空间电离层高层大气遥感天底—临边成像光谱仪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类对大气遥感研究的深入,空间电离层高层大气遥感正在成为地球空间科学所关注的热点,掌握其粒子光谱辐射规律,进而建立分布模型,实现高层大气空间环境天气预报,对人类活动具有重要意义。用于该方面研究的天底-临边成像光谱仪是一种新型的空间光学遥感仪器。本文根据电离层高层大气探测的空间应用需求,提出了一套应用方案,并设计研制了原理验证系统。方案以国外相关先进仪器为基础,针对所采用的天底观测和临边观测结合的方式,设计了两种结构紧凑的光谱仪系统,光谱覆盖范围为130nm~180nm。两种系统均由前置光学系统和光谱成像系统构成,前置光学系统一致,为离轴抛物镜;光谱成像系统则分别为改进式Czerny-Turner系统和单超环面光栅系统。前者的色散元件采用平面光栅,为满足成像光谱仪宽波段成像的要求,深入分析了传统Czerny-Turner光谱成像系统的像差形成机理,进行了相应的优化设计,获得了改进型结构的宽波段成像条件,并得到了良好的设计结果。该方案易于加工和装调,且避免了受复杂光栅制造技术的制约;后者的色散元件采用超环面光栅,在设计中以光程函数为基础,对单光栅系统进行了详细的像差分析,得到该系统的宽波段像差校正条件,并在引入遗传算法的基础之上,对这些校正条件进行了最优值计算,从而设计出符合要求的成像光谱仪结构。此种方案光学元件的数量最少,系统能量传输率最高。
     由于超环面光栅制作复杂且昂贵,为便于加工、装调和试验验证,本文的原理验证系统方案采用了离轴抛物镜与改进型Czerny-Turner光谱成像系统相匹配的光学结构。光谱辐射传输特性研究、光学系统传输效率和信噪比分析结果表明:该方案满足远紫外波段探测需求。本文研制了成像光谱仪原理验证系统,配合相应探测器进行了辐射定标和相关实验验证,并结合其波段特点,对系统展开了辐射定标和性能评价:实验获得了原理系统的光谱辐照度响应度,其定标合成不确定度为7.7%,测得空间分辨率为0.7mrad,光谱分辨率为1.76nm(161nm处)。该远紫外光谱仪原理验证系统性能满足设计要求,验证了方案的可行性,填补了目前国内的研究空白,并为今后在气象卫星等空间项目上的推广应用奠定了技术基础。
With the development of the remote sensing of atmosphere, the study of upperatmosphere (ionosphere) remote sensing is becoming the priority research areas inthe earth and space science. It is significant for human beings activities to study thespectral radiance of the particles, build the model of the distribution in upperatmosphere, and realize the space environment weather forecasting. The nadir-limbimaging spectrometer for the observation is a new kind of space-based opticalremote sensing instrument. The present article introduced a program in applicationtowards the observation based on requirements of the ionosphere and upperatmosphere observation. We designed and fabricated the principle verificationsystem of the imaging spectrometer. The observation method that is combined ofnadir observation and limb observation is adopted. The spectral range covers130nmto180nm. We designed two compact optical structures for the spectrometer based onpresent foreign advanced programs of instruments. These optical systems are bothcomposed of the telescope with an off-axis parabolic mirror and the spectral imagingsystem. The spectral imaging system in the first design is an advancedCzerny-Turner system and the other is a single toroidal grating system. In the firstdesign, the dispersion element is a plane grating. On the analysis of aberrations inthe classic Czerny-Turner system, perfect imaging conditions in broadband wereobtained. The performances of the design showed that aberrations in the broadbandwere all corrected and the design met the requests of the spectrometer excellently.The system doesn’t need to be applied complicate grating technique of manufacture, and is ease in fabrication and alignment. In the second design, the toroidal grating isadopted as the dispersion element. We obtained the aberrations corrected conditionsin details based on the analysis of the optical path functions and aberrations.According to these conditions, we optimized the toroidal grating by the geneticalgorithm and obtained the optimum parameters of the optical structure. The systemhas the fewest mirrors and the highest transmission.
