肾小管上皮细胞中Cdc42相关蛋白4对E-cadherin和Occludin表达的影响及调节
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肾间质纤维化是各种慢性肾脏疾病(Chronic kidney disease, CKD)进展到终末期所发生的不可避免的结果。肾小管上皮细胞向间充质细胞转分化(EMT)被认为是其中重要的事件之一,在EMT的过程中,上皮标志物如E-钙粘蛋白(E-cadherin),闭合蛋白(occludin)等表达下降,甚至丢失。E-cadherin主要与β-连环素(β-catenin)一起形成细胞粘附复合体,介导细胞之间的粘附,β-catenin是重要的E-cadherin表达调节分子,其入核后可激活抑制E-cadherin表达相关基因的启动子(如Snail, Slug等);occludin则为细胞紧密连接的重要组成蛋白,介导细胞之间的紧密连接,维持上皮细胞的极性,其表达可以通过极性蛋白Par6来调节。有研究表明,转化生长因子-betal (TGF-β1)是重要的促纤维化因子,可通过经典的Smad信号通路和其他非Smad信号通路(包括MAPK, PI3K/Akt, ERK, RhoGTPase等)来完成其对肾间质纤维化的调节作用。本文研究的目的蛋白Cdc42相关蛋白(Cdc42-interacting protein, CIP4)是RhoGTPase蛋白家族成员之一,是Cdc42的下游效应蛋白,参与细胞骨架蛋白肌动蛋白(actin)的调节,对维持细胞正常的形态起重要的作用。我们的研究结果表明:无论在大鼠5/6肾切除模型还是小鼠单侧输尿管结扎(Unilateral ureteral obstruction,UUO)的模型中,与假手术组相比较,CIP4的表达均上调,且主要分布在肾小管侧基底膜,细胞之间的连接处,而E-cadherin和occludin的表达则下降。体外实验我们使用TGF-pl诱导的肾小管上皮细胞作为主要研究对象,CIP4的表达同样上升,并伴随有E-cadherin和occludin表达的下调,与体内实验结果一致。在无TGF-β1的刺激下单独高表达CIP4,亦可出现上述相关蛋白的变化。同时我们还观察到,无论是在TGF-β1的诱导下还是CIP4高表达情况下,β-catenin与CIP4均存在相互作用,但是细胞总蛋白中β-catenin的表达无明显变化,在核蛋白中的表达则增加。使用特异性siRNA敲除CIP4后,核蛋白内β-catenin表达减少,同时E-cadherin表达恢复,甚至高于对照组的表达水平。进一步的研究表明,在高表达CIP4的情况下特异性敲除β-catenin, E-cadherin的表达并无明显的变化。另一方面,在TGF-β1诱导和CIP4高表达的两组细胞中,极性蛋白Par6(Polarity protein, Par6)表达无明显的统计学差异,但这两组细胞中均存在CIP4与Par6的相互作用,但是在对照组细胞内是则未观察到该现象。综上所述,我们发现,CIP4可通过促进β-catenin入核调节E-cadherin的表达,同样,CIP4也可能通过Par6参与occludin表达的调节。
     第一部分肾间质纤维化模型中CIP4的表达与分布
     目的探讨在SD大鼠5/6肾切除模型以及Balb/c小鼠UUO模型中CIP4的表达量的变化与分布。
     方法SD大鼠5/6肾切除法建立肾脏纤维化模型,Blab/C小鼠通过结扎单侧输尿管建立肾脏纤维化模型。前者采集各组的血清检测肌酐(Scr)和尿素氮(BUN)值;两组均根据Masson染色结果观察肾脏组织纤维化程度;用免疫组织化学染色观察CIP4在模型组和假手术组的表达和分布。Western blotting检测E-cadheri、occludin、 β-cateni、Par6和α-平滑肌肌动蛋白(α-smooth nuscke actin, α-SMA)蛋白表达变化。
     结果5/6肾切除模型中,手术组动物Scr, BUN水平高于假手术组;手术组Masson染色显示肾间质明显纤维化,部分肾小球硬化,肾小管萎缩,小管上皮细胞脱落,CIP4表达量上调,主要分布在肾小管上皮细胞侧基底膜细胞连接处。UUO模型中,手术组Masson染色显示肾间质有较多纤维组织形成,部分肾小管扩张,部分肾小管萎缩、上皮细胞脱落。CIP4表达也上调,主要分布在肾小管上皮细胞区域。两种动物模型westen blotting结果均显示,CIP4表达量增加(分别为假手术组的3.91倍和3.64倍)伴随着E-cadherin及occludin表达的下降,α-SMA表达增加(P<0.05),β-catenin和Par6表达量无明显变化。
     结论CIP4在纤维化的组织中表达明显增加,且主要分布于肾小管上皮细胞,提示CIP4与肾间质纤维化关系密切。
     第二部分TGF-β1诱导的肾小管上皮细胞转分化中CIP4的表达与分布
     目的探讨大鼠肾小管上皮细胞(Normal rat kidney52E, NRK52E细胞)在TGF-β1诱导下CIP4蛋白表达量的变化。
     方法NRK52E细胞在含有TGF-β1(10ng/ml)的培养液中培育72小时,光学电子显微镜观察细胞形态的变化;提取细胞蛋白,Western blotting检测CIP4、E-cadherin、 occludin、β-catenin、Par6以及α-SMA蛋白表达的变化。
     结果对照组细胞呈铺路石样外观,细胞间连接紧密,细胞形态规则;模型组细胞体积变大,形状不规则,细胞间连接松散,间隙变大。Western blotting结果显示与对照组相比,TGF-β1刺激组的NRK52E细胞CIP4表达上调,为对照组的1.72倍,同时α-SMA蛋白表达也增高,E-cadherin及occludin表达量减少(P<0.05),β-catenin和Par6表达量无统计学差异。
     结论体外实验与体内模型所得到的结果一致,提示CIP4参与TGF-β1诱导的肾小管上皮细胞转分化进程。
     第三部分CIP4对E-cadherin表达的影响与调节
     目的探讨在肾小管上皮细胞转分化的过程中,CIP4对P-catenin核转位的调控,以及对E-cadherin表达的影响。
     方法用脂质体2000将pcDNA4.0/CIP4质粒瞬时转染至NRK52E细胞内,Western blotting检测相关各蛋白的表达;免疫荧光法检测CIP4及β-catenin在细胞内的共定位,用共聚焦显微镜观察;免疫沉淀法检测CIP4与β-catenin的相互作用;用特异性siRNA敲除相关蛋白的表达。
     结果在TGF-β1刺激组中,CIP4和β-catenin在核蛋白中的表达均增加,分别为对照组的1.82倍和1.59倍。在共聚焦显微镜下观察,免疫荧光结果显示正常组CIP4与β-catenin主要分布于细胞膜,且在细胞膜上存在部分共定位,模型组中,CIP4与β-catenin在细胞膜上分布减少,细胞核内表达增多,细胞核内存在部分共定位现象;同时用免疫沉淀法检测,在这两组细胞中CIP4和β-catenin均存在着相互作用。在倒置显微镜下观察到,对照组细胞形态规则,呈铺路石样的外观,细胞间连接紧密;转染了CIP4质粒的细胞细胞形态不规则,连接松散,体积变大,其改变与TGF-β1刺激后的细胞相类似;而转染了pcDNA4.0空载体的细胞则未发生上述改变。单独转染CIP4目的基因质粒的NRK52E细胞中,CIP4与α-SMA表达上调,E-cadherin表达减少(P<0.05),β-catenin的表达无明显变化。用特异性的siRNA沉默CIP4的表达后,CIP4的表达量只为原来40%。随着CIP4表达的下降,E-cadherin表达升高,甚至高于对照组(P<0.05),同时β-catenin的表达仍无明显的变化。NRK52E细胞转染CIP4质粒后,核蛋白中CIP4与β-catenin表达均增加(P<0.05),特异性敲除CIP4后,CIP4在核蛋白中表达下降,β-catenin的表达也下调(P<0.05)。将β-catenin特异性siRNA转染至NRK52E细胞,β-catenin的表达量下降为对照组的65%,E-cadherin与CIP4表达量无明显改变,在已转染高表达CIP4质粒的细胞中再转染特异性的P-catenin siRNA,与对照组相比,只转染CIP4质粒组的细胞,E-cadherin表达随CIP4表达的增高而下降(P<0.05),而在既转染了CIP4质粒也转染了β-catenin siRNA的细胞中,E-cadherin的表达恢复至对照组水平(P<0.05)。
