雌激素受体及雌激素代谢酶基因多态性与结直肠癌易感性的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的
     结直肠癌(CRC)是最常见的消化道肿瘤之一,近年来随着生活水平的不断提高,饮食习惯的改变以及工业化进程的加快,我国结直肠癌发病率呈逐年上升趋势,统计数据表明结直肠癌在中国的发病已经进入快速增长期。现代医学研究认为CRC是机体遗传因素与环境影响因素共同作用的一个多基因参与、多步骤、多阶段发展的结果。结直肠癌防治效果的关键在于早期预防及对结直肠癌患者的早期诊断。对结直肠癌遗传易感基因的筛查及鉴定不仅有利于丰富对结直肠癌发生机制的深入认识,更有利于对结直肠癌高危易感人群的大规模筛选及预测,帮助早期发现结直肠癌患者,指导高危人群进行预防,也有利于指导结直肠癌患者进行个性化治疗。
     流行病学和体内外功能研究证实雌激素、雌激素代谢酶和雌激素受体在结直肠癌的发生中发挥重要作用,提示雌激素受体及代谢酶基因的某些基因型有可能成为结直肠癌的侯选遗传易感基因。多项研究发现ERα及ERβ在CRC中表达降低,而这种低表达可能在APC依赖的微卫星不稳定性结直肠癌的发生中起重要作用。体外实验证明ERβ可通过增强p53信号通路促进结直肠癌细胞凋亡及抑制其增殖。
     最近多中心的队列结果研究显示雌激素替代治疗对结直肠癌的发生具有保护作用,雌激素也是随机对照研究证实的对结直肠癌及腺瘤发生具有明确预防作用的四类化学制剂之一。而体内的雌激素水平与雌激素合成及代谢酶密切相关。我们推测,雌激素受体及雌激素合成代谢酶基因多态性改变可能会影响到CRC的易感性。
     为了证实上述假说,我们采用基于侯选基因的关联研究策略及病例-对照设计,选取雌激素受体及代谢酶基因作为侯选基因,系统地研究了这些基因的多态性与CRC易感性的关联,并对有意义的阳性关联的多态位点进行初步的功能研究。
     材料与方法
     1.关联研究中,研究对象包括433例CRC患者及790例与之年龄、性别、居住地相匹配的非肿瘤对照。病例来源于第三军医大学三所附属医院普通外科住院治疗的结直肠癌患者,对照来源于与病例年龄、居住地、性别相匹配的上述三所医院同期因急性创伤住院的非肿瘤外伤病人。
     2.采用SNPlex方法对6个侯选基因(包括ERα、ERβ、CYP17、CYP19、HSD17B1、COMT)的14个SNP位点进行基因分型。基因分型数据采集和判读使用Data Collection软件GeneMapper软件完成。
     3.统计分析:
     采用非条件Logistic回归计算OR(Odds ratios)值和95% CI(Confidence interval),并对性别、年龄、是否吸烟、是否饮酒等混杂因素进行校正,以评估各基因型及多态性位点在结直肠癌发病中的相对风险度,并对统计结果采用FDR(False discovery rate)法进行多重检验校正。各SNP位点基因型风险主效应检测由SAS 9.0软件完成,等位风险检测(Alle test)和单倍型(haplotype)、双体型(diplotype)风险检测由UNPHASE软件完成。
     用Haploview4.1构建单倍型,并用UNPHASE软件计算单倍型和双体型疾病的关联;
     使用MDR及非条件logistic回归分析基因-基因交互作用。
     使用分层分析及非条件logistic回归分析基因-环境交互作用。
     以上所有检验均为双侧。
     4.在SNP功能研究中,首先采用生物信息学软件对阳性关联的基因功能进行预测,然后通过免疫组化检测不同的基因型个体阳性关联基因的蛋白表达情况,对阳性关联SNP位点进行初步研究。
     结果
     1.在雌激素受体α的基因多态性与CRC的遗传易感性研究显示各SNP位点的关联分析显示,经FDR多重检验校正后,位于ERα启动子区的rs2071454和第一外显子的rs2077647位点与结直肠癌的易感性显著相关。其中,与rs2071454位点的TT基因型相比,GT基因型及GG+GT基因型均显著增加了CRC的患病风险。rs2071454与年龄、性别、吸烟、饮酒等因素之间具有交互作用。与rs2077647位点的AA基因型相比,AG基因型及AG+GG基因型均显著增加了CRC的患病风险。rs2077647与年龄、性别、吸烟、饮酒等环境因素之间具有交互作用。rs2071454和rs2077647位点之间存在连锁不平衡(LD),位于同一个block内(D’=0.971, LOD=239.5, R2 =0.616)。这两个位点在重庆人群中分别构建出三种单倍型,分别是TA(60.2%)、GG(29.2%)和TG(10.0%)。以T-A单倍型为参考, G-G单倍型携带者患CRC的风险OR=1.231,95%CI=1.018~1.488。以TT-AA双体型为参考, GT-AG双体型携带者患CRC的风险OR=1.592,95%CI=1.198~2.116。
     2.在ERβ的各SNP基因多态性与结直肠癌的遗传易感性无关联。
     3.基因-基因交互logistic回归分析显示ERα的rs2077647与ERβ的rs3829768之间有相乘的交互作用。
     4.在雌激素代谢酶基因多态性与结直肠癌遗传易感性研究显示经FDR多重检验校正后,雌激素合成限速酶HSD17B1的rs676287和CYP19的rs10046位点与结直肠癌易感性显著关联。
     HSD17B1 rs676387位点: GT vs GG: OR=3.280,95%CI=2.326~4.625; TT vs GG : OR=3.018,95%CI=2.109~4.318; TT+GT vs GG: OR=2.002,95%CI=1.330~3.013。且rs676387与年龄、性别、吸烟及饮酒等因环境因素之间存在交互作用。
     CYP的rs10046位点: CT vs CC :OR=0.594 ,95%CI=0.442~0.797 ; TT+CT vs CC::OR=0.638,95%CI=0.480~0.849。且rs10046与年龄、性别、吸烟及饮酒存在交互作用。
     CYP17的rs248658位点和COMT的rs4680与CRC均无显著关联。基因-基因相乘的交互作用存在于下列基因位点之间:(1) CYP17的rs2486758与CYP19的rs10046;(2)HSD17B1的rs676387与CYP19的rs10046; (3)ERα的rs2071454与CYP19的rs10046;(4)ERα的rs2071454和HSD1B1的rs676387;(5)ERα的rs2077647与HSD1B1rs676387;(6) ERαrs2077647与CYP19 rs10046。
     5.应用生物信息学软件对阳性关联位点进行的功能预测提示:ERα的rs2071454位点T→G变异会引起两个转录因子(RAP1和CAP)结合位点缺失。病例标本免疫组化结果显示ERα在rs2071454三种基因型携带者中的表达呈现TT>GT及GG,结直肠癌组织>远端正常组织的趋势。
     结论
     1.本研究首次发现ERα5’端的rs2071454位点和exon1的rs2077647位点与结直肠癌遗传易感性关联;rs2071454与rs2077647位点构建的单倍型和双体型也同样与结直肠癌的易感性关联。rs2071454及rs2077647位点分别与年龄、性别、吸烟、饮酒存在交互作用。
     2.在我们所研究人群的SNP位点中,没有发现ERβ多态性与结直肠癌的关联;基因-基因交互分析结果显示ERα的rs2077647与ERβ的rs3829768之间有交互作用。
     3.雌激素合成限速酶HSD17B1的rs676287和CYP的rs10046位点与结直肠癌的易感性显著关联。CYP17的rs248658位点和COMT的rs4680与结直肠癌均无关联。rs676387位点及rs10046位点分别与年龄、性别、吸烟和饮酒之间存在交互作用。
     4.基因-基因交互作用存在于下列基因位点之间:(1) CYP17的rs2486758与CYP19的rs10046;(2)HSD17B1的rs676387与CYP19的rs10046; (3)ERα的rs2071454与CYP19的rs10046;(4)ERα的rs2071454和HSD1B1的rs676387;(5)ERα的rs2077647与HSD1B1rs676387;(6) ERαrs2077647与CYP19 rs10046。
     5.对CRC阳性关联rs2071454位点功能的初步研究显示,该位点T→G变异会引起RAP1和CAP两个转录因子结合位点缺失,同时,可能也会影响ERα在大肠组织的表达下调,这个假说需要进一步进行基因功能研究验证。
Background & aims
     Colorectal cancer(CRC) is one of the most frequent malignancys in our country, which is on the rise due to change in diet custom and the progress of industrialization. In shanghai, for example, the incidence of colorectal cancer has doubled since the last 30 years, making colorectal cancer the second most common malignancy. It is now generally accepted that the carcinogenesis and progression of colorectal cancer is the result of aggressive gene-environment interactions, a multi-step process involving effects of multi-genes. The key to improve the result of colorectal cancer management lies in early diagnosis and early treatment. The identification of susceptibility genes contributing to colorectal cancer would help to clarify pathophysiologic mechanisms relevant to carcinogenesis and would assist in predicting individual and population risk of colorectal cancer development.
