Ed,2005,44:3223
    45 Zhou Y., Yah D. Real-Time Membrane Fussion of Giant Polymer Vesicles [J]. J. Am. Chem. Soc.,2005,127:10468
    46 Omatska M., Bergman K. N., Rybak B., Peleshanko S., Tsukruk V. V. Nanofibers from Functionalized Dendritic Molecules [J]. Angew.Chem. Int. Ed.,2004,43:5246
    47 Omatska M., Peleshanko S., Genson K. L., Ryhak B., Bergman K. N., Tsukruk V. V., Assembling of Amphiphilic Highly Branched Molecules in Supramolecular Nanofibers [J]. J. Am. Chem. Soc.,2004,126:9675
    48 Zhang G Z., Winnik F. M., Wu C. Structure of a collapsed polymer chain with stickers: a single or multi-flower [J]. Physical review letters,2003,90:35506
    49 Zhang G. Z., Li X. L., Jiang M., Wu C., Model system for surfactant-free emulsion copolymerization of hydrophobic and hydrophilic monomers in aqueous solution [J]. Langmuir,2000,16:9205
    50 Zhang GZ, Liu L, Zhao Y, Ning FL, Jiang M, Wu C., Self-assembly of carboxylated poly(styrene-b-ethylene-co-butylene-b-styrene) triblock copolymer chains in water via a microphase inversion [J]. Macromolecules,2000,33:6340
    51 Ilhan F., Galow T. H., Gray M., Clavier G, Rotello V. M. Giant vesicle formation through self-assembly of complementary random copolymers [J]. J. Am. Chem. Soc.,2000, 122(24):5895
    52 Lutz J. F., Pfeifer S., Chanana M., Thu"nemann A.F., Bienert F. H-Bonding-Directed Self-Assembly of Synthetic Copolymers Containing Nucleobases:Organization and Colloidal Fusion in a Noncompetitive Solvent [J]. Langmuir,2006,22:7411
    53 Li Y., Deng Y., Tong X., Wang X., Formation of Photoresponsive Uniform Colloidal Spheres from an Amphiphilic Azobenzene-Containing Random Copolymer [J]. Macromolecules,2006,39:1108
    54 Tian F., Yu Y., Wang C., Yang S., Consecutive Morphological Transitions in Nanoaggregates Assembled from Amphiphilic Random Copolymer via Water-Driven Micellization and Light-Triggered Dissociation [J]. Macromolecules,2008,41(10):3375
    55 Liu X. Y., Jiang M., Yang S., Chen M. Q., Chen D. Y., Yang C., Wu K., Micelles and hollow nanospheres based on epsiloncaprolactone-containing polymers in aqueous media [J]. Angew.Chem. Int. Ed.,2002,41:2950
    56 Liu X. Y, Kim Joon-seop, Wu Jun, Eisenberg Adi., Bowl-Shaped Aggregates from the Self-Assembly of an Amphiphilic Random Copolymer of Poly(styrene-co-methacrylic acid) [J]. Macromolecules,2005,38(16):6749
    57 Guo P., Guan W., Liang L., Yao P., Self-assembly of pH-sensitive random copolymers: Poly(styrene-co-4-vinylpyridine) [J]. J. Colloid Interface Sci.,2008,323(2):229
    58 Bronstein L., Kramer E., Antonietti M., Successive use of amphiphilie block copolymers as nanoreactions and templates:Preparation of porous silica with metal nanoparticles [J]. Chem. Mater,1999,11 (6):1402
    59 Cecile Bouilhac, Eric Cloutet, Daniel Taton, Alain Deffieux, Redouane Borsali, Henri Cramail, Polymer Micelles as Supports for the Production of Millimetric Polyethylene Beads [J]. Macromolecules,2008,41:7321-7329.
    60 Arsen Simonyan, Ivan Gitsov, Linear-Dendritic Supramolecular Complexes as Nanoscale Reaction Vessels for "Green" Chemistry. Diels-Alder Reactions between Fullerene C60 and Poly cyclic Aromatic Hydrocarbons in Aqueous Medium [J]. Langmuir, 2008,24:11431
    61马建标,功能高分子材料[M].北京:化学工业出版社,2000
    62 Kataoka K., Harada A., Nagasaki Y, Block copolymer micelles for drug delivery: Design, characterization and biological significanae [J]. Advanced Drug Delivery Reviews, 2001,47(1):113
    63 Kun-Ho Liu, San-Yuan Chen, Dean-Mo Liu, Tse-Ying Liu, Self-Assembled Hollow Nanocapsule from Amphiphatic Carboxymethyl-hexanoyl Chitosan as Drug Carrier [J]. Macromolecules,2008,41:6511
    64 Radoslav Savic, Laibin Luo, Adi Eisenberg, Dusica Maysinger.Micellar Nanocontainers Distribute to Defined Cytoplasmic Organelles [J]. Science,2003, 300(5619):615
    65 Stefan M. Lindner, Sven Huttner, Arnaud Chiche, Mukundan Thelakkat Priv.-Doz., Georg Krausch., Charge Separation at Self-Assembled Nanostructured Bulk Interface in Block Copolymers [J]. Angewandte Chemie International Edition,2006.45:3364-3368
    66 Yeon Sik Jung, WooChul Jung, Harry L. Tuller and C. A. Ross., Nanowire Conductive Polymer Gas Sensor Patterned Using Self-Assembled Block Copolymer Lithography [J]. Nano Lett.,2008,8(11):3776
    67 Ramsden W., Separation of Solids in the Surface-Layers of Solutions and'Suspensions' (Observations on Surface-Membranes, Bubbles, Emulsions, and Mechanical Coagulation) [J]. Proc. R. Soc. Lond.,1903,72:156-164.