     结论CIP4可通过促进β-catenin入核,从而调节E-cadherin的表达。
     第四部分CIP4对occludin表达的影响
     目的探讨NRK52E细胞高表达CIP4后对紧密连接蛋白occludin表达的影响及与极性蛋白Par6之间的相互作用关系。
     方法用脂质体2000将pcDNA4.0/CIP4质粒瞬时转染至NRK52E细胞中,Western blotting检测相关各指标的变化;用免疫沉淀法检测CIP4与Par6之间的相互作用。
     结果单独高表达CIP4, occluidn表达下降,α-SMA蛋白表达量上升,Par6表达量无明显变化,与TGF-β1作用后相关蛋白改变一致。在TGF-β1刺激组与CIP4质粒转染组的细胞中,存在CIP4与Par6的相互作用。而在对照组细胞中则未观察到该现象。
     结论CIP4可能通过与Par6相互作用,参与occludin表达的调节。
Renal interstitial fibrosis is an inevitable outcome of almost all kinds of chronic kidney diseases (CKD). Epithelial-mesenchymal transition (EMT) is considered as one of the most important-events leading to fibrosis. During the process of EMT, the biomarkers of epithelia, such as E-cadherin and occludin, the expression of which is lost. E-cadherin, form the 'adhesive complex' with β-catenin together, which is crucial to the cell-cell adhesion. β-catenin is a good candidate to regulate the expression of E-cadherin, β-catenin translocation to the nucleus, then activate the promoter of Snail gene family, the repressor of E-cadhein. Occludin is a component of tight junction, which maintains the polarity of epithelia, is regulated by the polarity protein Par6. Evidences show that transforming growth factor-betal (TGF-β1) is an important cytokine during fibrogenesis, to regulate its function, TGF-β1utilizes multiple signaling pathways by canonical TGF-β/Smad pathway components'cross talks'with other signaling pathways, namely non-Smad pathways, these include various branches of MAP kinase pathways, phosphatidylinositol-3-kinase (PI3K)/AKT pathways, ERK pathways and Rho-like small GTPase signaling pathways. Cdc42-interacting protein4(CIP4), a member of RhoGTPase family, is a downstream effector of Cdc42, and participates the modulation of cytoskeletal protein actin. CIP4is crucial to maintain the normal morphology of cell.
     In our study, we demonstrated that in both animal models,5/6nephrectomized rats and unilateral unreteral obstructed mouse, CIP4expression was upregulated comparing with sham operated group, and was distributed in renal tubule-interstitial area, mainly at the baso-lateral sides of epithelia, the exact location of cell-cell junctions. CIP4upregulation was companied by downregulation of E-cadherin and occludin. We treated NRK52E cells with TGF-β1to set up a EMT model in vitro, the expression of CIP4was found increased accompaning with the decreased expression of E-cadherin and occludin, which was consistent with the results of in vivo experiments. Over-expression of CIP4without the stimulation of TGF-β1, the related proteins above were show the similar change in protein expression. Also we found, in both TGF-β1treated cells and CIP4over-expression cells, CIP4interacted with β-catenin, the expression of β-catenin had no difference among those groups in the whole cell lystaes. However, the expression of β-catenin in nuclear protein had been elevated in TGF-β1treated and CIP4over-expression cell groups, which was reduced when CIP4was silenced by the specific siRNA, meanwhile, E-cadherin was upregulated in CIP4siRNA-transfected cells. Furthermore, β-catenin knockdown by speeific siRNA while CIP4was over-expressed, E-cadherm expression had no change. On the other hand, in both TGF-β1treated cells and CIP4over-expressed cells, Par6expression had no differences comparing with control group, however, the interaction between CIP4and Par6was observed in these two groups, but not in control group. All above, we conclude that CIP4may repress the expression of E-cadherin by promoting β-catenin translocate to the nucleus, also, CIP4may regulate the expression of occluding by interacting with Par6.
