基于芴和苯并咪唑的蓝光发射共聚物的合成、表征及电致发光器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光是近年来国际上的一个研究热点。有机发光二极管具有全固态、主动发光、亮度高、对比度高、视角宽、响应速度快、厚度薄、低电压直流驱动、功耗低、成本低、工作范围宽、可实现软屏显示等特点,被认为是平板显示的“明日之星”。经过近20多年来的飞速发展,基本实现了红、绿、蓝三基色发光。其中绿色发光材料发展最快,基本达到了商业化的要求,而红色和蓝色发光材料的问题较多,特别是稳定、高效率的蓝光更具有挑战性。因而制备高效的蓝光器件一直是该领域的研究重点。
     聚芴及芴的衍生物由于具有良好的热稳定性和化学稳定性、较好的空穴传输能力以及很高的荧光量子效率,成为一种倍受关注的蓝色发光的共轭聚合物。为了提高聚芴的电子传输能力,平衡空穴和电子的注入和传输,通常采用的方法将p-型的芴(电子给体)与n-型单体(电子受体),形成电子受体-给体结构的共聚物。
     咪唑基类化合物的咪唑环是缺电子芳香环,属于非中心对称结构,能发生分子内电荷转移,具有良好的电子传输性能。
     因此,我们设计了合理的合成路线制备出2,2'-(1,4-苯撑)-二(5-溴-苯并咪唑)(单体5),并与2,7-二硼酸-9,9-二辛基芴(单体9)通过Suzuki反应制得共聚物(PFBI0)。但是由于苯并咪唑强烈的分子间氢键作用,导致PEBI0不溶于常用的有机溶剂。所以,我们又将单体5进行N-烷基取代,得到烷基化的单体7,然后将单体7和单体9共聚得到共聚物PFBI8。由于咪唑环上的NH全部被烷基取代,所以共聚物的溶解性能得到极大的改善,溶于四氢呋喃、二氯甲烷、三氯甲烷、甲苯等常见的有机溶剂。且PFBI8具有良好的热性能(Tg = 103οC,Td = 428 oC),以及很高的荧光量子效率,在氯仿溶液中量子效率高达99%。PFBI8薄膜的最大发射波长为450 nm。
     我们将PFBI8作为发光层,制备了三种不同结构的聚合物发光二极管,研究PFBI8的电致发光性能。其中,器件(ITO/PEDOT:PSS/PFBI8/LiF/Al)的最大发射波长为448 nm,最大亮度达到1534 cd/m~2 (电流效率0.67 cd/A,功率效率0.20 lm/W)。
     总之,PFBI8具有作为蓝色发光的聚合物电致发光材料的潜力。
Organic/Polymeric light-emitting diodes have received increasing attention due to their potential applications in the next generation flat-panel displays. The benefits of PLEDs include thin, low-cost displays with a low driving voltage, wide viewing angle, high contrast, color gamut and flexible. Among the three prime colors, many good red and green emitters have been developed to satisfy the practical requirements for OLEDs. In contrast, the development of blue emitters with high electroluminescence (EL) efficiencies remains a challenge that has attracted significant research effort.
     Polyfluorenes and fluorine-containing copolymers have emerged as very promising materials for blue emission due to their unique combination of high thermal stability, chemical stability, high photoluminescence (PL) quantum yields, good film-forming and hole-transporting properties. To improve the electron transport properties and achieve balanced charge carrier injection/transport in polyfluorenes, a common strategy is to incorporate n-type (electron acceptor) comonomers into the predominantly p-type polyfluorenes backbone.
     Imidazole ring is a non-center symmetrical structure with electron deficient characteristic. Benzimidazole based molecules, such as 1,3,5-tris(1-phenyl-1H-benzimidazole-2-yl)benzene (TPBI) are reported to show large bandgap and effective electron-transport property.