    68 Pickering S. U., Emulsions [J].J. Chem. Soc., Trans.1907,91:2001-2021.
    69 Binks B. P., Particles as surfactants—similarities and differences [J]. Curr. Opin. Colloid Interface Sci.,2002,7:21
    70 Duan L., Chen M., Zhou S., Wu L. Synthesis and Characterization of Poly(N-isopropylacrylamide)/Silica Composite Microspheres via Inverse Pickering Suspension Polymerization [J]. Langmuir,2009,25(6):3467
    71 Li D., He Y., Wang S., On the Rotation of the Janus CuO/CuS Colloids Formed at a Pickering Emulsion Interface [J]. J. Phys. Chem. C,2009,113(30):12927
    72 Bon S. A. F., Colver P. J. Pickering Miniemulsion Polymerization Using Laponite Clay as a Stabilizer [J]. Langmuir,2007,23(16):8316
    73 Shen M., Resasco D. E., Emulsions Stabilized by Carbon Nanotube-Silica Nanohybrids [J] Langmuir,2009,25(18):10843
    74 Fujii S., Okada M., Furuzono T. Hydroxyapatite nanoparticles as stimulus-responsive particulate emulsifiers and building block for porous materials [J]. J. Colloid Interface Sci., 2007,315(1):287
    75 Ding S., Liu B., Zhang C., Wu Y., Xu H., Qu X., Liu J., Yang Z. Amphiphilic mesoporous silica composite nanosheets[J]. J. Mater. Chem.,2009,19(21):3443
    76 Yang F., Liu S., Xu J., Lan Q., Wei F., Sun D. Pickering emulsions stabilized solely by layered double hydroxides particles:The effect of salt on emulsion formation and stability [J]. J. Colloid Interface Sci.,2006,302 (1):159
    77 Lan Q., Liu C., Yang F., Liu S., Xu J., Sun D. Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions [J] J. Colloid Interface Sci.,2007,310(1):260
    78 Yang F., Niu Q., Lan Q., Sun D., Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles [J] J. Colloid Interface Sci.,2007,306(2):285
    79 Lin Y., Skaff H., Boker A., Dinsmore A. D., Emrick T., Russell T. P.. Ultrathin Cross-Linked Nanoparticle Membranes [J]. J. Am. Chem. Soc.,2003,125:12690
    80 Li J., Stover H. D. H., Doubly pH-Responsive Pickering Emulsion [J]. Langmuir,2008, 24(23):13237
    81 Sugita N., Nomura S., Kawaguchi M. Rheological and interfacial properties of silicone oil emulsions prepared by polymer pre-adsorbed onto silica particles [J]. Colloids Surf., 2008,328(1-3):114
    82 Sarbu T., Sirk K., Lowry G. V., Matyjaszewski K., Tilton R. D. Oil-in-Water Emulsions Stabilized by Highly Charged Polyelectrolyte-Grafted Silica Nanoparticle [J]. Langmuir, 2005,21 (22):9873
    83 Wu Y., Zhang J., Zhao H., Functional colloidal particles stabilized by layered silicate with hydrophilic face and hydrophobic polymer brushes [J]. J. Polym. Sci., Part A:Polym. Chem.,2009,47(6):1535
    84 Binks B.P., Murakami R., Armes S.P., Fujii S., Schmid A. Effects of pH and Salt Concentration on Oil-in-Water Emulsions Stabilized Solely by Nanocomposite Microgel Particles [J]. Langmuir,2006,22:2050
    85 Amalvy J. I., Armes S. P., Binks B. P., Rodrigues J. A., Unali G. F., Use of sterically-stabilised polystyrene latex particles as a pH-responsive particulate emulsifier to prepare surfactant-free oil-in-water emulsions [J]. Chem. Commun.,2003,15:1826
    86 Binks B.P., Rodrigues J. A., Inversion of Emulsions Stabilized Solely by Ionizable Nanoparticles [J]. Angew. Chem. Int. Ed.,2005,44:441
    87 Ngai T., Behrens S. H., Auweter H., Novel emulsions stabilized by pH and temperature sensitive microgels [J]. Chem. Common.,2005:331
    88 Zhang K., Wu W., Guo J., Chen J., Zhang P. Synthesis of Temperature-Responsive Poly(N-isopropyl acrylamide)/Poly(methyl methacrylate)/Silica Hybrid Capsules from Inverse Pickering Emulsion Polymerization and Their Application in Controlled Drug Release [J]. Langmuir,2010,26(11):7971
    89 Brugger B., Richtering W., Emulsions Stabilized by Stimuli-Sensitive Poly(N-isopropylacrylamide)-co-Methacrylic Acid Polymers:Microgels versus Low Molecular Weight Polymers [J]. Langmuir,2008,24(15):7769
    90 Akartuna I., Tervoort E., Wong J. C. H., Studart A. R., Gauckler L. J., Macroporous polymers from particle-stabilized emulsions [J]. Polymer,2009,50(15):3645
    91 Fujii S., Cai Y., Weaver J.V.M., Armes S. P., Syntheses of Shell Cross-Linked Micelles Using Acidic ABC Triblock Copolymers and Their Application as pH-Responsive Pariculate Emulsifiers [J]. J. Am. Chem. Soc.,2005,127:7304
    92 Liu X., Yi C., Zhu Y., Yang Y., Jiang J., Cui Z., Jiang M., Pickering emulsions stabilized by self-assembled colloidal particles of copolymers of P(St-alt-MAn)-co-P(VM-alt-MAn) [J]. J. Colloid Interface Sci.,2010,351 (2):315
    93 Hu D. J. M., Eric A. Decker, Lipid Oxidation in Corn Oil-in-Water Emulsions Stabilized by Casein, Whey Protein Isolate, and Soy Protein Isolate [J]. J. Agric. Food Chem.,2003,51(6):1696
    94 He Y., Li K., Novel Janus Cu2(OH)2CO3/CuS microspheres prepared via a Pickering emulsion route [J]. J. Colloid Interface Sci.,2007,306(2):296
    95 Cayre O., Paunov V. N., Velev O. D., Fabrication of dipolar colloid particles by microcontact printing [J]. Chem. Common.,2003:2296
    96 Paunov V. N., Cayre, O., Supraparticles and "Janus" Particles Fabricated by Replication of Particle Monolayers at Liquid Surfaces Using a Gel Trapping Technique [J]. Adv. Mater., 2004,16 (9-10):788