     Part1The expression and distribution of CIP4in renal fibrotic models
     Objective To investigate the distribution and expression change of CIP4in5/6nephrectomized SD rats and unilateral ureteral obstructive (UUO) Balb/c mouse.
     Methods The renal fibrotic animal models were induced by5/6subtotal nephrectomy in SD rats and left ureteral obstruction in Balb/c mouse. The serum was collected in SD rats to detect the change of serum creatine (Scr) and blood urea nitrogen (BUN). In both models, the severity of renal fibrosis was detected by Masson staining. Immunohistochemical staining was used to detected the expression and distribution of CIP4. The protein expression of CIP4, β-catenin, E-cadherin. Occludin, Par6and α-SMA were defected by western blotting.Results In the model of5/6nephrectomized rats, the value of Scr and BUN were higher than those in sham operated rats(P<0.05). Masson staining showed sclerotic glomorulus, renal tubular atrophy and epithelial drop. CIP4expression was upregulated, and was mainly distributed in basolateral side of epithlia. In UUO model, Masson stainning also showed sclerotic glomorulus, interstitial fibrosis. Renal tubules were partial enlarged, partial atrophy. Western blotting of both models showed that CIP4was upregulated(3.91-fold and3.64-fold respectively) accompanied by upregulation of α-SMA and downregulation of E-cadherin and occludin (P<0.05), β-catenin and Par6showed no change in protein expression.Conclusions CIP4was found increased in protein expression in fibrotic renal tissue, and was mainly distributed in renal tubular epithelia, which indicated that CIP4was closely related with renal tissue fibrogenesis.Part2The expression and distribution of CIP4in TGF-β1induced renal tubular EMTObjectives To investigate the expression change of CIP4in murine epithelial cell line NRK52E while incubating with TGF-β1.Methods NRK52E cells were incubated with TGF-β1(10ng/ml) for72h, the morphological change was observed by light microscope. The protein expression of CIP4, β-catenin, E-cadherin, occludin, Par6and a-SMA were detected by western blotting.Results The morphological appearance of control cells were showed as cobble-stone in shape, cell-cell junction was tight. After TGF-β1treatment, cells had a large and irregular shape, cell junctions were loosen. Western blotting showed that in TGF-β1treated cells, CIP4was upregulated1.72-fold comparing with control group, together with α-SMA, reduced expression of E-cadherin and occludin were also abserved (P<0.05). The expression of β-catenin and Par6had no difference.
     Conclusions The results in vitro were consistence with those in vivo, which indicated that CIP4participate in the process of TGF-β1induced EMT in NRK52E cells.
     Part3Effect and regulation of CIP4to the expression of E-cadherin
     Objectives To investigate the effect of CIP4to P-catenin translocation to the nucleus, and the expression of E-cadherin.
     Methods The plasmid pcDNA4.0/CIP4was transient transfected into NRK52E cells by lipofectamine2000, all procedures were followed by the instructions. The colocalization of CIP4and β-catenin was detected by immunofluoresence using confocal microscope. The interaction between CIP4and β-catennin was detected by immunoprecipitation.. CIP4and β-catenin were silenced by specific siRNA respectively.
     Results The expression of CIP4and β-catenin were elevated in nuclear protein after TGF-β1treatment,1.82-fold and1.59-fold respectively. Under the cofocal microscope, immunofluroscence showed partial colocalization of CIP4and β-catenin at the cell membrane in control cells, the expression of both proteins were elevated and had partial colocalization in the nucleus after TGF-β1incubation. CIP4interacted with β-catenin in both groups detected by immunoprecipitation. In CIP4-transfected NRK52E cells, α-SMA was upregulated accompanied with CIP4, E-cadherin was downregulated (P<0.05), the results was similar as those in cells treated by TGF-β1only. To analyze the nuclear proteins, β-catenin expression was upregulated in CIP4over-expressed cells, E-cadherin expression was reduced in whole cell lysates\(P<0.05). After CIP4was knockdown by the specific siRNA, we observed reduced β-catenin expression in nuclear proteins, and E-cadherin expression was restored. Furthermore, after CIP4over-expression, β-catenin was silenced by siRNA, the E-cadherin expression had no difference.
     Conclusions CIP4may repress the expression of E-cadherin by promoting translocation of β-catenin to the nucleus.
     Part4Effect of CIP4on the expression of occludin
     Objectives To investigate the effect of CIP4over-expression on the expression of tight junction protein occludin, and the interaction between CIP4and Par6in NRK52E cells.
     Methods The plasmid pcDNA4.0/CIP4was transient transfected by lipofectamine2000into NRK52E cells, all the procedures were followed by the instructions. The protein expression of CIP4, Par6, α-SMA and occludin was detected by western blotting. The interaction between CIP4and Par6was detected by immunoprecipitation.
     Results CIP4over-expression alone without the stimulation of TGF-β1, increased expression of α-SMA and reduced expression of occludin was observed, which was consistent with the results in TGF-β1induced cells. The interaction between CIP4and Par6was detected in TGF-β1treated cells and CIP4over-expression cells, but t not in control cells.
     Conclusions CIP4may participate the modulation of expression occludin by interacting with Par6.
引文
[1]. Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol,2009,21:212-222.
    [2]. Rastaldi MP. Epithelial-mesenchymal transition and its implications for the development of renal tubulointerstitial fibrosis. J Nephrol,2006,19:407-412.
    [3]. Fragiadaki M, Mason RM. Epithelial-mesenchymal transition in renal fibrosis-evidence for and against. Int J Exp Pathol,2011,92:143-150.
    [4]. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest,2009,119:1429-1437.
    [5]. Harris TJ, Tepass U. Adherens junctions:from molecules to morphogenesis. Nat Rev Mol Cell Biol,2010,11:502-514.
    [6]. Oda H, Takeichi M. Evolution:structural and functional diversity of cadherin at the adherens junction. J Cell Biol,2011,193:1137-1146.
    [7]. Tian X, Liu Z, Niu B, et al. E-cadherin/p-catenin complex and the epithelial barrier. J Biomed Biotechnol,2011,2011:567305.
    [8]. Lilien J, Balsamo J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol,2005, 17:459-465.
    [9]. MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling:components, mechanisms, and diseases. Dev Cell,2009,17:9-26.