     Because the toroidal grating is complicate and expensive in the introduction, theprinciple verification system of the spectrometer adopts the off-axis parabolic mirrorwith the Czerny-Turner system in convenient of fabrication, alignment andexperiment. The spectral transmission characteristics were studied, and thetransmission efficiency and the signal-to-noise ratio of the optical system wereanalyzed. The results indicated that the system satisfied the requests of thefar-ultraviolet waveband observation. The principle verification system weredesigned and fabricated with the corresponding detector integrated. We built avacuum experiment system to do performance evaluation and calibration of it. Theirradiance responsivity of the system was calibrated and the composite uncertainty is7.7%. The space resolution is0.7mrad, the spectral resolution is1.76nm (at161nm).The development of the far-ultraviolet spectrometer principle verification systemsatisfied the request of the design and validated the feasibility of the program. It fillsup blank of the corresponding research and provides foundations for the applicationof the spectrometer in the space-based project on the weather satellite in our country.
引文
[1]吕达仁,陈泽宇,卞建春等.平流层-对流层相互作用的多尺度过程特征及其与天气气候关系——研究进展[J],大气科学,2008,32(4):782-793.
    [2]都亨.空间环境科学进展[J].空间环境科学进展,2000,20(增刊):7-14.
    [3] Klecker. Energetic Partices Envienmentin Near-Earth Orbit[J]. Adv. Space Res,1996,17(2):37-50.
    [4] Meier R R. Ultraviolet spectroscopy and remote sensing of the upperatmosphere[J]. Space Sci. Rev,1990,91:1-185.
    [5] Flittner David E, Hilsenrath Ernest, Janz Scott J., et al. Retrievals from the LimbOzone Retrieval Experiment on STS107[J]. SPIE,2004,5542:215-226.
    [6]李志刚,程宗颐,冯初刚等.电离层预报模型研究[J].地球物理学报,2007,50(2):327-337.
    [7]乐新安.中低纬电离层模拟与数据同化研究[D]:[博士毕业论文],中国科学院地质与地球物理研究所,2008.
    [8]叶宗海,都亨,龚建村.中国的空间环境研究与空间环境预报[J],地球物理学进展,1999,14(增刊):20-29.
    [9]熊浩,李青,成杰.电离层暴的活动形态、机制和预报[J],地球物理学进展,1994,9(增刊):19-30.
    [10] Alicia L. C. G., Walter D. G. and Severino L. G. D etal. Periodic Variation in theGeomagnetic Activity: A Study Based on the Ap Index[J],Journal ofGeophysical Research,1993,98:9215-9231.
    [11]赵国泽,陈小斌,蔡军涛.电磁卫星和地震预测[J].地球物理学进展,2007,22(3):667-673.
    [12]田剑华,范全福.高层大气及其预报研究对航天飞行的重要性[J].环模技术,1999,58(1):39-46.
    [13]黄建国,陈东.不同接地方式的卫星介质深层充电研究[J],物理学报,2004,53(5):1611-1616.
    [14]龚建村,都亨.美国空间探测研究中的军事应用目的初探[C],2000年航天高技术学术研讨会论文集,2000.15-20.
    [15]郑玉权,王慧,王一凡.星载高光谱成像仪光学系统的选择与设计[J].光学精密工程,2009,17(11):2629-2637.
    [16]禹秉熙.高分辨率成像光谱仪(C-HRIS)研究[J].光机电信息,2000,17(4):1-5.
    [17] Paxton L. J., C.-I. Meng, G. H. Fountain, et al. Special Sensor UV SpectrographicImager(SSUSI): An instrument description, Instrumentation for Planetary andTerrestrial Atmospheric Remote Sensing[J]. SPIE,1992,1745:2-16.
    [18] L. J. Paxton, A. B. Christensen, D. C. Humm and et al. Global ultraviolet imager(GUVI): measuring composition and energy inputs for the NASAThermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED)mission[J]. SPIE,1999,3756:265-275.
    [19] Rolf Mager, Wolfgang Fricke, John Burrows,et al. SCIAMACHY: a newgeneration of hyperspectral remote sensing instrument[J]. SPIE,1997,3106:84-94.
    [20]王淑荣,李福田,曲艺.空间紫外光学遥感技术与发展趋势[J].中国光学与应用光学,2009,2(1):17-22.
    [21] Park H, Krueger A, Hilaenrath E, et al. Radiometric calibration of secondgeneration Total Ozone Mapping Spectrometer (TOMS)[J]. SPIE,1996,2820:162-173.