     Both experimental and epidemiologic studies have clarified that estrogen and its receptors or metabolic enzymes play important roles in carcinogenesis and development of colorectal cancer, suggesting some genotypes of estrogen reptors or metabolic enzyemes as candidate cancer susceptibility genes. Several studies reports downregulation of ERαand ERβexpression in colorectal cancer, which is also found to have a role in the development of APC dependent MSI colorectal cancer. In vitro, ERβis found to induce the apoptosis of colorectal cancer cells and suppress its proliferation through p53 pathway. In recent years, several lines of epidemiologic, clinical and experimental evidences have been reported showing that estrogen hormones may have a role in preventing the carcinogenesis of colorectal cancer. The role of estrogen in a certain individual is in part determined by different expression pattern of ER subtypes and functional status of estrogen synthetic and metabolic enzymes. It’s our hypothesis that polymorphism of ER or estrogen synthetic and metabolic enzyme genes would have an association with colorectal cancer susceptibility.
     To validate these hypotheses, We investigated the association of the polymorphisms in estrogen receptor genes and estrogen-metabolizing enzymes genes with susceptibility to CRC in this case-control association study. The bio-function of the positive association SNP was also inspected preliminarily .
     Methods
     The case-control study included 433 patients with CRC and 790 control subjects. All CRC patients were unrelated ethnic adult Chinese and residents in Chongqing municipality and its surrounding regions, excluding FAP and HNPCC patients, treated at 3 affiliated hospital of the third military medical university. All control subjects were patients which were enrolled due to trauma with no signs of malignancies. At recruitment, informed consent was obtained from each subject, and personal information on demographic factors, medical history, tobacco and alcohol use, and family history of CRC were collected with structured questionnaire.
     1. Genotyping was performed by SNPlex assay for 5 SNPs in ERαgene, 5 SNPs in ERβ, and rs2486758 in CYP17, rs10046 in CYP19, rs676387 in HSD17B1, rs4680 in COMT. The data was collected with Data Collection and analyzed with Genemapper.
     2. statistics
     The Hardy-Weinberg equilibrium at each SNP site in control groups was analyzed with the goodness of fitχ2 test. unconditioned- Logistic regression analysis was used for the calculation of Odds ratio and 95% confidence interval, adjusted with sex, ages, and smoking and alcohol status . SAS astatistical package 9.0 and UNPHASE 3.07 was used to conducted the analyses. Analyes included evaluating the distribution of the alleles, genotypes , haplotypes and diplotypes in the population studied the independent associations of genetic polymorphisms with colorectal cancer risk , and the joint effect of genotypes on colorectal cancer risk.
     We carried out multiple hypothesis testing using the Benjamini-Hochberg method to control the false discovery rate (FDR) in the unconditional logistic regression analysis.
     Haplotypes were estimated using Haploview4.1.
     MDR and conditioned-Logestic regression analysis was used for gene-gene interaction analysis. Stratification and conditioned-logistic regression analysis were used for genetic-environmental interaction.
     All the analyses was two-side test.
     3. Bioinformatic software was used for prediction of function of positive genes, and IHC was used for protein expression analysis.
     Result:
     1. Both association analysis and FDR test confirmed that rs2071454 at the promoter region of ERαand rs2077647 at exon 1 were correlated with risk of CRC. As compared to carriers of TT genotype at rs2071454, carriers of GT or GG had a higher risk of CRC(GT vs TT:OR=1.472,95%CI=1.149~1.885; GG+GT vs TT: OR=1.408,95%CI=1.108~1.789)。There were gene-environment interaction between rs2071454 and age, sex, smoking and drinking.
     A higher CRC risk was also seen among carriers of AG or GG genotype at rs2077647 as compared to AA carriers,(AG vs AA:OR=1.460,95%CI=1.125~1.895; AG+GG vs AA: OR=1.453,95%CI=1.127~1.873)。There were gene-environment interaction between rs2077647 and age, sex, smoking and drinking. A linkage disequilibrium was found between rs2071454and rs2077647. There was three haplotypes in our subjects as these two SNPs were concerned, TA(60.2%)、GG(29.2%)and TG(10.0%). Carriers of GG haplotype is more likely to be susceptible to CRC(OR=1.231,95%CI=1.018~1.488).
     2. There was no significant association between 5 SNPs in ERβand CRC susceptibility.
     3. The gene-gene interaction analysis suggested a Multiplicative effect between rs2077647 in ERαand rs3829768 in ERβ, which was confirmed by logistic regression analysis. (GG+AG)/AA vs AA/AA: OR=1.837,95%CI=1.374~2.455; AA/(GG+AG)vs AA/AA: OR=OR=1.947, 95%CI=1.177~3.219。
     4. Polymorphisms at rs2486758 in CYP17, rs10046 in CYP19, rs676387 in HSD17B1, rs4680 in COMT was analyzed, rs676287 in HSD17B1 and rs10046 in CYP19 were found to be associated to CRC risk after FDR analysis.