     In the present study, we designed and synthesized 2,2'-(1,4-phenylene)-bis(benzimidazole) (monomer 5), and copolymerized with 9,9-dioctylfluorene-2,7-diboronic acid (monomer 9) though Suzuki coupling reaction to obtain copolymer PFBI0. But PFBI0 shows poor solubility in common solvents because of intense intra- and intermolecular interactions. For this reason, we synthesized N-octyl substituted 5 (monomer 7) to avoid the strong hydrogen bond of benzimidazole. And as expected, copolymer of 7 and 9 (PFBI8) exhibits excellent solubility due to the diminished interactions. PFBI8 also enjoys good thermal stability, whose decomposition temperature and glass transition temperature are as high as 428 and 103 oC, respectively. It emits blue light in solvents with a quantum yield up to 99% in CHCl3.
     The electroluminescence (EL) peak of PFBI8 in the device with the configuration of ITO/PEDOT:PSS/ PFBI8/TPBI/LiF/Al is 448 nm, which is comparable to the film photoluminescence maximum of 450 nm. Such polymer light-emitting diode (PLED) exhibits a maximum luminance of 1534 cd/m~2 with the current efficiency and power efficiency of 0.67 cd/A and 0.20 lm/W, respectively.
     The pure blue emission and good EL performance make PFBI8 promising for blue light-emitting PLED applications.
引文
[1] Pope M., Kallmann H. P., Magnante P., Electroluminscence in organic crystals, J. Chem. Phys, 1963, 38, 2042-2043.
    [2] Helfrich W., Schneider W.G., Recombination radiation in anthracene crystals, Phys. Rev. Lett. 1965, 14, 229-231.
    [3] Lohmann F., Mehl W., Dark injection and radiative recombination of electrons and holes in naphthalene crystals, J. Chem. Phys. 1969, 50, 500-506.
    [4] Vincett P. S., Barlow W. A., Hann R. A., et al. Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films, Thin Solid Films, 1982, 94, 171-174.
    [5] Partidge R. H., Electroluminescence from polyvinylcarbazole film: 3. Electroluminescent devices. Polymer 1983, 24, 746-752.
    [6] Tang C. W., Van Slyke S. A., Organic electroluminescent diodes, Appl. Phys. Lett. 1987, 51, 913-915.
    [7] Adachi C., Tokitos S., Tsutsui T., Saito S., Electroluminescence in organic films with three-layer structure, Jpn. J. Appl. Phys. Part 2 1988, 27, L269-L271.
    [8] Adachi C., Tokitos S., Tsutsui T., et al. Organic electroluminescent device with a three-layer structure, Jpn. J. Appl. Phys. Part 2, 1988, 27, L713-L715.
    [9] Burroughes J. H., et al. Light-emitting Diodes Based on Conjugated Polymers, Nature 1990, 347, 539-415.
    [10] Zimmerman R. G., Wessling R. A., Polyelectrolytes from bis sulfonium salts, USP: 3401152, 1968, 09-10.
    [11] Burroughes J. H., Bradley D. D. C., Brown A. R., et al. Light-emitting diodes based on conjugated polymers, Nature 1990, 347, 539-541.
    [12] Braun D., Heeger A. J., Visible light emission from semiconducting polymer diodes, Appl. Phys. Lett. 1991, 58, 1982-1984.
    [13] Greenham N. C., Moratti S. C., Bradley D. D. C., et al, Efficient light-emittingdiodes based on polymers with high electron affinities, Nature 1993, 365, 628-630.
    [14] Lux A., Holmes A. B., Cervini R., et al. New CF3-substituted PPV-type oligomers and polymers for use as hole blocking layers in LED. Synth. Met. 1997, 84, 293-294.
    [15] Dottinger S. E., Hohloch M., Segura J. L., et al. Chemical tuning of the electronic properties of differently substituted 1,4-bis(styryl)benzenes, 2,6-bis(stryryl)naphthalenes, and bis(thienylvinylene) benzenes and naphthalenes, Adv. Mater. 1997, 9, 233-236.
    [16] Chen Z. K., Huang W., Wang L. H., et al. Family of Electroluminescent Silyl-Substituted Poly(p-phenylenevinylene)s:? Synthesis, Characterization, and Structure?Property Relationships, Macromolecules 2000, 33, 9015-9025.