    [10]. Lee DB, Huang E, Ward HJ. Tight junction biology and kidney dysfunction. Am J Physiol Renal Physiol,2006,290:F20-34.
    [11]. Morrow CM, Mruk D, Cheng CY, et al. Claudin and occludin expression and function in the seminiferous epithelium. Philos Trans R Soc Lond B Biol Sci,2010, 365:1679-1696.
    [12]. Gao L, Joberty G, Macara IG. Assembly of epithelial tight junctions is negatively regulated by Par6. Curr Biol,2002,12:221-225.
    [13]. Brazil DP, Hemmings BA. Cell polarity:Scaffold proteins par excellence. Curr Biol, 2000,10:R592-594.
    [14]. Santibanez JF, Quintanilla M, Bernabeu C. TGF-β/TGF-β receptor system and its role
    in physiological and pathological conditions. Clin Sci,2011,121:233-251.
    [15]. Miyazono K. Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci,2009, 85:314-32,3.
    [16]. Zeng R, Han M, Luo Y, et al. Role of Sema4C in TGF-β1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. Nephrol Dial Transplant,2011,26:1149-1156.
    [17]. Zeng R, Yao Y, Han M, et al. Biliverdin reductase mediates hypoxia-induced EMT via PI3-kinase and Akt. J Am Soc Nephrol,2008,19:380-387.
    [18]. Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res,2009,19:128-139.
    [19]. Aspenstrom P. A Cdc42 target protein with homology to the non-kinase domain of FER has a potential role in regulating the actin cytoskeleton. Curr Biol,1997, 7:479-487.
    [20]. Citi S, Spadaro D, Schneider Y, et al. Regulation of small GTPases at epithelial cell-cell junctions. Mol Membr Biol,2011,28:427-444.
    [21]. Tsuji E, Tsuji Y, Fujiwara T, et al. Splicing variant of Cdc42 interacting protein-4 disrupts beta-catenin-mediated cell-cell adhesion:expression and function in renal cell carcinoma. Biochem Biophys Res Commun,2006,339:1083-1088.
    [22]. Henrique D, Schweisguth F. Cell polarity:the ups and downs of the Par6/aPKC complex. Curr Opin Genet Dev,2003,13:341-350.
    [1]. Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol,2011, 7:684-696.
    [2]. Fragiadaki M, Mason RM. Epithelial-mesenchymal transition in renal fibrosis-evidence for and against. Int J Exp Pathol,2011,92:143-150.
    [3]. Rastaldi MP. Epithelial-mesenchymal transition and its implications for the development of renal tubulointerstitial fibrosis. J Nephrol,2006,19:407-412.
    [4]. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest,2009,119:1429-1437.
    [5]. Morrow CM, Mruk D, Cheng CY, et al. Claudin and occludin expression and function in the seminiferous epithelium. Philos Trans R Soc Lond B Biol Sci,2010, 365:1679-1696.
    [6]. Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: Parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia,2010,15:117-134.
    [7]. Ouyanf G, Wang Z, Fang X, et al. Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells. Cell Mol Life Sci,2010,67:2605-2618.
    [8]. Tsuji E, Tsuji Y, Fujiwara T, et al. Splicing variant of Cdc42 interacting protein-4 disrupts beta-catenin-mediated cell-cell adhesion:expression and function in renal cell carcinoma. Biochem Biophys Res Commun,2006,339:1083-1088.
    [9]. Roignot J, Taieb D, Suliman M, et al. CIP4 is a new ArgBP2 interacting protein that modulates the ArgBP2 mediated control of WAVE 1 phosphorylation and cancer cell migration. Cancer Lett,2010,288:116-123.
    [10].位红兰,梁萍萍,李娣昕,等.DJ-癌基因在肾间质纤维化中表达的实验研究.中华肾脏病杂志,2009,25:288-492.
    [11].周璇,裴广畅,廖盼丽,等.血管内皮生长因子C参与肾间质纤维化的进程.临床肾脏病杂志,2011,11:475-478.
    [12]. Etienne-Manneville S. Cdc42-the centre of polarity. J Cell Sci,2004,117:1291-
    1300.
    [13]. Wilson PD. Apico-basal polarity in polycystic kidney disease epithelia. Biochim Biophys Acta,2011,1812:1239-1248.
    [14]. Assemat E, Bazellieres E, Pallesi-Pocachard E, et al. Polarity complex proteins. Biochim Biophys Acta,2008,1778:614-630.
    [15]. Pichot CS, Arvanitis C, Hartig SM, et al. Cdc42-interacting protein 4 promotes breast cancer cell invasion and formation of invadopodia through activation of N-WASp. Cancer Rea,2010,70:8347-8356.
    [16]. Aspenstrom P. A Cdc42 target protein with homology to the non-kinase domain of FER has a potential role in regulating the actin cytoskeleton. Curr Biol,1997, 7:479-487.
    [17]. Lu Z, Xie Y, Liu X, et al. Effect of 5/6 nephrectomized rat serum on epithelial-to-mesenchymal transition in vitro. Ren Fail,2011,33:600-608.
    [18]. Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis. Am J Physiology Renal Physio,2002,283:861-875.
    [19]. Lilien J, Balsamo J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol,2005, 17:459-465.
    [20]. Gao L, Joberty G, Macara IG. Assembly of epithelial tight junctions is negatively regulated by Par6. Curr Biol,2002,12:221-225.
    [1]. Miyazono K. Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci,2009, 85:314-323.
    [2]. Santibanez JF, Quintanilla M, Bernabeu C. TGF-β/TGF-β receptor system and its role in physiological and pathological conditions. Clin Sci (Lond),2011,121:233-251.
    [3]. Lan HY, Chung AC. Transforming Growth Factor-β and Smads. Contrib Nephrol, 2011,170:75-82.
    [4]. Zeng R, Han M, Luo Y, et al. Role of Sema4C in TGF-β1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. Nephrol Dial Transplant,2011,26:1149-1156.
    [5]. Zeng R, Yao Y, Han M, et al. Biliverdin reductase mediates hypoxia-induced EMT via PI3-kinase and Akt. J Am Soc Nephrol,2008,19:380-387.
    [6]. Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res,2009,19:128-139.