     For rs676387 in HSD17B1: GT vs GG: OR=3.280,95%CI=2.326~4.625; TT vs GG : OR=3.018,95%CI=2.109~4.318; TT+GT vs GG: OR=2.002,95%CI=1.330~3.013。There were gene-environment interaction between rs676387 and age, sex, smoking and drinking.
     For rs10046 in CYP19: CT vs CC :OR=0.594 ,95%CI=0.442~0.797 ; TT+CT vs CC::OR=0.638,95%CI=0.480~0.849。There were gene-environment interaction between rs10046 and age, sex, smoking and drinking.
     There was no association between CRC risk and polymorphisms at rs2486758 in CYP17 or rs4680 in COMT .
     Gene-gene interactions exist between the following pairs of SNPs: (1) CYP17 rs2486758 and CYP19 rs10046;(2)HSD17B1 rs676387 and CYP19 rs10046; (3)ERαrs2071454 and CYP19 rs10046;(4)ERαrs2071454 and HSD1B1 rs676387;(5)ERαrs2077647 and HSD1B1 rs676387;(6) ERαrs2077647 and CYP19 rs10046。
     5. Bioinformation software was employed for alle function prediction, Mutation from T to G at rs2071454 in ERαwould would lead to the loss of two transcription factor binding site(RAP1 and CAP). IHC detection observed that the expression of ERαin cancer tissue was lower than in normal tissue. A lower expression of ERαwas observed in CRC cancer patients with GT or GG at rs2071454 in ERα. The expression of ERαwas downregulated both in cancer tissue.
     Conclusion
     1. There is a correlation between CRC susceptibility and polymorphisms at rs2071454 in 5’end of ERαand rs2077647 in exon1of ERα. The difference in CRC risk is also observed among different haplotypes or diplotypes at rs2071454 and rs2077647. A genetic environmental interaction exists between rs2071454 or rs2077647 polymorphisms and age, sex, smoking and drinking.
     2. There is no asscociation between ERβpolymorphisms and CRC. A Multiplicative interaction between rs2077647 in ERαand rs3829768 in ERβis also observed.
     3. Two SNPs rs676287 and rs10046 in two rate-limiting enzyme of estrogen synthesis HSD17B1 and CYP19 respectively have correlation with CRC susceptibility. No correlation between CRC risk and rs248658 in CYP17 or rs4680 in COMT is found. rs676387 or rs10046 polymorphisms had a gene-gene interaction with age, sex, smoking and drinking.
     4. Gene-gene interactions lie between the following pairs of SNPs: (1) CYP17 rs2486758 and CYP19 rs10046;(2)HSD17B1 rs676387 and CYP19 rs10046; (3)ERαrs2071454 and CYP19 rs10046;(4)ERαrs2071454 and HSD1B1 rs676387;(5)ERαrs2077647 and HSD1B1 rs676387;(6) ERαrs2077647 and CYP19 rs10046。
     5. Mutation in rs2071454 will cause the loss of two transcripting factor binding site, RAP1 and CAP, and thus likely leading to the downregulation ERαin colorectal mucosa. This hypothesis needs further genetic functional test.
引文
[1] Laghi L. Genetics of colorectal cancer. Hepatogastroenterology. 2000, 47(32):315-22.
    [3]刘恩菊,项永兵,金凡等.上海市区恶性肿瘤发病趋势分析(1972~1999年).肿瘤. 2004, (01):11-15.
    [4] 2001年上海市区恶性肿瘤发病率.肿瘤. 2005, (06):636.
    [5]郑永兰,周海龙,王正松.重庆市某区2001~2004年恶性肿瘤发病率分析.检验医学与临床. 2006, (04):148-149.
    [6]项永兵,张薇,高立峰等.恶性肿瘤发病率的时间趋势分析方法.中华流行病学杂志. 2004, (02):86-90.
    [7]祝伟星,王启俊,李玲,邢秀梅.北京城区1993-1997年恶性肿瘤发病率分析.肿瘤防治杂志. 2003, (08):785-787.
    [8]中国癌症预防与控制规划纲要(2004-2010).中国肿瘤. 2004, (02):3-6.
    [9]《中国癌症预防与控制规划纲要(2004-2010)》起草说明.中国肿瘤. 2004, (02):7-8.
    [10] Potter JD. Colorectal cancer: molecules and populations. J Natl Cancer Inst. 1999, 91(11):916-32.
    [11] de la Chapelle A. Genetic predisposition to colorectal cancer. Nat Rev Cancer. 2004, 4(10):769-80.
    [12] Kotnis A, Sarin R, Mulherkar R. Genotype, phenotype and cancer: role of low penetrance genes and environment in tumour susceptibility. J Biosci. 2005, 30(1):93-102.
    [13]郑树,蔡善荣,张苏展.重视结直肠癌高危人群的筛查.中华消化杂志. 2006, (06):361-363.
    [14] Foulkes WD. Inherited susceptibility to common cancers. N Engl J Med. 2008, 359(20):2143-53.
    [15] Rowley PT. Inherited susceptibility to colorectal cancer. Annu Rev Med. 2005, 56:539-54.
    [16] Loktionov A, Watson MA, Gunter M, Stebbings WS, Speakman CT, Bingham SA. Glutathione-S-transferase gene polymorphisms in colorectal cancer patients: interaction between GSTM1 and GSTM3 allele variants as a risk-modulating factor. Carcinogenesis. 2001, 22(7):1053-60.
    [17] Tang KS, Chiu HF, Chen HH, et al. Link between colorectal cancer and polymorphisms in the uridine-diphosphoglucuronosyltransferase 1A7 and 1A1 genes. World J Gastroenterol. 2005, 11(21):3250-4.
    [18] Butler LM, Duguay Y, Millikan RC, et al. Joint effects between UDP-glucuronosyltransferase 1A7 genotype and dietary carcinogen exposure on risk of colon cancer. Cancer Epidemiol Biomarkers Prev. 2005, 14(7):1626-32.
    [19] Figer A, Irmin L, Geva R, Flex D, Sulkes A, Friedman E. Genetic analysis of the APC gene regions involved in attenuated APC phenotype in Israeli patients with early onset and familial colorectal cancer. Br J Cancer. 2001, 85(4):523-6.
    [20] Karoui M, Tresallet C, Brouquet A, Radvanyi H, Penna C. [Colorectal carcinogenesis. 1. Hereditary predisposition and colorectal cancer]. J Chir (Paris). 2007, 144(1):13-8.
    [21] Wirtenberger M, Tchatchou S, Hemminki K, et al. Associations of genetic variants in the estrogen receptor coactivators PPARGC1A, PPARGC1B and EP300 with familial breast cancer. Carcinogenesis. 2006, 27(11):2201-8.
    [22] Hernandez J, Balic I, Johnson-Pais TL, et al. Association between an estrogen receptor alpha gene polymorphism and the risk of prostate cancer in black men. J Urol. 2006, 175(2):523-7.
    [23] Feigelson HS, Cox DG, Cann HM, et al. Haplotype analysis of the HSD17B1 gene and risk of breast cancer: a comprehensive approach to multicenter analyses of prospective cohort studies. Cancer Res. 2006, 66(4):2468-75.
