潮汕人群mtDNA遗传多态性及与其他人群亲缘关系的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:线粒体DNA(mitochondrial DNA,mtDNA)具有母系遗传、缺乏重组、突变率高等遗传特性,因此容易形成人群特异的遗传标记,是研究人类系统进化、人群迁移历史的一个很有用的遗传标记。由于线粒体DNA遵从严格的母系遗传方式,避免了混血影响,因而通过对线粒体差异的分析可以忠实再现人群的母系进化史。潮汕僻处我国的东南隅,广东省的最东端,与福建省毗邻,其地域包括今天的汕头、潮州、揭阳三个地级市。对应的潮汕人指居住于该区域并有自己独特方言和生活习惯的汉族民系。据历史记载,公元前214年之前,潮汕地区的主要先民是闽越族,秦汉之后,随着中原汉族后裔南迁并与当地原住民融合,潮汕人遂被逐渐同化为汉族。课题组前期曾采用HLA(Human leucocyte antigen)以及常染色体STR(Short tandem repeat)遗传标记在基因水平上对潮汕人群的人类学起源进行过研究。两种遗传标记的研究结果都显示潮汕汉族与南方汉族聚类并与闽南汉族亲缘关系最近,而与北方汉族的亲缘关系较远。STR研究的结果还显示在潮汕人群基因库中中原汉族的成分占主体,而南方原住民的成分较少。
     目的:从母系遗传的角度研究潮汕人群与中国其他人群之间的亲缘关系,进一步探讨潮汕人群母系基因库的遗传成分。
     方法:对潮汕汉族人群120例无关个体进行高变区(hypervariable segment 1 and hypervariable segment 2,HVS-1 and HVS-2)序列分析和COⅡ/tRNALys区段的9bp缺失检测,计算各种单倍群的频率。进一步收集其他人群的线粒体DNA第一高变区序列和单倍群频率数据用于人群比较。用聚类分析、主成分分析研究人群之间的亲缘关系;用融合分析计算北方汉族和南方原住民人群对潮汕人群母系基因库的贡献率大小。
     结果:潮汕人群的单倍型多样度(h)在1区和2区分别为0.992和0.942,核苷酸多样度(π)在1区和2区分别为0.02153和0.01049,9bp缺失频率为18.33%。在潮汕人群中,南方原住民的主要单倍群比北方汉族的主要单倍群所占的比例稍高一些。聚类分析和主成分分析的结果都显示潮汕人群与其他南方汉族人群聚类。在潮汕人群的母系基因库中南方原住民和北方汉族的成分基本上各占一半。此外,聚类分析和主成分分析的结果都显示中国人群南北分界明显。
     结论:线粒体DNA高变区在潮汕汉族人群中具有高度多态性;潮汕人群具有南方汉族人群的遗传特征;潮汕人群的母系遗传成分源于北方汉族和南方原住民;中国南北人群之间存在遗传差异。
Background: Mitochondrial DNA (mtDNA) harbors a series of characteristics, such as matrilineal inheritance, absence of recombination, rapid rate of mutation, and high level of population-specific polymorphisms, which make it a very useful genetic marker for studying the human evolution and migration history of human ethnic groups. The matrilineal mode of inheritance enables researchers to trace related lineages back through time, highlighting the maternal ancestry of a population, without the confounding effects of biparental inheritance and recombination. Chaoshan, the eastern part of Guangdong Province, is a littoral located at the southeast of the Mainland China with its east abutting on Fujian. The whole region covers the areas of Shantou, Chaozhou, and Jieyang. People residing in this area speak in a unique dialect and have distinct lifestyle and are defined as Chaoshanese. According to history records, before 214 BC the main aboriginal living in the Chaoshan littoral was Minyue population. After the Qin and Han Dynasties, Han inhabitants of north-central China migrated into the Chaoshan area, gradually assimilated the preexisting aboriginals and eventually became the major population in the Chaoshan area. Our previous genetic study of Chaoshan population based on the Human leucocyte antigen (HLA) and autosomal Short tandem repeat (STR) markers revealed that Chaoshanese, while clustering in general with the southern China-related Han Chinese, had the highest affinity to the Mainland Minnanese, but separated distinctively from the northern Hans. Our study based on autosomal STR also showed that the gene pool of Chaoshan population consisted of a large majority of Central plain Han and a little Southern native origin.