    [7]. Aspenstrom P. A Cdc42 target protein with homology to the non-kinase domainof FER has a potential role in regulating the actin cytoskeleton. Curr Biol, 1997,7:479-487.
    [8]. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest,2009,119:1429-1437.
    [9]. Niessen CM. Tight junctions/adherens junctions:basic structure and function. J Invest Dermatol,2007,127:2525-2532.
    [10]. Fukata M, Nakagawa M, Kuroda S, et al. Cell adhesion and Rho small GTPases. J Cell Sci,1999,112:4491-4500.
    [11]. Terry S, Nie M, Matter K, et al. Rho signaling and tight junction functions. Physiology (Bethesda),2010,25:16-26.
    [12]. Citi S, Spadaro D, Schneider Y, et al. Regulation of small GTPases at epithelial cell-cell junctions. Mol Membr Biol,2011,28:427-444.
    [13]. Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transi-tions during embryogenesis and cancer progression. Cancer Sci,2007,
    98:1512-1520.
    [14]. Lilien J, Balsamo J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol,2005, 17:459-465.
    [15]. Gao L, Joberty G, Macara IG. Assembly of epithelial tight junctions is negatively regulated by Par6. Curr Biol,2002,12:221-225.
    [1]. Aspenstrom P. A Cdc42 target protein with homology to the non-kinase domainof FER has a potential role in regulating the actin cytoskeleton. Curr Biol, 1997,7:479-487.
    [2]. Tsuji E, Tsuji Y, Fujiwara T, et al. Splicing variant of Cdc42 interacting protein-4 disrupts beta-catenin-mediated cell-cell adhesion:expression and function in renal cell carcinoma. Biochem Biophys Res Commun,2006,339:1083-1088.
    [3]. Banerjee PP, Pandey R, Zheng R, et al. Cdc42-interacting protein-4 functionally links actin and microtubule networks at the cytolytic NK cell immunological synapse. J Exp Med,2007,204:2305-2320.
    [4]. Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res,2009,19:128-139.
    [5]. Kardassis D, Murphy C, Fotsis T, et al. Control of transforming growth factor beta signal transduction by small GTPases. FEBS J,2009,276:2947-2965.
    [6]. Miyazono K. Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci,2009, 85:314-323
    [7]. Tian X, Liu Z, Niu B, et al. E-cadherin/beta-catenin complex and the epithelial barrier. J Biomed Biotechnol,2011,567305.
    [8]. Meng W, Takeichi M. Adherens junction:molecular architecture and regulation. Cold Spring Harb Perspect Biol,2009, a002899.
    [9]. Baum B, Georgiou M. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol,2011,192:907-917.
    [10].Niessen CM, Leckband D, Yap AS. Tissue organization by cadherin adhesion molecules:dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev,2011,91:691-731.
    [11]. Santibanez JF, Quintanilla M, Bernabeu C. TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions. Clin Sci (Lond),2011, 121:233-251.
    [12]. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling:components, mechanisms, and diseases. Dev Cell,2009,17:9-26.
    [13]. Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science,2004,303:1483-1487.
    [14]. Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol,2010,21:212-222.
    [15]. Pichot CS, Arvanitis C, Hartig SM, et al. Cdc42-interacting protein 4 promotes breast cancer cell invasion and formation of invadopodia through activation of N-WASp. Cancer Res,2010,70:8347-8356.
    [16]. McCrea PD, Gu D. The catenin family at a glance. J Cell Sci,2010,123:637-642.
    [17]. Fragiadaki M, Mason RM. Epithelial-mesenchymal transition in renal fibrosis-evidence for and against. Int J Exp Pathol,2011,92:143-150.
    [18].Zeng R, Han M, Luo Y, et al. Role of Sema4C in TGF-betal-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. Nephrol Dial Transplant,2011,26:1149-1156.
    [19]. Zeng R, Yao Y, Han M, et al. Biliverdin reductase mediates hypoxia-induced EMT via PI3-kinase and Akt. J Am Soc Nephrol,2008,19:380-387.
    [20]. Wilson PD. Apico-basal polarity in polycystic kidney disease epithelia. Biochim Biophys Acta,2011,1812:1239-1248.
    [21]. Hills CE, Squires PE. TGF-betal-induced epithelial-to-mesenchymal transition and therapeutic intervention in diabetic nephropathy. Am J Nephrol,2010,31:68-74.
    [22]. Lilien J, Balsamo J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol,2005, 17:459-465.
    [23]. Medici D, Hay ED, Olsen BR. Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Mol Biol Cell,2008,19:4875-4887.
    [24]. Whitehead J, Vignjevic D, Futterer C, et al. Mechanical factors activate beta-catenin-dependent oncogene expression in APC mouse colon. HFSP J,2008, 2:286-294.
    [25]. Yook JI, Li XY, Ota I, et al. Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem,2005,280:11740-11748.
    [1]. Martin TA, Mason MD, Jiang WG. Tight junctions in cancer metastasis. Front Biosci, 2011,16:898-936.
    [2]. Lee DB, Huang E, Ward HJ. Tight junction biology and kidney dysfunction. Am J Physiol Renal Physiol,2006,290:F20-34.
    [3]. Wilson PD. Apico-basal polarity in polycystic kidney disease epithelia. Biochim Biophys Acta,2011,1812:1239-1248.
    [4]. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest,2009,119:1429-1437.
    [5]. Niessen CM. Tight junctions/adherens junctions:basic structure and function. J Invest Dermatol,2007,127:2525-2532.
    [6]. Gao L, Joberty G, Macara IG. Assembly of epithelial tight junction is negatively regulated by Par6. Curr Biol,2002,12:221-225.
    [7]. Terry S, Nie M, Matter K, et al. Rho signaling and tight junction functions. Physiology,2010,25:16-26.
    [8]. Ozdamar B, Bose R, Barrios-Rodiles M, et al. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science,2005,307:1603-1609.
    [9]. Brazil DP, Hemmings BA. Cell polarity:Scaffold proteins par excellence. Curr Biol, 2000,10:R592-594.
    [10]. Aspenstrom P. A Cdc42 target protein with homology to the non-kinase domain of FER has a potential role in regulating the actin cytoskeleton. Curr Biol, 1997,7:479-487.
    [11]. Rastaldi MP. Epithelial-mesenchymal transition and its implications for the development of renal tubulointerstitial fibrosis. J Nephrol,2006,19:401-412.