    97 Pieranski P., Two-Dimensional Interfacial Colloidal Crystals [J]. Phys. Rev. Lett.,1980, 45(7):569.
    98 Binks B. P. Lumsdon S. O., Influence of Particle Wettability on the Type and Stability of Surfactant-Free Emulsions [J]. Langmuir,2000,16(23):8622
    99 Binks B. P., Lumsdon S. O., Pickering Emulsions Stabilized by Monodisperse Latex Particles:Effects of Particle Size [J]. Langmuir,2001,17(15):4540
    100 Binks B. P., Philip J., Rodrigues J. A., Inversion of Silica-Stabilized Emulsions Induced by Particle Concentration [J]. Langmuir,2005,21(8):3296
    101 Boker A., He J., Emrick T., Russell T. P., Self-assembly of nanoparticles at interfaces [J]. Soft Matter,2007,3(10):1231
    102 Read E. S., Fujii S., Amalvy J. I., Randall D. P., Armes S. P. Effect of Varying the Oil Phase on the Behavior of pH-Responsive Latex-Based Emulsifiers:Demulsification versus Transitional Phase Inversion [K]. Langmuir,2004,20(18):7422
    103 Tarimala S., Dai L. L., Structure of Microparticles in Solid-Stabilized Emulsions [J]. Langmuir,2003,20(9):3492
    104 Tarimala S., Ranabothu S. R., Vernetti J. P., Dai L. L. Mobility and In Situ Aggregation of Charged Microparticles at Oil-Water Interfaces [J]. Langmuir,2004,20(13): 5171
    105 Dai L. L., Sharma R., Wu C.-Y., Self-Assembled Structure of Nanoparticles at a Liquid-Liquid Interface [J]. Langmuir,2005,21(7); 2641
    106 Tarimala S., Wu C.-y., Dai L. L., Dynamics and Collapse of Two-Dimensional Colloidal Lattices [J]. Langmuir,2006,22(18):7458
    107 Wu C.-y., Tarimala S., Dai L. L., Dynamics of Charged Microparticles at Oil-Water Interfaces[J]. Langmuir,2006,22(5):2112
    108 Dai L. L., Tarimala S., Wu C.-y., Guttula S., Wu J. The Structure and Dynamics of Microparticles at Pickering Emulsion Interfaces [J]. Scanning,2008,30(2):87
    109 Ma H., Dai L. L., Structure of Multi-Component Colloidal Lattices at Oil-Water Interfaces [J]. Langmuir,2009,25(19):11210
    110 Dinsmore A. D., Hsu M.F., Nikolaides M. G, Marquez M., Bausch A. R., Weitz D. A., Colloidosomes:Selectively Permeable Capsules Composed of Colloidal Particles [J]. Science,2002,298:1006
    111 Fujii S., Armes S. P., Binks B. P., Murakami R. Stimulus-Responsive Particulate Emulsifiers Based on Lightly Cross-Linked Poly(4-vinylpyridine)-Silica Nanocomposite Microgels [J]. Langmuir,2006,22(16):6818
    112 Ngai T., Auweter H., Behrens S. H., Environmental Responsiveness of Microgel Particles and Particle-Stabilized Emulsions [J]. Macromolecules,2006,39(23):8171
    113 Aveyard R., Clint J. H., Nees D., Paunov V. N., Compression and Structure of Monolayers of Charged Latex Particles at Air/Water and Octane/Water Interfaces [J]. Langmuir,2000,16(4):1969
    114 Song Y., Luo M., Dai L. L., Understanding Nanoparticle Diffusion and Exploring Interfacial Nanorheology using Molecular Dynamics Simulations [J]. Langmuir,2009, 26(1):5
    115杨飞,王君,蓝强,孙德军,李传宪,Pickering乳状液的研究进展[J].化学进展,2009,21(7/8):1418
    116 Wang J., Yang F., Tan J., Liu G.., Xu J., Sun D., Pickering Emulsions Stabilized by a Lipophilic Surfactant and Hydrophilic Platelike Particles [J]. Langmuir,2010,26(8):5397
    117 Wang J., Yang F., Li C., Liu S., Sun D., Double Phase Inversion of Emulsions Containing Layered Double Hydroxide Particles Induced by Adsorption of Sodium Dodecyl Sulfate [J]. Langmuir,2008,24(18):10054
    118 Binks B. P., Rodrigues J. A., Double Inversion of Emulsions By Using Nanoparticles and a Di-Chain Surfactant [J]. Angew. Chem. Int. Ed.,2007,46(28):5389
    119 Wu Y., Zhang C., Xu X., Liu Z., Yang Z. Light-Triggered Reversible Phase Transfer of Composite Colloids [J]. Langmuir,2010,26 (12):9442
    120 Bernard P. Binks, R. M., Steven P. Armes, Syuji Fujii, Andreas Schmid, pH-Responsive Aqueous Foams Stabilized by Ionizable Latex Particles [J]. Langmuir,2007, 23:8691-8694.