     Objective: To investigate the genetic relationship between Chaoshan population and other Chinese populations from the perspective of maternal inheritance, and to analyze the genetic composition of Chaoshan population’s matrilineal gene pool.
     Method: Sequences of mtDNA hypervariable segment (HVS-1 and HVS-2) and the COⅡ/tRNALys intergenic deletion were investigated , and the mtDNA haplogroup frequencies were calculated in 120 unrelated Chaoshan individuals. Moreover, the mtDNA hypervariable segment region 1 sequence and haplogroup frequency data of other Chinese populations were collected and used for population comparison. Population relationships were investigated by phylogenetic analysis and principal component analysis. In addition, the admixture analysis was performed to estimate relative contribution of northern Hans and southern natives to Chaoshan population.
     Result: For Chaoshan population:haplotype diversity (h) was 0.992 for HVS-1 and 0.942 for HVS-2;nucleotide diversity (π) was 0.02153 for HVS-1 and 0.01049 for HVS-2;the 9-bp deletion frequency was 18.33%;the overall frequency of southern native dominant haplogroups was slightly higher than the overall frequency of northern Han dominant haplogroups. The results of phylogenetic analysis and principal component analysis revealed that
     Chaoshan population clustered with other southern Hans. In matrilineal gene pool of Chaoshan population, genetic composition of southern natives and northern Hans took up about 50% respectively. In addition, the results of phylogenetic analysis and principal component analysis also suggested that the distinction between north and south population in China was noticeable Conclusion: Mitochondrial DNA hypervariable segments in Chaoshan population had a high level of polymorphism. Chaoshan population had the genetic characteristics of southern Han and the matrilineal genetic composition of Chaoshan population consisted of both northern Han and southern native origin. There was significant genetic difference between Southern and Northern populations in China.
引文
[1] Nass MM, Nass S. Intramitochondrial fibers with DNA characteristics. J Cell Biol, 1963, 19:593-611.
    [2] Borst P. Mitochondrial nucleic acids. Ann Rev Biochem, 1972, 41:333-376.
    [3] Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG. Sequence and organization of the human mitochondrial genome. Nature, 1981, 290(5806):457-465.
    [4] Greenberg BD, Newbold JE, Sugino A. Intraspecific nucleotide sequence vriability surrounding the origin of replication in human mitochondrial DNA. Gene, 1983, 21(1-2):33-49.
    [5] Hutchison CA 3rd, Newbold JE, Potter SS, Edgell MH. Maternal in heritance of mammalian mitochondrial DNA. Nature, 1974, 251(5475):536-538.
    [6] Bogenhagen D, Clayton DA. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J Biol Chem, 1974, 249(24):7991-7995.
    [7] Wilson MR, Stoneking M, Holland MM, Dizinno JA, Budowle B. Guideliness for the use of mitochondrial DNA sequencing in forensic science. Crime Lab Digest, 1993, 20(4):68-77.
    [8] Cann RL, Wilson AC. Length mutation in human mitochondrial DNA. Genetics, 1983, 104(4):699-711.
    [9] Horai S, Murayama K, Hayasaka K, Matsubayashi S, Hattori Y, Fucharoen G, Harihara S, Park KS, Omoto K, Pan IH. MtDNA polymorphism in East Asian population, with special, reference to the peopling of Japan. Am J Hum Genet, 1996, 59(3):579-590.
    [10]Vigilant L, Pennington R, Harpending H, Kocher TD, Wilson AC. Mitochondrial DNA sequences in single hairs from a southern Africanpopulation. Proc Natl Acad Sci USA, 1989, 86(23):9350-9354.
    [11]Alves-Silva J, Guimar?es PE, Rocha J, Pena SD, Prado VF. Identification in Portugal and Brazil of a mtDNA lineage containing a 9-bp triplication of the intergenic COII/tRNALys region. Hum Hered, 1999, 49(1):56-58.
    [12]Cann RL, Stoneking M, Wilson AC. Mitochondrial DNA and human evolution. Nature, 1987, 325(6099):31-36.
    [13]Wallace DC, Brown MD, Lott MT. Mitochondrial DNA variation in human evolution and disease. Gene, 1999, 238(1):211-230.