    [22] Bevilacqua R M, Shettle E P, Hornstein J S, et al. The Polar Ozone and AerosolMeasurement Experiment (POAM)[J]. SPIE,1994,2266:374-382.
    [23] Didier R.,Robert L.Stratospheric and upper tropospheric aerosol retrieval fromlimb scatter signals[J]. SPIE,2007,6745(09):1-12.
    [24] Moos H W, et al. Overview of the far ultraviolet spectroscopic explorermission[J]. Astrophys. J,2000,538:11-13.
    [25] Robert P. McCoy. Space Weather Comes of Age-New Sensors and Models forIonospheric Specification and Forecast[J]. SPIE,2004,5548:341-347.
    [26] F.W.Schenkel, B.S.Ogorzalek, J.C.Larrabee et al. Ultraviolet daytime auroral andionospheric imaging from space[J]. Appl. Opt,1985,24(20):3395-3405.
    [27] Denis A. Elliott, Thomas S. Pagano, H. H. Aumann. The impact of the AIRSspatial response on channel-to-channel and multi-instrument data analyses[J].SPIE,2006,6296:0I-1-0I-9.
    [28] Robert P. McCoy, Kenneth F. Dymond, Gilbert G. Fritz, et al, Special SensorUltraviolet Limb Imager: an ionospheric and neutral density profiler for theDefense Meteorological Satellite Program satellites[J], OPTICALENGINEERING,33,423-429(1994).
    [29] Kenneth F. Dymond, Robert P. McCoy. Ultraviolet spectrographs forthermospheric and ionospheric remote sensing[J]. SPIE,1993,1940:117-127.
    [30] Scott A. Budzien, Kenneth F. Dymond, Stefan E. Thonnard, et al. On-orbitcharacterization and performance of the HIRAAS instruments aboard ARGOS:LORAAS sensor performance[J]. SPIE,2002,4485:349-360.
    [31] Andrew B.Christensen, R.L.Walterscheid, M.N.Ross. The Global UltravioletImager (GUVI) for the NASA TIMED mission[J]. SPIE,1994,2266:451-465.
    [32] L. J. Paxton, A. B. Christensen, D. Morrison, et al, GUVI: A HyperspectralImager for Geospace[J]. SPIE,2004,5660:228-239.
    [33] D. C. Humm, L. J. Paxton, A. B. Christensen, B. S. Ogorzalek and et al. Designand performance of the Global Ultraviolet Imager (GUVI)[J]. SPIE,1998,3445:2-12.
    [34] Larry Paxton, Daniel Morrison, Dave Humm, et al. On-Orbit Calibration of theSpecial Sensor Ultraviolet Scanning Imager (SSUSI) a Far-UV ImagingSpectrograph on DMSP F16[J]. SPIE,2002,4485:328-337.
    [35] Andrew B. Christensen, David C. Kayser, James B. Pranke, et al. Instrumentationon the Remote Atmospheric and Ionospheric Detection System Experiment;extreme-ultraviolet spectrometer, photometer, and near-infrared spectrometer[J].Optical Engineering,1993,32(12):3054-3059.
    [36] G R. Carruthers, T D. Seeley, K K. Shephard and M A. Finch. Pre-Flight andin-flight calibrations of the Global Imaging Monitor of the Ionosphere(GIMI)on the Advanced Research and Global Observation Satellite(ARGOS)[J]. SPIE,2002,4485:316-327.
    [37] Phillip C.Kalmanson, Janusz Wilczynske, Kent Wood, et al. The OptomechanicalDesign and Operation of the Ionospheric Mapping and GeocoronalExperiment[J]. SPIE,2005,5901: Q-1-Q-14.
    [38] E. Renotte, S. Habraken, P. Rochus, et al, Design and verification of the FarUltraviolet Spectrographic Imager(FUV-SI) for the IMAGE mission[J]. SPIE,1998,3445:427–438.
    [39] Zuckic, M., Torr, D. G., Kim, J. et al. Filters for the International Solar TerrestrialPhysics Mission Far-Ultraviolet Imager[J]. Optical Engineering,1993,32(12):3069-3074.
    [40]王咏梅,付利平,王英鉴.星载远紫外极光/气辉探测发展综述[J].地球物理学进展,2008,23(5):1474-1479.
    [41]刘振兴,中国空间风暴探测计划和国际与日共存计划[J].地球物理学报,2005,248(3):724-730.
    [42]李全臣,蒋月娟.光谱仪器原理[M].北京:北京理工大学出版社,1999.49-50.