    121 Fujii S., Read E. S., Binks B. P., Armes S. P., Stimulus-Responsive Emulsifiers Based on Nanocomposite Microgel Particles [J]. Adv. Mater,2005,17(8):1014
    122 Binks B. P., Murakami R., Armes S. P., Fujii S., Effects of pH and Salt Concentration on Oil-in-Water Emulsions Stabilized Solely by Nanocomposite Microgel Particles [J]. Langmuir,2006,22(5):2050
    123 Ngai T., Behrens S. H., Auweter H., Novel emulsions stabilized by pH and temperature sensitive microgels [J]. Chem. Common.,2005:331
    124 Brugger B., Rosen B. A., Richtering W., Microgels as Stimuli-Responsive Stabilizers for Emulsions [J]. Langmuir,2008,24(21):12202
    125 Fujii S., Cai Y, Weaver J. V. M., Armes S. P., Syntheses of Shell Cross-Linked Micelles Using Acidic ABC Triblock Copolymers and Their Application as pH-Responsive Particulate Emulsifiers [J]. J. Am. Chem. Soc.,2005,127(20):7304
    126 Correa-Duarte M. A., Salgueirino-Maceira V., Rodriguez-Gonzalez B., Liz-Marzan L. M., Kosiorek A., Kandulski W, Giersig M., Asymmetric Functional Colloids Through Selective Hemisphere Modification [J]. Adv. Mater.,2005,17(16):2014
    127 Cole-Hamilton D. J., Janus Catalysts Direct Nanoparticle Reactivity [J]. Science,2010, 327:41
    128 Crossley S., Faria J., Shen M., Resasco D. E., Solid Nanoparticles that Catalyze Biofuel Upgrade Reactions at the Water/Oil Interface [J]. Science,2010,327:68
    129 Ho C.-C., Chen W.-S., Shie T.-Y., Lin J.-N., Kuo C., Novel Fabrication of Janus Particles from the Surfaces of Electrospun Polymer Fibers [J]. Langmuir,2008,24(11): 5663
    130 Lattuada M., Hatton T. A., Preparation and Controlled Self-Assembly of Janus Magnetic Nanoparticles [J]. J. Am. Chem. Soc.,2007,129(42):12878
    131 Hong L., Jiang S., Granick S., Simple Method to Produce Janus Colloidal Particles in Large Quantity [J]. Langmuir,2006,22(23):9495
    132Suzuki D., Tsuji S., Kawaguchi H., Janus Microgels Prepared by Surfactant-Free Pickering Emulsion-Based Modification and Their Self-assembly [J]. J. Am. Chem. Soc., 2007,129(26):8088
    133 Zhang J., Jin J., Zhao H., Surface-Initiated Free Radical Polymerization at the Liquid-Liquid Interface:A One-Step Approach for the Synthesis of Amphiphilic Janus Silica Particles [J]. Langmuir,2009,25(11):6431
    134 Cohen I., Li H., Hougland J. L., Mrksich M., Nagel S. R. Using Selective Withdrawal to Coat Microparticles [J]. Science,2001,292:265
    135 He X., Ge X. W., Wang M., Zhang Z., Polystyrene/melamine-formaldehyde hollow microsphere composite by self-assembling of latex particles at emulsion droplet interface [J]. Polymer,2005,46(18):7598
    136 Ao Z., Yang Z., Wang J., Zhang G., Ngai T., Emulsion-Templated Liquid Core-Polymer Shell Microcapsule Formation [J]. Langmuir,2009,25(5):2572
    137 Chen Y., Wang C., Chen J., Liu X., Tong Z., Growth of lightly crosslinked PHEMA brushes and capsule formation using pickering emulsion interface-initiated ATRP [J]. J. Polym. Sci., Part A:Polym. Chem.,2009,47(5):1354
    138 Cauvin S., Colver P. J., Bon S. A. F., Pickering Stabilized Miniemulsion Polymerization:Preparation of Clay Armored Latexes [J]. Macromolecules,2005,38(19): 7887
    139 Colver P. J., Chen T., Bon S. A. F., Supracolloidal Structures through Liquid-Liquid Interface Driven Assembly and Polymerization [J]. Macromol. Symp.,2006,245-246(1): 34-41.