    [17] Ohmori Y., Uchida M., Muro K., et al. Visible-light electroluminescent diodes utilizing poly(3-alkylthiophene), Jpn. J. Appl. Phys. 1991, 30, L1938-L1940.
    [18] Wang G. M., Yuan C. W., Wu H. M., et al. Importance of poly(N-vinylcarbazole) dopant to poly(3-octylthiophene) electroluminescence, J. Appl. Phys. 1995, 78, 2679-2683.
    [19]印寿根,李晨曦,尹春,等.聚合物电致发光材料研究进展.高分子通报, 1997, 2, 95-101.
    [20] Yoshino K., Hirohata M., Sonoda T., et al. Electroluminescence and photoluminescence characteristics of poly(disilanyleneoligo- phenylene)s and poly(disilanyleneoligothienylene)s. Synth. Met. 1999, 102, 1158.
    [21] Pei J., Yu W. L., Huang W., A. et al. A novel series of efficient thiophene-based light-emitting conjugated polymers and application in polymer light-emitting diodes, Macromolecules 2000, 33, 2462-2471.
    [22] Huang W., Meng H., Yu W. L., et al. A new blue light-emitting polymer containing substituted thiophene and an arylene-1,3,4-oxadiazole moiety, Adv. Mater. 1998, 10, 593-596.
    [23] Hou Q., Zhou Q., Zhang Y., et al. Synthesis and electroluminescent properties of high-efficiency saturated red emitter based on copolymers from fluorene and 4,7-di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole, Macromolecules 2004, 37, 6299-6305.
    [24] Grem G., Leditzk G., Ullrich B., et al. Realization of a blue-light-emitting device using poly(p-phenylene), Adv. Mater. 1992, 4, 36-37.
    [25] Stampfl J., Tasch S., Leising G., et al. Quantum efficiencies of electroluminescent poly(para-phenylenes), Synth. Met. 1995, 71, 2125-2128.
    [26] Grem G., Leising G., Electroluminescence of“wide-bandgap”chemically tunable cyclic conjugated polymers, Synth. Met. 1993, 57, 4105-4110.
    [27] Lin T., He Q., Bai F., Design, synthesis and photophysical properties of a hyperbranched conjugated polymer, Thin Solid Films, 2000, 363, 122-125.
    [28] Halim M., Pillow J. N. G., Samuel I. D. W., et al. The effect of dendrimer generation on LED efficiency, Synth. Met. 1999, 102, 922-923.
    [29] Seoul C., Song W. J., Kang G. W., Effect of molar mass on electroluminescence of poly(p-phenylene), Synth. Met. 2002, 130, 9-16.
    [30] S. P. Huang, G. S. Huang, S. A. Chen, Deep blue electroluminescent phenylene-based polymers. Synth. Met. 2007, 157, 863-871.
    [31] Kido J., Hongawa K., Okuyama K., et al. Bright blue electroluminescence form poly(N-vinylcarbazole), Appl. Phys. Lett. 1993, 63, 2627-2629.
    [32] Guan R., Li C., Yang W., et al. Amino-containing saturated red light-emitting copolymers based on fluorene and carbazole units, Dyes and Pigments 2008, 78, 165-172.
    [33] Huang J., Xu Y., Hou Q., et al. Novel red electroluminescent polymers derived from carbazole and 3,6-bis(2-thienyl)-1,2,7-benzothiadiazole, Macromol. Rapid Commun. 2002, 23, 709-712.
    [34] Zou Y., Wan M., Sang G., et al. An alternative copolymer of carbazole and thieno[3,4b]-pyrazine: synthesis and mercury detection. Adv. Funct, Mater. 2008, 18, 2724-2732.
    [35] Mason M. G., Hung L. S., Tang C. W., et al. Charaeterization of treated indium-tin-oxide surfaces used in electrolumineseent devices, J. Appl. Phys. 1999, 86, 1688-1693.
    [36] Haskal E. I., Curioni A., Seidler P. F., et al. Lithium-aluminum contacts for organic light-emitting devices, Appl. Phys. Lett. 1997, 71, 1151-1154.