    [24] Hsu HH, Cheng SF, Chen LM, et al. Over-expressed estrogen receptor-alpha up-regulates hTNF-alpha gene expression and down-regulates beta-catenin signaling activity to induce the apoptosis and inhibit proliferation of LoVo colon cancer cells. Mol Cell Biochem. 2006, 289(1-2):101-9.
    [25] Arai N, Strom A, Rafter JJ, Gustafsson JA. Estrogen receptor beta mRNA in colon cancer cells: growth effects of estrogen and genistein. Biochem Biophys Res Commun. 2000, 270(2):425-31.
    [26] Tokunaga A, Kojima N, Andoh T, et al. Hormone receptors in gastric cancer. Eur J Cancer Clin Oncol. 1983, 19(5):687-9.
    [27] Tsukuma H, Ajiki W. [Descriptive epidemiology of colorectal cancer--international comparison]. Nippon Rinsho. 2003, 61 Suppl 7:25-30.
    [28] Ries LA, Wingo PA, Miller DS, et al. The annual report to the nation on the status of cancer, 1973-1997, with a special section on colorectal cancer. Cancer. 2000, 88(10):2398-424.
    [29]杨工,张湘兰.国人结直肠癌流行及可能的危险因素.中华流行病学杂志. 1999, 15:366-370.
    [30] Nanda K, Bastian LA, Hasselblad V, Simel DL. Hormone replacement therapy and the risk of colorectal cancer: a meta-analysis. Obstet Gynecol. 1999, 93(5 Pt 2):880-8.
    [31] Di LA, Barone M, Maiorano E, et al. ER-beta expression in large bowel adenomas: implications in colon carcinogenesis. Dig Liver Dis. 2008, 40(4):260-6.
    [32] Di LA, Barone M, Maiorano E, et al. ER-beta expression in large bowel adenomas: implications in colon carcinogenesis. Dig Liver Dis. 2008, 40(4):260-6.
    [33] Xie LQ, Yu JP, Luo HS. Expression of estrogen receptor beta in human colorectal cancer. World J Gastroenterol. 2004, 10(2):214-7.
    [34] Pfaffl MW, Lange IG, Meyer HH. The gastrointestinal tract as target of steroid hormone action: quantification of steroid receptor mRNA expression (AR, ERalpha, ERbeta and PR) in 10 bovine gastrointestinal tract compartments by kinetic RT-PCR. J Steroid Biochem Mol Biol. 2003, 84(2-3):159-66.
    [35] Prelevic GM, Kocjan T, Markou A. Hormone replacement therapy in postmenopausal women. Minerva Endocrinol. 2005, 30(1):27-36.
    [36] Slattery ML, Ballard-Barbash R, Edwards S, Caan BJ, Potter JD. Body mass index and colon cancer: an evaluation of the modifying effects of estrogen (United States). Cancer Causes Control. 2003, 14(1):75-84.
    [37] Qiu Y, Langman MJ, Eggo MC. Targets of 17beta-oestradiol-induced apoptosis in colon cancer cells: a mechanism for the protective effects of hormone replacement therapy. J Endocrinol. 2004, 181(2):327-37.
    [38] Gambacciani M, Monteleone P, Sacco A, Genazzani AR. Hormone replacement therapy and endometrial, ovarian and colorectal cancer. Best Pract Res Clin Endocrinol Metab. 2003, 17(1):139-47.
    [39] Burkman RT. Reproductive hormones and cancer: ovarian and colon cancer. Obstet Gynecol Clin North Am. 2002, 29(3):527-40.
    [40] Algeciras-Schimnich A, O'Kane DJ, Snozek CL. Pharmacogenomics of tamoxifen andirinotecan therapies. Clin Lab Med. 2008, 28(4):553-67.
    [41] Brown K, Tompkins EM, Boocock DJ, et al. Tamoxifen forms DNA adducts in human colon after administration of a single [14C]-labeled therapeutic dose. Cancer Res. 2007, 67(14):6995-7002.
    [42]陈灏珠.内科学.北京:人民卫生出版社, 1996. 380 -384.
    [43] McMichael AJ, Potter JD. Host factors in carcinogenesis: certain bile-acid metabolic profiles that selectively increase the risk of proximal colon cancer. J Natl Cancer Inst. 1985, 75(2):185-91.
    [44] Grodstein F, Martinez ME, Platz EA, et al. Postmenopausal hormone use and risk for colorectal cancer and adenoma. Ann Intern Med. 1998, 128(9):705-12.
    [45] Thomas ML, Xu X, Norfleet AM, Watson CS. The presence of functional estrogen receptors in intestinal epithelial cells. Endocrinology. 1993, 132(1):426-30.
    [46] Hendrickse CW, Jones CE, Donovan IA, Neoptolemos JP, Baker PR. Oestrogen and progesterone receptors in colorectal cancer and human colonic cancer cell lines. Br J Surg. 1993, 80(5):636-40.
    [47] Lenz W. [Hormone substitution after carcinoma]. Zentralbl Gynakol. 1999, 121(2):105-9.
    [48] Di LA, Messa C, Russo F, et al. Prognostic value of cytosolic estrogen receptors in human colorectal carcinoma and surrounding mucosa. Preliminary results. Dig Dis Sci. 1994, 39(9):2038-42.
    [49] Lointier P, Wildrick DM, Boman BM. The effects of steroid hormones on a human colon cancer cell line in vitro. Anticancer Res. 1992, 12(4):1327-30.
    [50] Campbell-Thompson M, Lynch IJ, Bhardwaj B. Expression of estrogen receptor (ER) subtypes and ERbeta isoforms in colon cancer. Cancer Res. 2001, 61(2):632-40.
    [51] Qiu Y, Waters CE, Lewis AE, Langman MJ, Eggo MC. Oestrogen-induced apoptosis in colonocytes expressing oestrogen receptor beta. J Endocrinol. 2002, 174(3):369-77.
    [52] Campbell-Thompson M, Lynch IJ, Bhardwaj B. Expression of estrogen receptor (ER) subtypes and ERbeta isoforms in colon cancer. Cancer Res. 2001, 61(2):632-40.
    [53] Al-Ghnaniem R, Peters J, Foresti R, Heaton N, Pufulete M. Methylation of estrogen receptor alpha and mutL homolog 1 in normal colonic mucosa: association with folate and vitamin B-12 status in subjects with and without colorectal neoplasia. Am J ClinNutr. 2007, 86(4):1064-72.
    [54] Kawakami K, Ruszkiewicz A, Bennett G, et al. DNA hypermethylation in the normal colonic mucosa of patients with colorectal cancer. Br J Cancer. 2006, 94(4):593-8.
    [55] Grodstein F, Martinez ME, Platz EA, et al. Postmenopausal hormone use and risk for colorectal cancer and adenoma. Ann Intern Med. 1998, 128(9):705-12.
    [56] Kawakami K, Ruszkiewicz A, Bennett G, et al. DNA hypermethylation in the normal colonic mucosa of patients with colorectal cancer. Br J Cancer. 2006, 94(4):593-8.