    140 Bon S. A. F., Chen T., Pickering Stabilization as a Tool in the Fabrication of Complex Nanopatterned Silica Microcapsules [J]. Langmuir,2007,23(19):9527
    141 Colver P. J., Colard C. A. L., Bon S. A. F., Multilayered Nanocomposite Polymer Colloids Using Emulsion Polymerization Stabilized by Solid Particles [J]. J. Am. Chem. Soc.,2008,130(50):16850
    142 Ge X., Wang M., Wang H., Yuan Q., Ge X., Liu H., Tang T., Novel Walnut-like Multihollow Polymer Particles:Synthesis and Morphology Control[J]. Langmuir,2009, 26(3):1635
    143 Sun W., Ji J., Shen J., Rings of Nanoparticle-Decorated Honeycomb-Structured Polymeric Film:The Combination of Pickering Emulsions and Capillary Flow in the Breath Figures Method [J]. Langmuir,2008,24(20):11338
    144 Widawski G., Rawiso M., Francois B., Self-organized honeycomb morphology of star-polymer polystyrene films [J].Nature,1994,369:387
    145 Studart A. R., Gonzenbach U. T., Tervoort E., Gauckler L. J., Processing Routes to Macroporous Ceramics:A Review [J]. J. Am. Ceram. Soc.,2006,89(6):1771
    146 Colver P. J., Bon S. A. F., Cellular Polymer Monoliths Made via Pickering High Internal Phase Emulsions [J]. Chem. Mater.,2007,19(7):1537
    147 Binks B. P., Clint J. H., Fletcher P. D. I., Lees T. J. G., Taylor P., Particle film growth driven by foam bubble coalescence [J]. Chem. Commun.,2006,2006:3531
    148 Horozov T. S., Foams and foam films stabilised by solid particles [J]. Curr. Opin. Colloid Interface Sci.,2008,13(3):134
    1 Alfrey T, Lavin E. The Copolymerization of Styrene and Maleic Anhydride [J]. J.Am.Chem.Soc.,1945,67:2044
    2 Soer W J, Ming W H, Klumperman B, etc. Surfactant-free artificial latexes from modified styrene-maleic anhydride (SMA) copolymers [J]. Polymer,2006,47:7621
    3 Tang C Y, Ye S H, Liu H Q. Electrospinning of poly(styrene-co-maleic anhydride)(SMA) and water-swelling behavior of crosslinked/hydrolyzed SMA hydrogel nanofibers [J] Polymer,2007,48:4482
    4 Cowie J. M. G., Alternating copolymers [M], New York:Plenum,1985.
    5 Zhang Y H, Huang J, Chen Y M. Reactive Dendronized Copolymer of Styryl Dendron and Maleic Anhydride:A Single Molecular Scaffold [J]. Macromolecules,2005,38:5069
    6 Zhu M Q, Wei L H, Jiang L, etc. A unique synthesis of a well-defined block copolymer having alternating segments constituted by maleic anhydride and styrene and the self-assembly aggregating behavior thereof [J]. Chem.Commun,2001:365
    7 Yu M., Hwang J., Deming T., Role of L-3,4-dihydroxyphenylalanine in mussel adhesive proteins [J].J.Am. Chem. Soc.,1999,121:5825
    8 Lee H., Dellatore S. M., Miller W. M. Messersmith, P. B, Mussel-inspired surface chemistry for multifunctional coatings [J]. Science,2007,318:426
    9 Trivedi BC, Culberteson BM. Maleic anhydride [M]. Newyork:Plenum press,1982
    lOBrown P. G., Fujimori K., A novel mechanistic study of the radical copolymerization of styrene with citraconic anhydride via 13C NMR spectroscopy [J], Polymer,1994,36(11): 2302
    11 Allen C, Eisenberg A, Maysinger D. Copolymer drug carrier:conjugates, micelles and microspheres [J]. S.T.P.Pharma Sci.,1999,15(1):36
    12 Shulkin A., Stover H. D. H. Polymer microcapsules by interfacial polyaddition between styrene-maleic anhydride copolymers and amines [J]. Journal of Membrane Science,2002, 209:421
    13 Zhang G. Z., Li X. L., Jiang M., Wu C., Model system for surfactant-free emulsion copolymerization of hydrophobic and hydrophilic monomers in aqueous solution [J], Langmuir,2000,16:9205
    14朱蕙,刘世勇,江明,窄分布两亲性嵌段共聚物的合成及其胶束化行为研究[J].高等学校化学学报,2002,23(1):138
    15刘琼,吴文辉一,陈颖,王建全,耿同谋,钱晓琳,荧光探针法研究疏水改性聚丙烯酰胺溶液的疏水缔合行为[J].功能高分子学报,2005,18(1):22
    16王彬,潘君,刘颖,糜丽,张廷秀,聚乙二醇接枝聚乳酸的自组装纳米微球的制备及性能[J].化学学报,2008,66:487
    17 Binks B. P., Murakami R., Armes S. P., Fujii S., Effects of pH and Salt Concentration on Oil-in-Water Emulsions Stabilized Solely by Nanocomposite Microgel Particles [J]. Langmuir,2006,22(5):2050
    1 Zhang L.-F., Eisenberg A. Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers in Solutions [J]. Macromolecules, 1996,29:8805
    2 Gao Z.-S., Varshney S.K., Wong S., Eisenberg A. Block Copolymer "Crew-Cut" Micelles in Water [J]. Macromolecules,1994,27:7923
    3 Shen H.-W., Eisenberg, A. Block Length Dependence of Morphological Phase Diagrams of the Ternary System of PS-b-PAA/Dioxane/H2O [J] Macromolecules,2000,33:2561
    4 Riegel I. C., Eisenberg, A. Novel Bowl-Shaped Morphology of Crew-Cut Aggregates from Amphiphilic Block Copolymers of Styrene and 5-(N, N-Diethylamino)isoprene [J]. Langmuir,2002,18:3358
    5 Dou H.-J., Jiang M., Peng H.-S., Chen D.-Y., Hong Y. pH-Dependent Self-Assembly: Micellization and Micelle-Hollow-Sphere Transition of Cellulose-Based Copolymers [J]. Angew. Chen. Int. Ed.,2003,42:1516
    6蒋润,金庆华,李宝会,丁大同,史安昌,双亲三嵌段共聚物PEO-PPO-PEO在水溶液中相行为的理论研究[J].化学学报,2007,65:860
    7 Thurmond KB, Kowalewski T, Wooley KL. Shell cross-linked knedels:A synthetic study of the factors affecting the dimensions and properties of amphiphilic core-shell nanospheres [J]. J. Am. Chem. Soc.,1997,119:6656