    [12]. Kardassis D, Murphy C, Fotsis T, et al. Control of transforming growth factor signal transduction by small GTPases. FEBS J,2009,276:2947-2965
    [13]. Miyazono K. Transforming growth factor-β signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci,2009,85: 314-323.
    [14]. Tian L, Nelson DL, Stewart DM. Cdc42-interacting Protein 4 Mediates Binding of the Wiskott-Aldrich Syndrome Protein to Microtubules. J Biol Chem,2000,275: 7854-7861.
    [15]. Pichot CS, Arvanitis C, Hartig SM, et al. Cdc42-interacting protein 4 promotes breast cancer cell invasion and formation of invadopodia through activation of N-WASp. Cancer Res,2010,70:8347-8356.
    [16]. Tsuji E, Tsuji Y, Fujiwara T, et al. Splicing variant of Cdc42 interacting protein-4 disrupts β-catenin-mediated cell-cell adhesion:Expression and function in renal cell carcinoma. Biochem Biophys Res Commun,2006,339:1083-1088.
    [17]. Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis. Am J Physiology Renal Physio,2002,283:861-875.
    [1]. Arquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol, 1963,17:375-412.
    [2]. Nelson WJ. Adaptation of core mechanisms to generate cell polarity. Nature,2003, 422:766-774.
    [3], Bokoch, G. M. Biology of the p21-activated kinases. Annu Rev Biochem,2003, 72:743-781.
    [4]. Burridge, K, Wennerberg, K. Rho and Rac take center stage. Cell,2004, 116:167-179.
    [5]. Ridley AJ. Rho family proteins:coordinating cell responses. Trends Cell Biol,2001, 11:471-477.
    [6]. Moon SY, Zheng Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol,2003,13:13-22.
    [7]. Wang L, Yang L, Filippi MD, et al. Genetic deletion of Cdc42GAP reveals a role of Cdc42 in erythropoiesis and hematopoietic stem/progenitor cell survival, adhesion, and engraftment. Blood,2006,107:98-105.
    [8]. Johnson DI, Pringle JR. Molecular characterization of Cdc42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J Cell Bio,1990, 111:143-152.
    [9]. Drubin, DG. Development of cell polarity in budding yeast. Cell,1991, 65:1093-1096.
    [10]. Gotta M, Abraham MC, Ahringer J. Cdc42 control early cell polarity and spindle orientation in C.elegans. Curr Biol,2001,11:482-488.
    [11]. Lamarche N, Tapon N, Stowers L, et al. Rac and Cdc42 induce actin polymerization
    and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell,1996,87:519-529.
    [12]. Miyaguchi K. Ultrastructure of the zonula adherens revealed by rapid-freeze deep-etching. J Struct Biol,2002,132:169-178.
    [13]. Yoshida C, Takeichi M. Teratocarcinoma cell adhesion:Identification of a
    cell-surface protein involved in calcium-dependent cell aggregation. Cell,1982, 28:217-224.
    [14]. Yoshida-Noro C, Suzuki N, Takeichi M. Molecular nature of the calcium-dependent cell-cell adhesion sys-tem in mouse teratocarcinoma and embryonic cells stu-died with a monoclonal antibody. Dev Biol,1984,101:19-27.
    [15]. Nakanishi H, Takai Y. Roles of nectins in cell adhesion, migration and polarization.Biol Chem,2004,385:885-892.
    [16]. Takeichi M. The cadherins:Cell-cell adhesion molecules controlling animal morphogenesis. Development,1998,102:639-655.
    [17]. Overduin M, Harvey TS, Bagby S, et al. Solution structure of the epithelial cadherin domain responsible for selective cell adhesion. Science,1995,267:386-389.
    [18]. Pokutta S, Herrenknecht K, Kemler R, et al. Conformational changes of the recombinant extracellular domain of E-cadherin upon calcium binding. Eur J Biochem,1994,223:1019-1026.
    [19]. Troyanovsky S. Cadherin dimers in cell-cell adhesion. Eur J Cell Biol,2005, 84:225-233.
    [20]. Zhang Y, Sivasankar S, Nelson WJ, et al. Resolving cadherin interactions and binding cooperativity at the single-molecule level. Proc Natl Acad Sci,2009, 106:109-114.
    [21]. Nose A, Nagafuchi A, Takeichi M. Expressed recombinant cadherins mediate cell sorting in model systems. Cell,1998,54:993-1001.
    [22]. Oda H, Uemura T, Harada Y, et al. A Drosophilahomolog of cadherin associated with armadillo and essential for embryonic cell-cell adhesion. Dev Biol,1992, 165:716-726.
    [23]. Iwai Y, Usui T, Hirano S, et al. Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophilaembryonic CNS. Neuron,1997,19:77-89.
    [24]. Cox EA, Tuskey C, Hardin J. Cell adhesion receptors in C. elegans. J Cell Sci,2004, 117:1867-1870.
    [25]. Wheeler GN, Buxton RS, Parker AE, et al. Desmosomal glycoproteins Ⅰ, Ⅱ and Ⅲ:
    Novel members of the cadherin superfamily. Biochem Soc Trans,1991, 19:1060-1064.
    [26]. Redies C, Vanhalst K, Roy F. Protocadherins:Unique structures and functions. Cell Mol Life Sci,2005,62:2840-2852.
    [27]. Saburi S, McNeill H. Organising cells into tissues:New roles for cell adhesion molecules in planar cell polarity. Curr Opin Cell Biol,2005,17:482-488.
    [28]. Takeichi M. The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci,2007,8:11-20.
    [29]. Holthofer B, Windoffer R, Troyanovsky S, et al. Structure and function of desmosomes. Int Rev Cytol,2007,264:65-163.
    [30]. Chen X, Gumbiner BM. Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity. J Cell Biol,2006, 174:301-313.
    [31]. Pece S, Chiariello M, Murga C, et al. Activation of the protein kinase Akt/PKB by the formation of E-cadherin-mediated cell-cell junctions. J Biol Chem,1999, 274:19347-19351.
    [32]. Hart MJ, Callow MG, Souza B, et al. IQGAP1, a calmodulin-binding protein with a ras GAP-related domain, is a potentialeffector for cdc42Hs. EMBO J,1996, 15:2997-3005.