    [57] Safe S. Transcriptional activation of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions. Vitam Horm. 2001, 62:231-52.
    [58] Kang S, Roh JW, Kim JW. Single nucleotide polymorphism: a new risk factor for endometrial cancer. Future Oncol. 2005, 1(3):323-30.
    [59]邱炜,周钢桥,贺福初.基质金属蛋白酶及其基因多态性与肝癌的发生发展.医学分子生物学杂志. 2007, (04):324-327.
    [60] Zhai Y, Zhou G, Deng G, et al. Estrogen receptor alpha polymorphisms associated with susceptibility to hepatocellular carcinoma in hepatitis B virus carriers. Gastroenterology. 2006, 130(7):2001-9.
    [61] Slattery ML, Sweeney C, Murtaugh M, et al. Associations between ERalpha, ERbeta, and AR genotypes and colon and rectal cancer. Cancer Epidemiol Biomarkers Prev. 2005, 14(12):2936-42.
    [62] Huber A, Bentz EK, Schneeberger C, Huber JC, Hefler L, Tempfer C. Ten polymorphisms of estrogen-metabolizing genes and a family history of colon cancer--an association study of multiple gene-gene interactions. J Soc Gynecol Investig. 2005, 12(7):e51-4.
    [63] Kadiyska T, Yakulov T, Kaneva R, et al. Vitamin D and estrogen receptor gene polymorphisms and the risk of colorectal cancer in Bulgaria. Int J Colorectal Dis. 2007, 22(4):395-400.
    [64] Speer G, Cseh K, Winkler G, et al. Oestrogen and vitamin D receptor (VDR) genotypes and the expression of ErbB-2 and EGF receptor in human rectal cancers. Eur J Cancer. 2001, 37(12):1463-8.
    [65] Campbell PT, Edwards L, McLaughlin JR, Green J, Younghusband HB, Woods MO. Cytochrome P450 17A1 and catechol O-methyltransferase polymorphisms and age atLynch syndrome colon cancer onset in Newfoundland. Clin Cancer Res. 2007, 13(13):3783-8.
    [66] Chen GG, Zeng Q, Tse GM. Estrogen and its receptors in cancer. Med Res Rev. 2008, 28(6):954-74.
    [67] Wada-Hiraike O, Imamov O, Hiraike H, et al. Role of estrogen receptor beta in colonic epithelium. Proc Natl Acad Sci U S A. 2006, 103(8):2959-64.
    [68] Cho NL, Javid SH, Carothers AM, Redston M, Bertagnolli MM. Estrogen receptors alpha and beta are inhibitory modifiers of Apc-dependent tumorigenesis in the proximal colon of Min/+ mice. Cancer Res. 2007, 67(5):2366-72.
    [69] Hsu HH, Cheng SF, Wu CC, et al. Apoptotic effects of over-expressed estrogen receptor-beta on LoVo colon cancer cell is mediated by p53 signalings in a ligand-dependent manner. Chin J Physiol. 2006, 49(2):110-6.
    [70] Zheng W, Long J, Gao YT, et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet. 2009, 41(3):324-8.
    [71] Dunning AM, Healey CS, Baynes C, et al. Association of ESR1 gene tagging SNPs with breast cancer risk. Hum Mol Genet. 2009, 18(6):1131-9.
    [72] Wedren S, Lovmar L, Humphreys K, et al. Estrogen receptor alpha gene polymorphism and endometrial cancer risk--a case-control study. BMC Cancer. 2008, 8:322.
    [73] al-Azzawi F, Wahab M. Estrogen and colon cancer: current issues. Climacteric. 2002, 5(1):3-14.
    [74] Newcomb PA, Zheng Y, Chia VM, et al. Estrogen plus progestin use, microsatellite instability, and the risk of colorectal cancer in women. Cancer Res. 2007, 67(15):7534-9.
    [75] Jimbo T, Kawasaki Y, Koyama R, et al. Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nat Cell Biol. 2002, 4(4):323-7.
    [76] Lijavetzky D, Cabezas JA, Ibanez A, Rodriguez V, Martinez-Zapater JM. High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genomics. 2007, 8:424.
    [77] Pindo M, Vezzulli S, Coppola G, et al. SNP high-throughput screening in grapevineusing the SNPlex genotyping system. BMC Plant Biol. 2008, 8:12.
    [78]中国保健协会,中华医学会.中国25省民众健康饮酒状况调查报告,2008.
    [79] Ziegler A, Konig IR, Thompson JR. Biostatistical aspects of genome-wide association studies. Biom J. 2008, 50(1):8-28.
    [80] Kim S, Misra A. SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng. 2007, 9:289-320.
    [81]欧阳建华,柳小春,施启顺,蒋隽,曲湘勇.单核苷酸多态性及其检测方法.江西农业大学学报(自然科学版). 2003, (06):920-923.
    [82]胡永华.遗传流行病学.北京大学医学出版社, 2008年6月第1版.
    [83]严卫丽.复杂疾病全基因组关联研究进展——遗传统计分析.遗传. 2008, (05):543-549.
    [84] Ritchie MD, Hahn LW, Roodi N, et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet. 2001, 69(1):138-47.
    [85] Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics. 2003, 19(3):376-82.
    [86] De Maria N, Manno M, Villa E. Sex hormones and liver cancer. Mol Cell Endocrinol. 2002, 193(1-2):59-63.
    [87] Herynk MH, Fuqua SA. Estrogen receptor mutations in human disease. Endocr Rev. 2004, 25(6):869-98.
    [88] Pineda B, Hermenegildo C, Tarin JJ, Laporta P, Cano A, Garcia-Perez MA. Alleles and haplotypes of the estrogen receptor alpha gene are associated with an increased risk of spontaneous abortion. Fertil Steril. 2009 .
    [89] GENNARI L MD, DE PV. Estrogen receptor gene polymorphisms and the genetics of steoporosis:a HuGE review. Am J Epidemiol. 2005, 16(4):307-320.
    [90] Yamada Y, Kato K, Kameyama T, et al. Genetic factors for obesity. Int J Mol Med. 2006, 18(5):843-51.
    [91]謝玉婷. Estrogen receptor gene polymorphisms and breast cancer risk in the Chinese population. Hongkong university Master Thesis ,2007.
    [92] Kennelly R, Kavanagh DO, Hogan AM, Winter DC. Oestrogen and the colon: potentialmechanisms for cancer prevention. Lancet Oncol. 2008, 9(4):385-91.
    [93] Nakayama Y, Sakamoto H, Satoh K, Yamamoto T. Tamoxifen and gonadal steroids inhibit colon cancer growth in association with inhibition of thymidylate synthase, survivin and telomerase expression through estrogen receptor beta mediated system. Cancer Lett. 2000, 161(1):63-71.
    [94] Weihua Z, Saji S, Makinen S, et al. Estrogen receptor (ER) beta, a modulator of ERalpha in the uterus. Proc Natl Acad Sci U S A. 2000, 97(11):5936-41.