    [14]Pakendorf B, Stoneking M. Mitochondrial DNA and human evolution. Annu Rev Genomics Hum Genet, 2005, 6:165-183.
    [15]Torroni A, Achilli A, Macaulay V, Richards M, Bandelt HJ. Harvesting the fruit of the human mtDNA tree. Trends Genet, 2006, 22(6):339-345.
    [16]Vigilant L, Stoneking M, Harpending H, Hawkes K, Wilson AC. African populations and the evolution of human mitochondrial DNA. Science, 1991, 253(5027):1503-1507.
    [17]Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, P??bo S. Neandertal DNA Sequences and the Origin of Modern Humans. Cell, 1997, 90(1):19-30.
    [18]Ingman M, Kaessmann H, P??bo S, Gyllensten U. Mitochondrial genome variation and the origin of modern humans. Nature, 2000, 408(6813):708-713.
    [19]Yao YG, Kong QP, Bandelt HJ, Kivisild T, Zhan, YP. Phylogeographic differentiation of mitochondrial DNA in Han Chinese. Am J Hum Genet, 2002, 70(3):635-651.
    [20]文波. Y染色体、mtDNA多态性与东亚人群的遗传结构.复旦大学博士学位论文, 2004, 1-101.
    [21]Yao YG, Lu XM, Luo HR, Li WH, Zhang YP. Gene admixture in the silk road region of China: evidence from mtDNA and melanocortin 1 receptor polymorphism. Genes Genet Syst, 2000, 75(4):173-178.
    [22]Kong QP, Yao YG, Sun C, Bandelt HJ, Zhu CL, Zhang YP. Phylogeny of eastAsian mitochondrial DNA lineages inferred from complete sequences. Am J Hum Genet, 2003, 73(3):671-676.
    [23]Kong QP, Bandelt HJ, Sun C, Yao YG, Salas A, Achilli A, Wang CY, Zhong L, Zhu CL et al. Updating the East Asian mtDNA phylogeny: a prerequisite for the identification of pathogenic mutations. Hum Mol Genet, 2006, 15(13):2076-2086.
    [24]Wen B, Li H, Lu D, Song X, Zhang F, He Y, Li F, Gao Y, Mao X, Zhang L, Qian J, Tan J, Jin J, Huang W, Deka R, Su B, Chakraborty R, Jin L. Genetic evidence supports demic diffusion of Han culture. Nature, 2004, 431(7006):302-305.
    [25]杜松年.潮汕大文化.北京:中国科学技术出版社, 1994, 1-106.
    [26]黄挺.潮汕文化溯源.香港:中流出版社有限公司,广洲:广东高等教育出版社, 1997, 1-280.
    [27]陈训先.潮汕先民探源.广州:广东人民出版社, 2006, 1-91.
    [28]陈泽泓.潮汕文化概说.广州:广东人民出版社, 2001, 1-689.
    [29]Hu SP, Luan JA, Li B, Chen JX, Cai KL, Huang LQ, Xu XY. Genetic link between Chaoshan and other Chinese Han populations: evidence from HLA-A and HLA-B allele frequency distribution. Am J Phys Anthropol, 2007, 132(1):140-150.
    [30]许丽娜,冯国英,周广彪,胡盛平.常染色体STR的证据支持潮汕人的中原汉族起源.现代人类学通讯, 2008, 2:11-16.
    [31]李辉,宋秀峰,金力.人类谱系的基因解读.二十一世纪(香港), 2002, 71(6):98-108.
    [32]李辉.东亚人的遗传系统初识.国立国父纪念馆馆刊(台北), 2002, 10:123-136.
    [33]Wen B, Li H, Gao S, Mao X, Gao Y, Li F, Zhang F, He Y, Dong Y, Zhang Y, Huang W, Jin J, Xiao C, Lu D, Chakraborty R, Su B, Deka R, Jin L. Genetic structure of Hmong-Mien speaking populations in East Asia as revealed by mtDNA lineages. Mo Biol Evol, 2005, 22(3):725-734.
    [34]Yao YG, Kong QP, Man XY, Bandelt HJ, Zhang YP. Reconstructing theevolutionary history of China: a caveat about inferences drawn from ancient DNA. Mol Biol Evol, 2003, 20(2):214-219.