    8 Turner JL, Wooley KL. Nanoscale cage-like structures derived from polyisoprene-containing shell cross-linked nanoparticle templates [J]. Nano Lett.,2004,4: 683
    9 Becker ML., Remsen EE, Pan D, Wooley KL. Peptide-derivatized shell-cross-linked nanoparticles.1. synthesis and characterization [J]. Bioconjugate Chem.,2004,15:699
    10 Tang CB, Qi K, Wooley KL, Matyjaszewski K, Kowalewski T. Well-defined carbon nanoparticles prepared from water-soluble shell cross-linked micelles that contain polyacrylonitrile cores [J]. Angew. Chem. Int. Ed.,2004,43:2783
    11 Ma QG, Remsen EE, Kowalewski T, Schaefer J, Wooley KL Environmentally-responsive entirely hydrophilic shell cross-linked (SCK) [J]. Nano Lett., 2001,1:651
    12 Zhang Q, Jr CGC, Wang M, Remsen EE, Wooley KL. Thermally-Induced (Re)shaping of core-shell nanocrystalline particles [J]. Nano Lett.,2002,2:1051
    13 Du J. Z., Chen Y. M., Hairy nanospheres by gelation of reactive block copolymer micelles [J]. Macromol. Rapid Commun.,2005,26,491
    14 (a) Guo A., Liu G. J., Tao J., Star polymers and nanospheres from cross-linkable diblock copolymers [J]. Macromolecules,1996,29:2487 (b) Liu G. J., Nanostructures of functional block copolymers [J]. Curr. Opin. Colloid Interface Sci.,1998,3:200 (c) Liu G. J., Yan X. H., Qiu X. P., Li Z., Fractionation and solution properties of PS-b-PCEMA-b-PtBA nanofibers [J]. Macromolecules,2002,35:7742 (d) Liu G. J., Yan X. H., Duncan S., Polystyrene-block-polyisoprene nanofiber fractions.2. Viscometric study [J]. Macromolecules,2003,36:2049
    15 (a) Jiang J. Q., Qi B., Lepage M., Zhao Y, Polymer Micelles Stabilization on Demand through Reversible Photo-Cross-Linking [J]. Macromolecules,2007,40:790. (b) He J., Tong X., Tremblay L., Zhao Y., Corona-Cross-Linked Polymer Vesicles Displaying a Large and Reversible Temperature-Responsive Volume Transition [J]. Macromolecules,2009,42: 7267. (c) He J., Tong X., Zhao Y., Photoresponsive Nanogels Based on Photocontrollable Cross-Links [J]. Macromolecules,2009,42:4845.
    16杨金会;计从斌;赵艳敏,一水硫酸氢钠无溶剂催化合成4-甲基香豆素[J].有机化学,2008,28(10):1740
    17 Cowie J. M. G. Alternating copolymers [M], New York:Plenum,1985, 18Brown P. G., Fujimori K. A novel mechanistic study of the radical copolymerization of styrene with citraconic anhydride via 13C NMR spectroscopy [J]. Polymer,1994,36(11): 2302
    19 Ishizu K., Yamada H. Architecture of Prototype Copolymer Brushes by Grafting-from ATRP Approach from Functionalized Alternating Comb-Shaped Copolymers [J]. Macromolecules,2007,40:3056
    1 Binks B. P., Particles as surfactants—similarities and differences [J]. Curr. Opin. Colloid Interface Sci.,2002,7:21
    2 Bon S. A. F., Colver P. J. Pickering Miniemulsion Polymerization Using Laponite Clay as a Stabilizer[J]. Langmuir,2007,23(16):8316
    3 Yang F., Liu S., Xu J., Lan Q., Wei F., Sun D. Pickering emulsions stabilized solely by layered double hydroxides particles:The effect of salt on emulsion formation and stability [J]. J. Colloid Interface Sci.,2006,302 (1):159
    4 Sarbu T., Sirk K., Lowry G. V., Matyjaszewski K., Tilton R. D. Oil-in-Water Emulsions Stabilized by Highly Charged Polyelectrolyte-Grafted Silica Nanoparticle [J]. Langmuir,2005, 21 (22):9873
    5 (a) Amalvy J. I., Armes S. P., Binks B. P., Rodrigues J. A., Unali G. F., Use of sterically-stabilised polystyrene latex particles as a pH-responsive particulate emulsifier to prepare surfactant-free oil-in-water emulsions [J]. Chem. Commun.,2003,15:1826; (b) Ngai T., Behrens S. H., Auweter H., Novel emulsions stabilized by pH and temperature sensitive microgels [J]. Chem. Common.,2005:331
    6 Hu D. J. M., Eric A. Decker, Lipid Oxidation in Corn Oil-in-Water Emulsions Stabilized by Casein, Whey Protein Isolate, and Soy Protein Isolate [J]. J. Agric. Food Chem.,2003,51(6): 1696
    7 Binks B. P., Lumsdon S. O. Pickering Emulsions Stabilized by Monodisperse Latex Particles:Effects of Particle Size [J]. Langmuir 2001,17,15:4540
    8 Croll L. M., Stover H. D. H. Formation of Tectocapsules by Assembly and Cross-linking of Poly(divinylbenzene-alt-maleic anhydride) Spheres at the Oil-Water Interface[J]. Langmuir 2003,19,14:5918
    9 Croll L. M., Stover H. D. H. Mechanism of Self-Assembly and Rupture of Cross-Linked Microspheres and Microgels at the Oil-Water Interface [J]. Langmuir 2003,19,24:10077
    10 Binks B. P., Rodrigues J. A. Inversion of Emulsions Stabilized Solely by Ionizable Nanoparticles [J]. Angew. Chem. Int. Ed.,2005,44, (3):441
    11 Amalvy J. I., Armes S. P., Binks B. P., Rodrigues J. A., Unali G.-F. Use of sterically-stabilised polystyrene latex particles as a pH-responsive particulate emulsifier to prepare surfactant-free oil-in-water emulsions [J]. Chem. Commom.,2003,15:1826
    12Fujii S., Randall D. P., Armes S. P. Synthesis of Polystyrene/Poly[2-(Dimethylamino)ethyl Methacrylate-stat-Ethylene Glycol Dimethacrylate] Core-Shell Latex Particles by Seeded Emulsion Polymerization and Their Application as Stimulus-Responsive Particulate Emulsifiers for Oil-in-Water Emulsions [J]. Langmuir 2004,20,26:11329-11335.