    [95] Matthews J, Wihlen B, Tujague M, Wan J, Strom A, Gustafsson JA. Estrogen receptor (ER) beta modulates ERalpha-mediated transcriptional activation by altering the recruitment of c-Fos and c-Jun to estrogen-responsive promoters. Mol Endocrinol. 2006, 20(3):534-43.
    [96] Weyant MJ, Carothers AM, Mahmoud NN, et al. Reciprocal expression of ERalpha and ERbeta is associated with estrogen-mediated modulation of intestinal tumorigenesis. Cancer Res. 2001, 61(6):2547-51.
    [97] Deng HW, Li J, Li JL, et al. Change of bone mass in postmenopausal Caucasian women with and without hormone replacement therapy is associated with vitamin D receptor and estrogen receptor genotypes. Hum Genet. 1998, 103(5):576-85.
    [98] Nilsson M, Naessen S, Dahlman I, Linden HA, Gustafsson JA, Dahlman-Wright K. Association of estrogen receptor beta gene polymorphisms with bulimic disease in women. Mol Psychiatry. 2004, 9(1):28-34.
    [99] Campbell-Thompson M, Lynch IJ, Bhardwaj B. Expression of estrogen receptor (ER) subtypes and ERbeta isoforms in colon cancer. Cancer Res. 2001, 61(2):632-40.
    [100] Fiorelli G, Picariello L, Martineti V, Tonelli F, Brandi ML. Functional estrogen receptor beta in colon cancer cells. Biochem Biophys Res Commun. 1999, 261(2):521-7.
    [101] Jiang HP, Teng RY, Wang Q, et al. Estrogen receptor alpha variant ERalpha46 mediates growth inhibition and apoptosis of human HT-29 colon adenocarcinoma cells in the presence of 17beta-oestradiol. Chin Med J (Engl). 2008, 121(11):1025-31.
    [102] Kouzmenko AP, Takeyama K, Kawasaki Y, Akiyama T, Kato S. Ligand-dependent interaction between estrogen receptor alpha and adenomatous polyposis coli. Genes Cells. 2008, 13(7):723-30.
    [103] Chan JA, Meyerhardt JA, Chan AT, Giovannucci EL, Colditz GA, Fuchs CS. Hormone replacement therapy and survival after colorectal cancer diagnosis. J Clin Oncol. 2006, 24(36):5680-6.
    [104] Okobia MN, Bunker CH. Molecular epidemiology of breast cancer: a review. Afr J Reprod Health. 2003, 7(3):17-28.
    [105] Fiorelli G, Picariello L, Martineti V, Tonelli F, Brandi ML. Estrogen synthesis in human colon cancer epithelial cells. J Steroid Biochem Mol Biol. 1999, 71(5-6):223-30.
    [106] English MA, Hughes SV, Kane KF, Langman MJ, Stewart PM, Hewison M. Oestrogen inactivation in the colon: analysis of the expression and regulation of 17beta-hydroxysteroid dehydrogenase isozymes in normal colon and colonic cancer. Br J Cancer. 2000, 83(4):550-8.
    [107] Gyory G, Kun M, Laszlo J. [Estrogen effect on the epithelium of an artificial vagina formed from the colon]. Arch Gynakol. 1971, 211(1):318-20.
    [108] Wada-Hiraike O, Imamov O, Hiraike H, et al. Role of estrogen receptor beta in colonic epithelium. Proc Natl Acad Sci U S A. 2006, 103(8):2959-64.
    [109] Setiawan VW, Doherty JA, Shu XO, et al. Two estrogen-related variants in CYP19A1 and endometrial cancer risk: a pooled analysis in the Epidemiology of Endometrial Cancer Consortium. Cancer Epidemiol Biomarkers Prev. 2009, 18(1):242-7.
    [110] Cussenot O, Azzouzi AR, Nicolaiew N, et al. Combination of polymorphisms from genes related to estrogen metabolism and risk of prostate cancers: the hidden face of estrogens. J Clin Oncol. 2007, 25(24):3596-602.
    [111] Wang SS, Morton LM, Bergen AW, et al. Genetic variation in catechol-O-methyltransferase (COMT) and obesity in the prostate, lung, colorectal, and ovarian (PLCO) cancer screening trial. Hum Genet. 2007, 122(1):41-9.
    [112] Hong Y, Li H, Yuan YC, Chen S. Molecular characterization of aromatase. Ann N Y Acad Sci. 2009, 1155:112-20.
    [113] Bugano DD, Conforti-Froes N, Yamaguchi NH, Baracat EC. Genetic polymorphisms, the metabolism of estrogens and breast cancer: a review. Eur J Gynaecol Oncol. 2008, 29(4):313-20.
    [114] Kristensen VN, Andersen TI, Lindblom A, Erikstein B, Magnus P, Borresen-Dale AL.A rare CYP19 (aromatase) variant may increase the risk of breast cancer. Pharmacogenetics. 1998, 8(1):43-8.
    [115] Freedman ND, Ahn J, Hou L, et al. Polymorphisms in estrogen- and androgen-metabolizing genes and the risk of gastric cancer. Carcinogenesis. 2009, 30(1):71-7.
    [116] Miyoshi Y, Ando A, Shiba E, Taguchi T, Tamaki Y, Noguchi S. Involvement of up-regulation of 17beta-hydroxysteroid dehydrogenase type 1 in maintenance of intratumoral high estradiol levels in postmenopausal breast cancers. Int J Cancer. 2001, 94(5):685-9.
    [117] Freedman ND, Ahn J, Hou L, et al. Polymorphisms in estrogen- and androgen-metabolizing genes and the risk of gastric cancer. Carcinogenesis. 2009, 30(1):71-7.
    [118] Campbell PT, Edwards L, McLaughlin JR, Green J, Younghusband HB, Woods MO. Cytochrome P450 17A1 and catechol O-methyltransferase polymorphisms and age at Lynch syndrome colon cancer onset in Newfoundland. Clin Cancer Res. 2007, 13(13):3783-8.
    [119] Lakhani NJ, Sarkar MA, Venitz J, Figg WD. 2-Methoxyestradiol, a promising anticancer agent. Pharmacotherapy. 2003, 23(2):165-72.
    [120] Cotton NJ, Stoddard B, Parson WW. Oxidative inhibition of human soluble catechol-O-methyltransferase. J Biol Chem. 2004, 279(22):23710-8.
    [121] Yim DS, Parkb SK, Yoo KY, et al. Relationship between the Val158Met polymorphism of catechol O-methyl transferase and breast cancer. Pharmacogenetics. 2001, 11(4):279-86.
    [122] Sato R, Suzuki T, Katayose Y, et al. Steroid sulfatase and estrogen sulfotransferase in colon carcinoma: regulators of intratumoral estrogen concentrations and potent prognostic factors. Cancer Res. 2009, 69(3):914-22.
    [1] Laghi L. Genetics of colorectal cancer. Hepatogastroenterology. 2000. 47(32): 315-22.
    [2]刘恩菊,项永兵,金凡等.上海市区恶性肿瘤发病趋势分析(1972~1999年).肿瘤. 2004. (01): 11-15.
    [3] 2001年上海市区恶性肿瘤发病率.肿瘤. 2005. (06): 636.