    [33]. Aberle H, Schwartz H, Kemler R. Cadherin-catenin complex:protein interactions and their implications for cadherin function. J Cell Biochem,1996,61:514-523.
    [34]. Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science,2004,303:1483-1487.
    [35]. Nagafuchi A, Ishihara S, Tsukita S. The roles of catenins in the c adherin-mediated cell adhesion:functional analysis of E-cadherin-alpha catenin fusion molecules. J Cell Biol,1994,127:235-245.
    [36]. Brembeck FH, Rosario M, Birchmeier W. Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Curr Opin Genet Dev,2004,16:51-59.
    [37]. Xiao K, Oas RG, Chiasson CM, et al. Role of p120-catenin in cadherin trafficking. Biochim Biophys Acta,2007,1773:8-16.
    [38]. Anastasiadis PZ. p120-ctn:a nexus for contextual signaling via Rho GTPases. Biochim Biophys Acta,2007,1773:34-46.
    [39]. Wildenberg GA, Dohn MR, Camahan RH, et al. p120-Catenin and p190RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho.Cell, 2006,127:1027-1039.
    [40]. Rimm DL, Koslov ER, Kebriaei P, et al. (E)-catenin is an actin-binding and bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc Natl Acad Sci,1995,92:8813-8817.
    [41]. Drees F, Pokutta S, Yamada S, et al. a-Catenin is a molecular switch that binds E-cadherin-β-catenin and regulates actin-filament assembly. Cell,2005,123:903-915.
    [42]. Kobielak A, Pasolli HA, Fuchs E. Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat Cell Biol,2004,6:21-30.
    [43]. Watabe-Uchida M, Uchida N, Imamura Y, et al. α-Catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. J Cell Biol, 1998,142:847-857.
    [44]. Abe K, Takeichi M. EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt. Proc Natl Acad Sci,2008,105:13-19.
    [45]. Maul RS, Song Y, Amann KJ,et al. EPLIN regulates actin dynamics by cross-linking and stabilizing filaments. J Cell Biol,2003,160:399-407.
    [46]. Vasioukhin V, Bauer C, Degenstein L, et al. Hyperproliferation and defects in epithelial polarity upon conditional ablation of α-catenin in skin. Cell,2001, 104:605-617.
    [47]. Stehbens SJ, Paterson AD, Crampton MS, et al. Dynamic microtubules regulate the local concentration of E-cadherin at cell-cell contacts. J Cell Sci,2006, 119:1801-1811.
    [48]. Ligon LA, Karki S, Tokito M, et al. Dynein binds to beta-catenin and may tether microtubules at adherens junctions. Nat Cell Biol,2001,3:913-917.
    [49]. Waterman-Storer CM, Salmon WC, Salmon ED. Feedback interactions between
    cell-cell adherens junctions and cytoskeletal dynamics in newt lung epithelial cells. Mol Biol Cell,2000,11:2471-2483.
    [50]. Ivanov AI, McCall IC, Babbin B, et al. Microtubules regulate disassembly of epithelial apical junctions. BMC Cell Biol,2006,7:12.
    [51]. Prasad R, Gu Y, Alder H, et al. Cloning of the ALL-1 fusion partner, the AF-6 gene, involved in acute myeloid leukemias with the t(6;11) chromosome translocation. Cancer Res,1993,53:5624-5628.
    [52]. Irie K, Shimizu K, Sakisaka T, et al. Roles and modes of action of nectins in cell-cell adhesion. Semin Cell Dev Biol,2004,15:643-656.
    [53]. Tachibana K, Nakanishi H, Mandai K, et al. Two cell adhesion molecules, nectin and cadherin, interact through their cytoplasmic domain-associated proteins. J Cell Biol, 2000,150:1161-1176.
    [54]. Mandai K, Nakanishi H, Satoh A, et al. Afadin:A novel actin filament-binding protein with one PDZ domain localized at cadherin-based cell-to-cell adherens junction. J Cell Biol,1997,139:517-528.
    [55]. Fabre S, Reymond N, Cocchi F. Prominent role of the Ig-like V domain in trans-interactions of nectins.Nectin3 and nectin 4 bind to the predicted C-C'-C"-D beta-strands of the nectinl V domain. J Biol Chem,2002,277:27006-27013.
    [56]. Takai Y, Irie K, Shimizu K, et al. Nectins and nectin-like molecules:Roles in cell adhesion, migration, and polarization.Cancer Sci,2003,94:655-667.
    [57]. Togashi H, Miyoshi J, Honda T, et al. Interneurite affinity is regulated by heterophilic nectin interactions in concert with the cadherin machinery. J Cell Biol, 2006,174:141-151.
    [58]. Hollande F, Blanc EM, Bali JP, et al. HGF regulates tight junctions in new nontumorigenic gastric epithelial cell line. Am J Physiol Gastrointest Liver Physiol, 2001,280:G910-21.
    [59]. Ikenouchi J, Matsuda M, Furuse M, et al. Regulation of tight junctions during the epithelium-mesenchyme transition:dir ect repression of the gene expression of claudins/occludin by Snail. J Cell Sci,2003,116:1959-1967.
    [60]. Schneeberger EE, Lynch RD. The tight junction:a multifunctional complex. Am J
    Physiol Cell Physiol,2004,286:C1213-28
    [61]. Aijaz S, Balda MS, Matter K. Tight junctions:molecular architecture and function. Int. Rev. Cytol,2006,248:261-298.
    [62]. Furuse M, Hirase T, Itoh M, et al. Occludin:a novel integral membrane protein localizing at tight junctions. J Cell Biol,1993,123:1777-1788.
    [63]. Ando-Akatsuka Y, Saitou M, Hirase T, et al. Interspecies diversity of the occludin sequence:cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J. Cell Biol,1996,133:43-47.
    [64]. Chen Y, Merzdorf C, Paul DL, et al. COOH terminus of occludin is required for tight junction barrier function in early Xenopusembryos. J Cell Biol,1997,138:891-899.
    [65]. Furuse M, Sasaki H, Fujimoto K, et al. A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol, 1998,143:391-401.