    13 Fujii S.. Cai Y. L., Weaver J. V. M., Armes S. P., Syntheses of Shell Cross-Linked Micelles Using Acidic ABC Triblock Copolymers and Their Application as pH-Responsive Particulate Emulsifiers [J]. J. Am. Chem. Soc.,2005,127:7304
    14 Fujii S., Armes S. P., Binks B. P., Ryo M., Stimulus-Responsive Particulate Emulsifiers Based on Lightly Cross-Linked Poly(4-vinylpyridine)-Silica Nanocomposite Microgels [J]. Langmuir,2006,22:6818
    15Tarimala S., Dai L. L., Structure of Microparticles in Solid-Stabilized Emulsions [J]. Langmuir,2004,20:3492
    16 Brugger B., Rosen B. A., Richtering W., Microgels as Stimuli-Responsive Stabilizers for Emulsions [J]. Langmuir,2008,24(21):12202
    17 He X. D., Ge X. W., Liu H. R., Wang M. Z, Zhang Z. C., Synthesis of Cagelike Polymer Microspheres with Hollow Core/Porous Shell Structures by Self-Assembly of Latex Particles at the Emulsion Droplet Interface [J]. Chem. Mater,2005,17:5891
    1 Liu S. Y., Armes S. P., Polymeric Surfactants for the New Millennium:A pH-Responsive, Zwitterionic, Schizophrenic Diblock Copolymer [J]. Angew. Chem. Int. Ed,2002,41:1413
    2 Zhang W. A., Zhou X. C., Li H., Fang Y. E., Zhang G. Z., Conformational Transition of Tethered Poly(N-isopropylacrylamide) Chains in Coronas of Micelles and Vesicles [J]. Macromolecules,2005,38:909
    3 He J., Tong X., Tremblay L., Zhao Y., Corona-Cross-Linked Polymer Vesicles Displaying a Large and Reversible Temperature-Responsive Volume Transition [J]. Macromolecules,2009,42:7267
    4 Sfika V., Tsitsilianis C., Association phenomena of poly(acrylic acid)-b-poly(2-vinylpyridine)-b-poly(acrylic acid) triblock polyampholyte in aqueous solutions:From transient network to compact micelles [J]. Macromolecules,2003,36: 4983
    5杨金会,计从斌,赵艳敏,一水硫酸氢钠无溶剂催化合成4-甲基香豆素[J].有机化学,2008,28:1740
    6 Shen H, Zhang L, Eisenberg A. Thermodynamics of crew-cut micelle formation of polystyrene-b-poly(acrylic acid) diblock copolymers in DMF/H2O mixtures. J. Phys. Chem. B.,1997,101(24):4697
    7 Jinqiang Jiang, Xia Tong, Denis Morris, Yue Zhao, Toward Photocontrolled Release Using Light-Dissociable Block Copolymer Micelles [J]. Macromolecules,2006,39:4633
    8 Fink D. W., Koehler W. R.. pH Effects on fluorescence of umbelliferone [J]. Ana. Chem.,1970,42:990
    9 Mizukami S., Nagano T., Urano Y., Odani A., Kikuchi k.. A Fluorescent Anion Sensor That Works in Neutral Aqueous Solution for Bioanalytical Application [J]. J. Am. Chem. Soc.,2002,124:3920
    10 Shin M., Satoshi O., Satoshi K., Kazuya K., Design and Synthesis of Coumarin-Based Zn2+Probes for Ratiometric Fluorescence Imaging [J]. Inorg. Chem.,2009,48:7630
    11 Lu Z. Y., Yuan T. S., Chen Y. L., Wei X. Q., Zhu W G., Xie M. G. Chin Chem Lett(中国化学快报)[J].2002,13:674
    12 Suratwala T., Gardlund Z., Davidson, K., Uhlmann D. R., Watson J., Peyghambarian N., Silylated Coumarin Dyes in Sol Gel Hosts.1. Structure and Environmental Factors on Fluorescent Properties [J]. Chem. Mater.,1998,10:190
    13 Soon H. Y, Sun H. C., Sang H. L., pH/Temperature-Responsive Polymer Composed of Poly((N,N-dimethylamino)ethyl methacrylate-co-ethylacrylamide) [J]. Macromolecules, 1997,30:6856
    14 Binks B P, Murakami R, Armes S P, et al. Effects of pH and Salt Concentration on Oil-in-Water Emulsions Stabilized Solely by Nanocomposite Microgel Particles. Langmuir, 2006.22(5):2050-2057
    1 Cao N., Fua Y. H., He J. H. Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid [J]. Food Hydrocolloid,2007,21:1153
    2 Mauri A. N., Anon M. C., Effect of solution pH on solubility and some structural properties of soybean protein isolate films [J]. J. Sci. Food Agric.,2006,86:1064
    3 John E. K., Functional properties of soy proteins [J]. J. Am. Oil Chem. Soc.,1979,56: 242