    [37] Abhishek P., Kulkarni, Kong X. X., et al . Fluorenone-containing polyfluorenes andoligofluorenes:? photophysics, origin of the green emission and efficient green electroluminescence, J. Phys. Chem. B 2004 ,108, 8689-8701.
    [38] Klaerner G., Miller R. D., Polyfluorene derivatives: effective conjugation lengths from well defined oligomers, Macromolecules 1998, 31, 2007- 2009.
    [39] Setagesh S., Grimsdale A. C., Weil T., et al. Polyfluorenes with polyphenylene dendron side chains:? toward non-aggregating, light-emitting polymers, J. Am. Chem. Soc. 2001, 123, 946-953.
    [40] Ego B. C., Grimsdale F. U., Yu G., et al. Triphenylamine substituted polyfluorene a stable blue-emitter with improved charge injection for light-emitting diodes, Adv. Mater. 2002, 14, 809-811.
    [41] Lee J. H., wang D. H., Alkoxyphenyl-substituted polyfluorene: a stable blue light-emitting polymer with good solution processability, Chem. Commun. 2003, 2836- 2837.
    [42] Yang C. H., Bhongale C. J., Chou C. H., et al. Synthesis and light emitting properties of sulfide-containing polyfluorenes and their nanocomposites with CdSe nanocrystals: A simple process to suppress keto-defect, Polymer 2007, 48, 116-128.
    [43] Mcfarlane S. L., Piercey D. G., Coumont L. S., et al. Toward Thermally, Oxidatively, and Spectrally Stable Polyfluorene-Based Materials: Aromatic Ether-Functionalized Polyfluorene, Macromolecules 2009, 42, 591-598.
    [44] Sung H. H., Lin H. C., Novel alternating fluorene-based conjugated polymers containing cxadiazole pendants with various terminal groups, Macromolecules 2004, 37, 7945-7954.
    [45] Shu C. F., Dodda R., Wu F. I., Highly efficient blue-light-emitting diodes from polyfluorene containing bipolar pendant groups, Macromolecules 2003, 36, 6698-6703.
    [46] Xia C., Advincula R. C., Decreased aggregation phenomena in polyfluorenes by introducing carbazole copolymer units, Macromolecules 2001, 34, 5854-5859.
    [47] Wong W. Y., Liu L., Cui D. M., et al. Synthesis and characterization of blue-light-emitting alternating copolymers of 9,9-dihexylfluorene and 9-arylcarbazole, Macromolecules 2005, 38, 4970-4976.
    [48] Zhang Z. G., Zhang K. L., Zhu C. X., et al. Triphenylamine-fluorene alternatingconjugated copolymers with pendant acceptor groups: synthesis, structure-property relationship, and photovoltaic application, Macromolecules 2009, 42, 3104-3111.
    [49] Pei J., Yu W. L., Huang W, Heeger A. J., The synthesis and characterization of an efficient green electroluminescent conjugated polymer: poly[2,7-bis(4-hexylthienyl)-9,9-dihexylfluorene], Chem. Commun. 2000, 1631-1632.
    [50] Kulkarni A. P., Zhu Y., Jenekhe S. A., Quinoxaline-containing polyfluorenes: synthesis, photophysics, and stable blue electroluminescene, Macromolecules 2005, 38, 1553-1563.
    [51] Zhu Y., Gibbons K. M., Kulkarni A. P., et al. Polyfluorenes containing dibenzo[a,c]phenazine segments:? synthesis and efficient blue electroluminescence from intramolecular charge transfer states, Macromolecules 2007, 40, 804-813.
    [52] Kong X. X., Abhishek P., Kulkarni, Samson A., et al. Phenothiazine-based conjugated polymers:? synthesis, electrochemistry, and light-emitting properties, Macromolecules 2003, 36, 8992-8999.
    [53] Mikroyannidis J. A., Gibbons K. M., Kulkarni A. P., et al. Poly(fluorenevinylene) copolymers containing bis(phenyl)oxadiazole and triphenylamine moieties: synthesis, photophysics, and redox and electroluminescent properties, Macromolecules 2007, 41, 663-674.