    [4]郑永兰,周海龙,王正松.重庆市某区2001~2004年恶性肿瘤发病率分析.检验医学与临床. 2006. (04): 148-149.
    [5]项永兵,张薇,高立峰等.恶性肿瘤发病率的时间趋势分析方法.中华流行病学杂志. 2004. (02): 86-90.
    [6]祝伟星,王启俊,李玲,邢秀梅.北京城区1993-1997年恶性肿瘤发病率分析.肿瘤防治杂志. 2003. (08): 785-787.
    [7] Foulkes WD. Inherited susceptibility to common cancers. N Engl J Med. 2008. 359(20): 2143-53.
    [8] Rowley PT. Inherited susceptibility to colorectal cancer. Annu Rev Med. 2005. 56: 539-54.
    [9] de la Chapelle A. Genetic predisposition to colorectal cancer. Nat Rev Cancer. 2004. 4(10): 769-80.
    [10] Menko FH, Griffioen G, Wijnen JT, Tops CM, Fodde R, Vasen HF. [Genetics of colorectal cancer. II. Hereditary background of sporadic and familial colorectal cancer]. Ned Tijdschr Geneeskd. 1999. 143(23): 1207-11.
    [11] Glaser EM. Inherited predisposition to colon cancer. Cancer Nurs. 1998. 21(6): 377-83; quiz 383-4.
    [12] Herrera L, Kakati S, Gibas L, Pietrzak E, Sandberg AA. Gardner syndrome in a man with an interstitial deletion of 5q. Am J Med Genet. 1986. 25(3): 473-6.
    [13] Gordon A. APC mutations. Nature. 1992. 358(6384): 288.
    [14] Merg A, Lynch HT, Lynch JF, Howe JR. Hereditary colon cancer--part I. Curr Probl Surg. 2005. 42(4): 195-256.
    [15] Strate LL, Syngal S. Hereditary colorectal cancer syndromes. Cancer Causes Control. 2005. 16(3): 201-13.
    [16] Takayama T, Miyanishi K, Hayashi T, Sato Y, Niitsu Y. Colorectal cancer: genetics of development and metastasis. J Gastroenterol. 2006. 41(3): 185-92.
    [17] Castellvi-Bel S, Castells A. [Genetic and molecular biology techniques for the analysis of hereditary colorectal cancer.]. Gastroenterol Hepatol. 2005. 28(6): 354-60.
    [18] Tan LP, Ng BK, Balraj P, Poh BH, Lim PK, Peh SC. Gene symbol: APC. Disease: colorectal cancer. Hum Genet. 2005. 118(3-4): 539.
    [19] Iwama T. [Gene mutations in and physiopathology of familial adenomatous polyposis and hereditary non-polyposis colorectal cancer]. Nippon Naika Gakkai Zasshi. 2007. 96(2): 207-12.
    [20] Cabrera CM, Lopez-Nevot MA. APC and chromosome instability in colorectal cancer.Rev Esp Enferm Dig. 2005. 97(10): 738-43.
    [21] Lakatos PL, Lakatos L. [Current concepts in the genetics of hereditary and sporadic colorectal cancer and the role of genetics in patient management. Hereditary colorectal cancers]. Orv Hetil. 2006. 147(8): 363-8.
    [22] Ricciardiello L, Boland CR. Lynch syndrome (hereditary non-polyposis colorectal cancer): current concepts and approaches to management. Curr Gastroenterol Rep. 2005. 7(5): 412-20.
    [23] Coura RS, Ashton-Prolla P, Prolla JC. Hereditary non-polipomatous colorectal cancer: hereditary predisposition, diagnosis and prevention. Arq Gastroenterol. 2005. 42(2): 99-106.
    [24] Bouzourene H, Monnerat C. [Hereditary non polyposis colon cancer--basic principle and ethical considerations]. Rev Med Suisse. 2005. 1(43): 2791-7.
    [25] Abdel-Rahman WM, Mecklin JP, Peltomaki P. The genetics of HNPCC: application to diagnosis and screening. Crit Rev Oncol Hematol. 2006. 58(3): 208-20.
    [26] Broaddus RR, Lu KH. Women with HNPCC: a target population for the chemoprevention of gynecologic cancers. Front Biosci. 2006. 11: 2077-80.
    [27] Durno CA, Gallinger S. Genetic predisposition to colorectal cancer: new pieces in the pediatric puzzle. J Pediatr Gastroenterol Nutr. 2006. 43(1): 5-15.
    [28] Fostira F, Thodi G, Konstantopoulou I, Sandaltzopoulos R, Yannoukakos D. Hereditary cancer syndromes. J BUON. 2007. 12 Suppl 1: S13-22.
    [29] Rustgi AK. The genetics of hereditary colon cancer. Genes Dev. 2007. 21(20): 2525-38.
    [30] Lynch HT, Lynch JF, Lynch PM, Attard T. Hereditary colorectal cancer syndromes: molecular genetics, genetic counseling, diagnosis and management. Fam Cancer. 2008. 7(1): 27-39.
    [31] Lecuru F, Ansquer Y, Bats AS, Olschwang S, Laurent-Puig P, Eisinger F. [Endometrial cancer in HNPCC syndrome]. J Gynecol Obstet Biol Reprod (Paris). 2008. 37(6): 547-53.
    [32] Al-Sukhni W, Aronson M, Gallinger S. Hereditary colorectal cancer syndromes: familial adenomatous polyposis and lynch syndrome. Surg Clin North Am. 2008. 88(4): 819-44, vii.
    [33] Abdel-Rahman WM, Peltomaki P. Lynch syndrome and related familial colorectal cancers. Crit Rev Oncog. 2008. 14(1): 1-22; discussion 23-31.
    [34] Roncari B, Pedroni M, Maffei S, et al. Frequency of constitutional MSH6 mutations in a consecutive series of families with clinical suspicion of HNPCC. Clin Genet. 2007. 72(3): 230-7.
    [35] Ramsoekh D, Wagner A, van LME, et al. A high incidence of MSH6 mutations in Amsterdam criteria II-negative families tested in a diagnostic setting. Gut. 2008. 57(11): 1539-44.
    [36] Kruger S, Kinzel M, Walldorf C, et al. Homozygous PMS2 germline mutations in two families with early-onset haematological malignancy, brain tumours, HNPCC-associated tumours, and signs of neurofibromatosis type 1. Eur J Hum Genet. 2008. 16(1): 62-72.
    [37] Niessen RC, Kleibeuker JH, Westers H, et al. PMS2 involvement in patients suspected of Lynch syndrome. Genes Chromosomes Cancer. 2009. 48(4): 322-9.
    [38] Kim JC, Roh SA, Yoon YS, Kim HC, Park IJ. MLH3 and EXO1 alterations in familial colorectal cancer patients not fulfilling Amsterdam criteria. Cancer Genet Cytogenet. 2007. 176(2): 172-4.
    [39] Boardman LA, Thibodeau SN, Schaid DJ, et al. Increased risk for cancer in patients with the Peutz-Jeghers syndrome. Ann Intern Med. 1998. 128(11): 896-9.