    [35]Kivisild T, Tolk HV, Parik J, Wang Y, Papiha SS, Bandelt HJ, Villems R. The emerging limbs and twigs of the East Asian mtDNA tree. Mol Biol Evol, 2002, 19(10):1737-1751.
    [36]Wen B, Xie X, Gao S, Li H, Shi H, Song X, Qian T, Xiao C, Jin J, Su B, Lu D, Chakraborty R, Jin L. Analyses of Genetic Structure of Tibeto-Burman Populations Reveals Sex-Biased Admixture in Southern Tibeto-Burmans. Am J Hum Genet, 2004, 74(5):856-865.
    [37]Yao YG, Nie L, Harpending H, Fu YX, Yuan ZG, Zhang YP. Genetic Relationship of Chinese Ethnic Populations Revealed by mtDNA Sequence Diversity. Am J Phys Anthropol, 2002, 118(1):63-76.
    [38]Yao YG, Zhang YP. Phylogeographic analysis of mtDNA variation in four ethnic populations from Yunnan Province: new data and a reappraisal. J Hum Genet, 2002, 47(6):311-318.
    [39]Kong QP, Yao YG, Liu M, Shen SP, Chen C, Zhu CL, Palanichamy MG, Zhang YP. Mitochondrial DNA sequence polymorphisms of five ethnic populations from northern China. Hum Genet, 2003, 113(5):391-405.
    [40]Yao YG, Kong QP, Wang CY, Zhu CL, Zhang YP. Different Matrilineal Contributions to Genetic Structure of Ethnic Groups in the Silk Road Region in China. Mol Biol Evol, 2004, 21(12):2265-2280.
    [41]Li H, Cai X, Winograd-Cort ER, Wen B, Cheng X, Qin Z, Liu W, Liu Y, Pan S, Qian J, Tan CC, Jin L. Mitochondrial DNA diversity and population differentiation in southern East Asia. Am J Phys Anthropol, 2007, 134(4):481-488.
    [42]Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet, 1999, 23(2):147.
    [43]Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting,position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22(22):4673-4680.
    [44]Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 2003, 19(18):2496-2497.
    [45]Kumar S, Tamura K, Nei M. MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers. Comput Appl Biosci, 1994, 10(2):189-191.
    [46]Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4(4):406-425.
    [47]Wang J. Maximum-likelihood estimation of admixture proportions from genetic data. Genetics, 2003, 164(2):747-765.
    [48]Roberts DF, Hiorns RW. Methods of analysis of the genetic composition of a hybrid population. Hum Biol, 1965, 37:38-43.
    [49]Yao YG, Watkins WS, Zhang YP. Evolutionary history of the mtDNA 9-bp deletion in Chinese populations and its relevance to the peopling of east and southeast Asian. Hum Genet, 2000, 107(5):504-512.
    [50]李辉,潘悟云,文波,杨宁宁,金建中,金力,卢大儒.客家人起源的遗传学分析.遗传学报, 2003, 30(9):873-880.
    [51]范玉春.论中国古代军事移民对移居地的影响.广西师范大学学报(哲学社会科学版), 2000, 36(1):81-84.
    [52]郭启熹.固始与闽西人关系溯源.闽西职业技术学院学报, 2004, 1:16-20.
    [53]Zhao TM, Lee TD. Gm and Km allotypes in 74 Chinese populations: a hypothesis of the origin of the Chinese nation. Hum Genet, 1989, 83(2):101-110.
    [54]Du RF, Xiao CJ, Cavalli-Sforza LL. Genetic distances between Chinese populations calculated on gene frequencies of 38 loci, Science in China (Series C), 1997, 40(6): 613.
    [55]Chu JY, Huang W, Kuang SQ, Wang JM, Xu JJ, Chu ZT, Yang ZQ, Lin KQ, Li P, Wu M, Geng ZC, Tan CC, Du RF, Jin L. Genetic relationship of populations in China. Proc Natl Acad Sci USA, 1998, 95(20):11763-11768.
    [56]Xiao CJ, Du RF, Cavalli-Sforza LL. Principal component analysis of gene frequencies of Chinese populations. Science in China (Series C), 2000, 43(5), 472-481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700