    4 Parka S. N., Leeb H. J., Leeb K. H., Biological characterization of EDC-crosslinked collagen-hyaluronic acid matrix in dermal tissue restoration [J]. Biomaterials,2003,24: 1631
    5 Durand A., Hourdet D. Synthesis and thermoassociative properties in aqueous solution of graft copolymers containing poly (N-isopropylacrylamide) side chains [J]. Polymer,1999, 40:4941
    6 Ju H. K., Kim S. Y., Lee S. B.,Lee Y. M. Rapid temperature/pH response of porous alginate-g-poly(Nisopropylacrylamide) hydrogel [J]. Polymer,2002,43:7549
    7 Bokias G., Mylonas Y., Bumbu G. G., Vasile C., Synthesis and Aqueous Solution Properties of Novel Thermoresponsive Graft Copolymers Based on a Carboxymethylcellulose Backbone [J]. Macromolecules,2001,34:4958
    8 Dong C. M., Wu X. Y., Cavesb J., Releb S. S., Thomasb B. S., Chaikofb E. L., Photomediated crosslinking of C6-cinnamate derivatized type I collagen[J]. Biomaterials, 2005,26:4041
    9 Li K. C., Liu Y., Chemical modification of soy protein for wood adhesives [J]. Macromol Rapid Commun,2002,23:739
    10 Joshi J. M., Sinha V. K., Graft copolymerization of 2-hydroxyethylmethacrylate onto carboxymethyl chitosan using CAN as an initiator [J]. Polymer,2006,47:2198
    11 Singh V., Tiwari A., Tripathi D. N., Sanghi R., Microwave enhanced synthesis of chitosan-graft-polyacrylamide[J]. Polymer,2006,47:254
    12 Athawale V. D., Lele V., Graft copolymerization onto starch. Ⅱ. Grafting of acrylic acid and preparation of it's hydrogels [J]. Carbohydr Polym,1998,35:21
    13 Vanapalli S., Coupland J. N., Characterization of food colloids by phase analysis light scattering [J]. Food Hydrocolloids,2000,14:315
    14周华,姜鹏,杨成,江金强,白绘宇,陈明清,刘晓亚,原子转移自由基聚合法合成大豆分离蛋白-g-聚甲基丙烯酸2-羟乙酯[J].高分子学报,2008,5:424
    15 Gorinstein S., Delgado-Licon E., Pawelzik E., Permady H. H., Weisz M., Trakhtenberg S., Characterization of Soluble Amaranth and Soybean Proteins Based on Fluorescence, Hydrophobicity, Electrophoresis, Amino Acid Analysis, Circular Dichroism, and Differential Scanning Calorimetry Measurements [J]. J. Agric Food Chem.,2001,49:5595
    16 Kamyshny A., Feldman A., Baszkin A., Boissonnade M. M., Rosilio V., Chemically Modified Glucose Oxidase with Enhanced Hydrophobicity:Adsorption at Polystyrene, Silica, and Silica Coated by Lipid Monolayers [J]. J. Colloid Interface Sci.,1999,218:300
    17 Binks B. P., Murakami R., Armes S. P., Fujii S., Schmid A., pH-responsive aqueous foams stabilized by ionizable latex particles [J]. Langmuir,2007,23:8691
    18 Damodaran S. J., Refolding of thermally unfolded soy proteins during the cooling regime of the gelation process:effect on gelation [J]. Agric Food Chem.,1988,36:262
    19 Jun K., Matsumura Y., Tomohiko M., Characterization of mechanical properties of heat-induced soy protein gels [J]. J. Am. Oil Chem. Soc.,1991,68:339
    20 Damodaran S., Refolding of thermally unfolded soy proteins during the cooling regime of the gelation process:effect on gelation [J]. J. Agric. Food Chem.,1988,36:262
    21 Euston S.E., Singh M., Munro P.A., Competitive absorption between sodium caseinate and oil-soluble and water-soluble surfactants in Oil-in-Water emulsions [J]. J. Food Sci., 1995,60:1124
    22 Dickinson E., Rolfe S.E., Dalgleish D.G, Competitive absorption of as 1-casein and β-casein in Oil-in-Water emulsions [J]. Food Hydrocolloids,1988,265:397
    23 Dickinson E., Properties of emulsions stabilized with milk proteins:overview of some recent developments [J]. J. Dairy Sci.,1997,80:2607
    24 Dickinson E., Rolfe S. E., Dalgleish D.G., Competitive adsorption of αsl-casein and β-casein in oil-in-water emulsions [J]. Food Hydrocolloids,1988,265:397

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700