    [66]. McCarthy KM, Skare IB, Stankewich MC, et al. Occludin is a functional component of the tight junction. J Cell Sci,1996,109:2287-2298.
    [67]. Saitou M, Furuse M, Sasaki H, et al. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell,2000,11:4131-4142.
    [68]. Yu AS, McCarthy KM, Francis SA, et al. Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. Am J Physiol Cell Physiol, 2005,288:C1231-1241.
    [69]. Manz F, Scharer K, Janka P, et al. Renal magnesium wasting, incomplete tubular acidosis, hypercalciuria and nephro-calcinosis in siblings. Eur J Pediatr,1978, 128:67-79.
    [70]. Yu AS, Cheng MH, Angelow S, et al. Molecular basis for cation sel ectivit y i n c laudin-2-based paracellular pores:identification of an electrostatic interaction site. J Gen Physiol,2009,133:111-127.
    [71]. Furuse M, Tsukita S. Claudins in occluding junctions of humans and flies. Trends Cell Biol,2006,16:181-188.
    [72]. Ebnet K, Suzuki A, Ohno S, et al. Junctional adhesion molecules (JAMs):more molecules with dual functions? J Cell Sci,2004,117:19-29.
    [73]. Gliki G, Ebnet K, Aurrand-Lions M, et al. Spermatid differentiation requires the assembly of a cell polarity complex downstream of junctional adhesion molecule-C. Nature,2004,431:320-324.
    [74]. Ikenouchi J, Furuse M, Furuse K, et al. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol,2005,171:939-945.
    [75]. Riazuddin S, Ahmed ZM, Fanning AS, et al. Tricellulin is a tight-junction protein necessary for hearing. Am J Hum Genet,2006,79:1040-1051.
    [76]. Ikenouchi J, Sasaki H, Tsukita S, et al. Loss of occludin affects tricellular localization of tricellulin. Mol Biol Cell,2008,19:4687-4693.
    [77]. Schneeberger EE, Lynch RD. The tight junction:a multifunctional complex. Am J Physiol Cell Physiol,2004,286:C1213-228.
    [78]. Stevenson BR, Siliciano JD, Mooseker MS, et al. Identification of ZO-1:A high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol,1986,103:755-766.
    [79]. Gumbiner B, Lowenkopf T, Apatira D. Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc Natl Acad Sci,1991,88:3460-3464.
    [80]. Haskins J, Gu L, Wittchen ES, et al. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol, 1998,141:199-208.
    [81]. Itoh M, Morita K, Tsukita S. Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and a catenin. J Biol Chem,1999,274:5981-5986.
    [82]. Furuse M, Itoh M, Hirase T, et al. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol, 1994,127:1617-1626.
    [83]. Fanning AS, Jameson BJ, Jesaitis LA, et al. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem,1998,273:29745-29753.
    [84]. Utepbergenov DI, Fanning AS, Anderson JM. Dimerization of the scaffolding protein ZO-1 through the second PDZ domain. J Biol Chem,2006,281:24671-24677.
    [85]. Wittchen ES, Haskins J, Stevenson BR. Protein interactions at the tight junction. Actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3. J Biol Chem,1999,274:35179-35185.
    [86]. Umeda K, Ikenouchi J, Katahira-Tayama S, et al. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation.Cell, 2006,126:741-754.
    [87]. Umeda K, Matsui T, Nakayama M, et al. Establishment and characterization of cultured epithelial cells lacking expression of ZO-1. J Biol Chem,2004, 279:44785-44794.
    [88]. Itoh M, Nagafuchi A, Moroi S, et al. Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments. J Cell Biol, 1997,138:181-192.
    [89]. Anderson JM, Van Itallie CM, Fanning AS. Setting up a selective barrier at the apical junction complex. Curr Opin Cell Biol,2004,16:140-145.
    [90]. Qin Y, Capaldo C, Gumbiner BM, et al. The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J Cell Biol,2005, 171:1061-1071.
    [91]. Shin K, Margolis B. ZOning out tight junctions. Cell,2006,126:647-649.
    [92]. Fukata M, Kaibuchi K. Rho-family GTPases in cadherin-mediated cell-cell adhesion. Nat Rev Mol Cell Biol,2001,2:887-897.
    [93]. Kuroda S, Fukata M, Nakagawa M, et al. Role of IQGAP1, a target of the small GTPases Cdc42 and Racl, in regulation of E-cadherin-mediated cell-cell adhesion. Science,1998,281:832-835.
    [94]. Fukata M, Kuroda S, Nakagawa M, et al. Cdc42 and Racl regulate the interaction of IQGAP1 with β-catenin. J Biol Chem,1999,274:26044-26050.
    [95]. Takaishi K, Sasaki T, Kato M, et al. Involvement of Rho p21 small GTP-binding protein and its regulator in the HGF-induced cell motility. Oncogene,1994, 9:273-279.
    [96]. Kotani K, Yonezawa K, Hara K, et al. Involvement of phosphoinositide 3-kinase in insulin- or IGF-1-induced membrane ruffling. EMBO J,1994,13:2313-2321.
    [97]. Kim AS, Kakalis LT, Abdul-Manan N, et al. Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature,2000,404:151-158.
    [98]. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell,2003,112:453-465.
    [99]. Nobes CD, Hall A. Rho, Rac and Cdc42 regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell, 1995,81:53-62.
    [100]. Grill SW, Gonczy P, Stelzer EH, et al. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature,2001, 409:630-633.
    [101]. Etienne-Manneville S, Hall A. Cell polarity:Par6, aPKC and cytoskeletal crosstalk. Curr. Opin. Cell Biol,2003,15:67-72.
    [102]. Garrard SM, Capaldo CT, Gao L, et al. Structure of Cdc42 in a complex with the GTPase-binding domain of the cell polarity protein, Par6. EMBO J,2003, 22:1125-1133.
    [103]. Hall, A. Rho GTPase and the actin cytoskeleton. Science,1998,279:509-514
    [104].Wittmann T, Bokoch GM, Waterman-Storer CM. Regulation of leading edge microtubule and actin dynamics downstream of Racl. J Cell Biol,2003, 161:845-851.
    [105]. Benink HA, Bement WM. Concentric zones of active RhoA and Cdc42 around single cell wounds. J Cell Biol,2003,168:429-439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700