    [40] Boardman LA, Couch FJ, Burgart LJ, et al. Genetic heterogeneity in Peutz-Jeghers syndrome. Hum Mutat. 2000. 16(1): 23-30.
    [41] Hearle N, Schumacher V, Menko FH, et al. Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res. 2006. 12(10): 3209-15.
    [42] Amos CI, Bali D, Thiel TJ, et al. Fine mapping of a genetic locus for Peutz-Jeghers syndrome on chromosome 19p. Cancer Res. 1997. 57(17): 3653-6.
    [43] Amos CI, Keitheri-Cheteri MB, Sabripour M, et al. Genotype-phenotype correlations in Peutz-Jeghers syndrome. J Med Genet. 2004. 41(5): 327-33.
    [44] Nakagawa H, Koyama K, Miyoshi Y, et al. Nine novel germline mutations of STK11 in ten families with Peutz-Jeghers syndrome. Hum Genet. 1998. 103(2): 168-72.
    [45] Sanchez-Cespedes M. A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene. 2007. 26(57): 7825-32.
    [46] Fan D, Ma C, Zhang H. The molecular mechanisms that underlie the tumor suppressor function of LKB1. Acta Biochim Biophys Sin (Shanghai). 2009. 41(2): 97-107.
    [47] Chow E, Macrae F. A review of juvenile polyposis syndrome. J Gastroenterol Hepatol. 2005. 20(11): 1634-40.
    [48] Bevan S, Woodford-Richens K, Rozen P, et al. Screening SMAD1, SMAD2, SMAD3, and SMAD5 for germline mutations in juvenile polyposis syndrome. Gut. 1999. 45(3): 406-8.
    [49] Howe JR, Roth S, Ringold JC, et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science. 1998. 280(5366): 1086-8.
    [50] Castellvi-Bel S, Balaguer F, Castells A. [MYH and colorectal cancer. A significant advance?]. Gastroenterol Hepatol. 2006. 29(7): 409-13.
    [51] Kastrinos F, Syngal S. Recently identified colon cancer predispositions: MYH and MSH6 mutations. Semin Oncol. 2007. 34(5): 418-24.
    [52] Enholm S, Hienonen T, Suomalainen A, et al. Proportion and phenotype of MYH-associated colorectal neoplasia in a population-based series of Finnish colorectal cancer patients. Am J Pathol. 2003. 163(3): 827-32.
    [53] Jenkins MA, Croitoru ME, Monga N, et al. Risk of colorectal cancer in monoallelic and biallelic carriers of MYH mutations: a population-based case-family study. Cancer Epidemiol Biomarkers Prev. 2006. 15(2): 312-4.
    [54] Lynch HT, de la Chapelle A. Genetic susceptibility to non-polyposis colorectal cancer. J Med Genet. 1999. 36(11): 801-18.
    [55] de Jong MM, Nolte IM, te MGJ, et al. Low-penetrance genes and their involvement in colorectal cancer susceptibility. Cancer Epidemiol Biomarkers Prev. 2002. 11(11): 1332-52.
    [56] Fijneman RJ. Genetic predisposition to sporadic cancer: how to handle major effects of minor genes. Cell Oncol. 2005. 27(5-6): 281-92.
    [57] Saebo M, Skjelbred CF, Brekke LK, et al. CYP1A2 164 A-->C polymorphism, cigarette smoking, consumption of well-done red meat and risk of developing colorectal adenomas and carcinomas. Anticancer Res. 2008. 28(4C): 2289-95.
    [58] Hagiwara T, Kono S, Yin G, et al. Genetic polymorphism in cytochrome P450 7A1 and risk of colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Res. 2005.65(7): 2979-82.
    [59] Yu WP, Chen K, Ma XY, et al. [Genetic polymorphism in cytochrome P450 2E1, salted food and colorectal cancer susceptibility: a case-control study]. Zhonghua Yu Fang Yi Xue Za Zhi. 2004. 38(3): 162-6.
    [60] Gao CM, Takezaki T, Wu JZ, et al. CYP2E1 Rsa I polymorphism impacts on risk of colorectal cancer association with smoking and alcohol drinking. World J Gastroenterol. 2007. 13(43): 5725-30.
    [61] Zhu Y, Deng C, Zhang Y, Zhou X, He X. [The relationship between GSTM1, GSTT1 gene polymorphisms and susceptibility to sporadic colorectal adenocarcinoma]. Zhonghua Nei Ke Za Zhi. 2002. 41(8): 538-40.
    [62] Sorensen M, Autrup H, Olsen A, Tjonneland A, Overvad K, Raaschou-Nielsen O. Prospective study of NAT1 and NAT2 polymorphisms, tobacco smoking and meat consumption and risk of colorectal cancer. Cancer Lett. 2008. 266(2): 186-93.
    [63] Hubner RA, Houlston RS. MTHFR C677T and colorectal cancer risk: A meta-analysis of 25 populations. Int J Cancer. 2007. 120(5): 1027-35.
    [64] Chang SC, Lin PC, Lin JK, Yang SH, Wang HS, Li AF. Role of MTHFR polymorphisms and folate levels in different phenotypes of sporadic colorectal cancers. Int J Colorectal Dis. 2007. 22(5): 483-9.
    [65] Derwinger K, Wettergren Y, Odin E, Carlsson G, Gustavsson B. A study of the MTHFR gene polymorphism C677T in colorectal cancer. Clin Colorectal Cancer. 2009. 8(1): 43-8.
    [66] Mokarram P, Naghibalhossaini F, Saberi FM, et al. Methylenetetrahydrofolate reductase C677T genotype affects promoter methylation of tumor-specific genes in sporadic colorectal cancer through an interaction with folate/vitamin B12 status. World J Gastroenterol. 2008. 14(23): 3662-71.
    [67] Yamaji T, Iwasaki M, Sasazuki S, Sakamoto H, Yoshida T, Tsugane S. Methionine synthase A2756G polymorphism interacts with alcohol and folate intake to influence the risk of colorectal adenoma. Cancer Epidemiol Biomarkers Prev. 2009. 18(1): 267-74.
    [68] Chen K, Song L, Jin MJ, Fan CH, Jiang QT, Yu WP. [Association between genetic polymorphisms in folate metabolic enzyme genes and colorectal cancer: a nestedcase-control study]. Zhonghua Zhong Liu Za Zhi. 2006. 28(6): 429-32.
    [69] Elander N, Soderkvist P, Fransen K. Matrix metalloproteinase (MMP) -1, -2, -3 and -9 promoter polymorphisms in colorectal cancer. Anticancer Res. 2006. 26(1B): 791-5.
    [70] Decock J, Paridaens R, Ye S. Genetic polymorphisms of matrix metalloproteinases in lung, breast and colorectal cancer. Clin Genet. 2008. 73(3): 197-211.
    [71] Le ML, Seifried A, Lum-Jones A, Donlon T, Wilkens LR. Association of the cyclin D1 A870G polymorphism with advanced colorectal cancer. JAMA. 2003. 290(21): 2843-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700