    [43]郑玉权,禹秉熙.成像光谱仪分光技术概览[J].遥感学报,2002,6(1):75-80.
    [44]吴国安.光谱仪器设计[M].北京:机械工业出版社,1985.476-483.
    [45] William L. Wolfe. Introduction to imaging spectrometers[M]. SPIE OpticalEngineering Press.1997.23-26.
    [46]许强,金伟其,董立泉. UV/VIS/NIR超光谱侦查系统的光学参数设计[J].北京理工大学学报,2006,26(10):897-906.
    [47] К·И·塔拉索夫.光谱仪器[M].北京:机械工业出版社,1985.73-103.
    [48] Smith Warren J. Modern optical engineering: the design of optical systems[M].New York: McGraw-Hill,1990.75-76.
    [49] Shannon Robert R. The art and science of optical design[M]. New York:Cambridge University,1997.164-264.
    [50] Lu Li-Jun, Deng Zhi-Yong. Geometric characteristics of aberrations ofplane-symmetric optical systems[J]. Appl. Opt,2009,48(36),6946-6960.
    [51] II Woo Choi, Jong Ung Lee, Chang Hee Nam. Space-resolving flat-field extremeultraviolet spectrograph system and its aberration analysis with wave-frontaberration[J]. Appl. Opt,1997,36(7):1457-1466.
    [52]冯玉涛,向阳.谱线弯曲对成像光谱仪辐射信号采集的影响[J].光学精密工程,2009,17(1):20-25.
    [53] Huang Xing-yue, Yang Huai-dong, He Qing-sheng, et al. A wavelengthcalibration process for micro-spectrometers with multichannel detectors[J].SPIE,2007,6829:6829Q-1-68291Q-11.
    [54]薛庆生.用于空间大气遥感的临边成像光谱仪研究[博士学位论文].长春光机所,2010.
    [55]韩昌元.信息光学基础理论及其应用[M].长春:长春出版社,1989.46-49.
    [56]薛庆生,王淑荣,鲁凤琴.星载车尔尼-特纳型成像光谱仪像差校正的研究[J].光学学报,2009,29(1):35-40.
    [57] James C. Green. The Cosmic Origins Spectrograph[J]. SPIE,4013,2000:352-359.
    [58] S. Masui, T. Namioka. Geometric aberration theory of double-element opticalsystems[J]. J. Opt. Soc. Am. A,1979,16:2253-2268.
    [59]潘君骅.光学非球面的设计、加工与检验[M].第一版.苏州大学出版社,2004.146-147.
    [60] M. Czerny and A. Turner, über den Astigmatismus Speigelspektrometern[J], Z.Phys. A,1930,61:792-797.
    [61] Qingsheng Xue, Shurong Wang, Fengqin Lu. Aberration-correctedCzerny-Turner imaging spectrometer with a wide spectral region[J], Appl. Opt,2009,48(1),11-16.
    [62] Joseph Reader. Optimizing Czerny-Turner Spectrographs: A Comparisonbetween Analytic Theory and Ray Tracing[J]. J. Opt. Soc. Am,1969,59(9):1189-1196.
    [63] A. Shafer, L. R. Megill, and A. Droppleman, Optimization of the Czerny-Turnerspectrometer[J], J. Opt. Soc. Am,1964,54,879-887.
    [64] Li Xu, K Chen, Q He, and G Jin. Design of freeform mirrors in Czerny-Turnerspectrometers to suppress astigmatism[J], Appl. Opt,2009,48,2971-2879.
    [65] M. Futamata, T. Takenouchi, K.–I. Katakura. Highly efficient andaberration-corrected spectrometer for advanced Raman spectroscopy[J]. Appl.Opt,2002,41(22):4655-4665.
    [66] M. L. Dalton, Jr, Astigmatism compensation in the Czerny-Turnerspectrometer[J], Appl. Opt,1966,5:1121-1123.
    [67] B. Bates, M. McDowell, and A. C. Newton, Correction of astigmatism in aCzerny-Turner spectrograph using a plane grating in divergent illumination[J], J.Phys. E,1970,3:206-210.
    [68] D R. Austin, T Witting, and lan A. Walmsley, Broadband astigmatism-freeCzerny-Turner imaging spectrometer using spherical mirrors[J], Appl. Opt,2009,48:3846-3853.