    [54] Oyston S., Wang C., Hughes G., et al. New 2,5-diaryl-1,3,4-oxadiazole-fluorene hybrids as electron transporting materials for blended-layer organic light emitting diodes, J. Mater. Chem. 2005, 15, 194-203.
    [55] Tsai L. R., Chen Y., Hyperbranched luminescent polyfluorenes containing aromatic triazole branching units, J. Poly. Sci. Part A: Poly. Chem. 2007, 45, 4465-4476.
    [56] Anderson J. D., McDonald E. M., Lee P. A., et al. Electrochemistry and electrogenerated chemiluminescence processes of the components of aluminum quinolate/triarylamine, and related organic light-emitting diodes, J. Am. Chem. Soc. 1998, 120, 9646-9655.
    [57] Yang W,, Huang J., Liu C., et al. Enhancement of color purity in blue-emitting fluorene–pyridine-based copolymers by controlling the chain rigidity and effective conjugation length, Polymer 2004, 45, 865-872.
    [58] Bernius M. T., Inbasekaran M., O’Brien J., et al. Progress with light-emitting polymers, Adv. Mate., 2000, 12, 1737-1750.
    [59] Yamamoto T., Hayashi Y., Yamamoto A., A novel type of polycondensation utilizing transition metal-catalyzed C-C coupling. II. Preparation of thermostable polyphenylene type polymer. Bull, Chem. Soc. Jpn. 1978, 51, 2091-2097.
    [60] Miyaura N., Yanagi T., Suzuki A., The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloaren esinthe presence of bases, Synth. Commun. 1981, 11, 513-519.
    [61] Stille J. K., The palladium-catalyzed cross-coupling reactions of organotin reagents with organic electropliles, Angew. Chem. Int. Ed. Engl. 1986, 25, 508-524.
    [62] Miyaura N., Yanagi T., Suzuki A., The palladium-catalyzed cross-cropling reaction of phenyl boronic acid with haloarenes in the presence of bases, Synth. Commun. 1981, 11, 513-519.
    [63] Neher, D., Polyfluorene Homopolymers: Conjugated liquid-crystalline polymers for bright blue emission and polarized electroluminescence, Macromol. Rapid Commun. 2001, 22, 1365-1385.
    [64] Zhu R., Wen G. A., Feng, J. C., et al. Di-channel polyfluorene containing spiro-bridged oxadiazole branches, Macromol. Rapid Commun. 2005, 26, 1729-1735.
    [65] Lee R. H., Lin K. T., Hung C. Y., High red, green, and blue color purity electroluminescence from MEH-PPV and polyalkyfluorenes-based bright white polymer light emitting displays, J. Polym. Sci. Part B: Poly. Phys. 2007, 45, 330-341.
    [66] Park J. H., Cho N. S., Shim H. K., et al, Polymeric light emitting properties and structural relationships of fluorene-based conjugated copolymers containing various hole transporting derivatives, Org. Electron. 2007, 8, 272–285.
    [67] Shu C. F., Dodda R., Wu F. I., Highly efficient blue-light-emitting diodes from polyfluorene containing bipolar pendant groups, Macromolecules 2003, 36, 6698-6703.
    [68] Friend R. H., Gymer R. W.; Holmes A. B., et al. Electroluminescence in conjugated polymers, Nature 1999, 397, 121-128.
    [69] Avilov I., Marsal P., Bredas D. J. L., Quantum-chemical design of host materials for full-color triplet emission, Adv. Mater. 2004, 16, 1624-1629.
    [70] Yoshino, K., Nakajima, S., Gu, H. B., Sugimoto, R. I., Absorption and emission spectral changes in a poly(3-alkylthiophene) solution with solvent and temperature, Jpn. J. App. Phys. 1991, 30 , L1941-L1943.
    [71] Baldo M. A., O’Brien D. E., You Y., et al. Highly efficient phosphorescent emission from organic electroluminescent devices, Nature 1998, 395, 151-154.
    [72] Hebner T. R., Sturm J. C., Local tuning of organic light-emitting diode color by dye droplet application, Appl. Phys. Lett. 1998, 73, 1775-1777.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700