    [69] Lei Yu, Shu-rong Wang, Yi Qu and Guan-yu Lin. Study on spectral broadbandaberration-corrected imaging spectrometer for far-ultraviolet waveband [J].Optical Engineering,2011,50(6):063002-1-063002-9.
    [70]于磊,曲艺,林冠宇,王淑荣.120~180nm星载远紫外电离层成像光谱仪光学系统设计与研究[J].光学学报,2011,31(1):1-7.
    [71] Michael P. Chrisp. Aberrations of holographic toroidal grating systems[J]. Appl.Opt,1983,22(10):1508-1518.
    [72] Tatsuo Harada, Hideo Sakuma, Kaoru Takahashi, and et al, Design of ahigh-resolution extreme-ultraviolet imaging spectrometer withaberration-corrected concave gratings[J]. Appl. Opt,1998,37(28):6803-6810.
    [73] Takashi Onaka, Aberration-corrected concave grating for the mid-infraredspectrometer aboard the Infrared Telescope in Space[J]. Appl. Opt,1995,34(4),659-666.
    [74] Webster C. Cash, Jr. Aspheric concave grating spectrographs[J]. Appl. Opt,1984,23(24):4518-4522.
    [75] Ryoichi Iwanaga, Takanori Oshio. Aberration reduced mechanically ruled gratingfor simple rotational mounting[J]. J. Opt. Soc. Am,1979,69(11):1538-1546.
    [76] Takashi Onaka, Takashi Miyata, Hirokazu Kataza et al. Design for anaberration-corrected concave grating for a mid-infrared long-slitspectrometer[J]. Appl. Opt,2000,39(10):1474-1479.
    [77] W. Werner. The Geometric Optical Aberration Theory of Diffraction Gratings[J].Appl. Opt,1967,6(10):1691-1699.
    [78] H. G. Beutler, The theory of the concave grating[J]. J. Opt. Soc. Am,1945,35:311-350.
    [79] T. Namioka, Theory of the concave grating. I[J]. J. Opt. Soc. Am,1959,49:446-460.
    [80] Eiji Ishiguro, Ryoichi Iwanaga. Geometric optical theory of diffractiongratings[J]. J. Opt. Soc. Am,1979,69(11):1530-1538.
    [81] Lei Yu, Shu-rong Wang, Yi Qu, and Guan-yu Lin. Broadband FUV imagingspectrometer: advanced design with a single toroidal uniform-line-space grating[J]. Appl. Opt,2011,50(22):4468-4477.
    [82] Martin C. E. Huber, Giuseppe Tondello. Stigmatic performance of an EUVspectrograph with a single toroidal grating[J]. Appl. Opt,1979,18(23):3948-3953.
    [83] Daniel M. Cotton, Timothy Cook, and Supriya Chakrabarti, Single-elementimaging spectrograph[J]. Appl. Opt,1994,33(10):1958-1962.
    [84] Matthew Beasley, Catherine Boone, Nathaniel Cunningham, and et al, Imagingspectrograph for interstellar shocks: a narrowband imaging payload for the farultraviolet[J]. Appl. Opt,2004,43(24):4633-4642.
    [85] Holland JH. Adaptation in natural and artificial systems[M]. University ofMichigan Press,1975.
    [86] Goldberg DE. Genetic algorithms in search, optimization, and machine learningreading[M]. Addison-Wesley, MA,1989.
    [87] Geary Joseph M. Introduction to Lens Design with Practical ZEMAXExamples[M]. Richmond: Willman-Bell, Inc,2002,373-376.
    [88]王建宇.成像光谱仪光谱分辨率的分析[J].红外研究,4:277-286(1990).
    [89]薛庆生,王淑荣,李福田等.用于大气遥感探测的临边成像光谱仪[J].光学精密工程,2010,18(4):823-830.
    [90] Doran J. Baker. Rayleigh, the Unit for Light Radiance[J]. Appl. Opt,1974,13(9):2160-2163.
    [91] J. W. Chamberlain, Physics of the Aurora and Airglow[M]. Academic Press, NewYork,1961.569.
    [92] L. J. Paxton, Ching-I. Meng, G. H. Fountain, et al. SSUSI: Horizon-to-horizonand limb-viewing spectrographic imager for remote sensing of environmentalparameters[J]. SPIE,1992,1764:161-176.
    [93]缪震华.基于楔条形阳极探测器的单光子成像系统[博士学位论文],西安光机所,2008.
    [94] W. R. Hunter, J. F. Osantowski, and G. Hass, Reflectance of aluminumovercoated with MgF2and LiF in the wavelength region from1600to300atvarious angles of incidence[J]. Appl. Opt,1971,10:540-544.
    [95] R. Glenn Sellar, and Glenn D. Boreman. Comparison of relative signal-to-noiseratios of different classes of imaging spectrometer[J]. Appl. Opt,2005,44(9):1614-1624.
    [96]汪贵华.光电子器件[M].第一版,国防工业出版社,2009.102-103.
    [97]周立伟.目标探测与识别[M].北京:北京理工大学出版社,2004.293.
    [98]张记龙,王明,田二明等.激光告警接收机灵敏度和信噪比分析及实验验证[J].光谱学与光谱分析,2009,29(1):20-23.
    [99]于磊,林冠宇,曲艺等.115~180nm远紫外临边成像光谱仪信噪比分析与验证[J],光谱学与光谱分析,2010,30(11):3156-3160.
    [100] A.D.Whalen. Detection of Signals in Noise[M]. First edition,Academic PressNew York and London,1971.145.
    [101]曾庆勇.微弱信号检测[M].第二版,浙江大学出版社,2002.156.
    [102]付芸,徐长吉,丁亚林.航空遥感相机扫描反射镜支撑技术[J].光学精密工程,2003,11(6):550-554.
    [103]隋允康. MSC.Nastran有限元动力分析与优化设计实用教程[M].第一版,科学出版社,2004.39-56.
    [104] G. Naletto, S. Fineschi, E. Antonucci, et al. Optical design of ahigh-spatial-resolution extreme-ultraviolet spectroheliograph for the transitionregion[J]. Appl. Opt,2005,44(24):5046-5054.
    [105] B. S. Dandekar, and D. J. Davis, Jr. Calibrations of the Airglow Photometersand Spectrometers[J]. Appl. Opt,1973,12(4):825-831.
    [106] J. M. Bridges, W. R. Ott, E. Pitz, and et al. Spectral radiance calibrationsbetween165-300nm: an interlaboratory comparison[J]. Appl. Opt,1977,16(7):1788-1790.
    [107] S. R. Wilson, and B. W. Forgan. In situ calibration technique for UV spectralradiometers[J]. Appl. Opt,1995,34(24):5475-5484.
    [108] R. McAdams, S. K. Srivastava. Electron-photon coincidence technique for theabsolute calibration of VUV detectors[J]. Appl. Opt,1983,22(10):1551-1554.
    [109]张振铎,王淑荣,李福田.氟化镁窗口氘灯的真空辐射衰减特性[J].光学精密工程,2009,17(3):482-487.
    [110] L. R. Canfield. New far UV detector calibration facility at the National Bureauof Standards[J]. Appl. Opt,1987,26(18):3831-3837.
    [111]王锐,王淑荣,李福田等.真空紫外探测器辐射定标研究[J].光学学报,2010,30(4):1026-1030.
    [112] Harvey A. R, Beale J, Greenaway, et al. Technology options for imagingspectrometry[J]. SPIE,2000,4132:13-24.
    [113] J. Lang, B J. Kent, W. Paustian, et al. Laboratory calibration of theExtreme-Ultraviolet Imaging Spectrometer for the Solar-B satellite[J]. Appl.Opt,2006,45(34):8689-8705.
    [114] J. L. Buckley. Use of a Tungsten Filament Lamp as a Calibration Standard in theVacuum Ultraviolet[J]. Appl. Opt,1971,10(5):1114-1118.
    [115] U. Finkenzeller, D. Labs. Deuterium lamp as a UV continuum source from160nm to320nm for space applications[J]. Appl. Opt,1979,18(23):3938-3941.
    [116]崔敦杰.成像光谱仪的定标[J].遥感技术与应用,1996,11(3):56-64.
    [117]薛庆生,王淑荣,李福田.光栅色散临边成像光谱仪的研究[J].光学学报,2010,30(5):1516-1521.
    [118]于磊,林冠宇,曲艺,王淑荣.基于阈值理论的远紫外成像光谱仪灵敏度和信噪比研究[J].光电子激光,2011,22(1):42-46.
    [119]何玲平.极紫外光子计数探测器成像特性研究[博士学位论文].长春光机所,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700