星状共轭聚合物的单分子胶束化发光策略及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共轭聚合物是主链上含有大离域π键的一类聚合物,其主链是由碳-碳单键、双键或三键连接而成。共轭聚合物通常具有荧光或磷光性质和导电性,是当前化学、材料学等学科交叉的研究前沿。在共轭聚合物里,超支化共轭聚合物是一类具有三维拓扑结构的共轭聚合物。相比于线性共轭聚合物,超支化共轭聚合物在聚集态下具有优越的光学性能。以超支化共轭聚合物为主体引入其他聚合物构建单分子胶束体系,并赋予其两亲性和智能响应性等性能,有助于拓宽其应用,开发新型功能材料。本文在综述前人关于自组装对共轭聚合物光学性质影响的基础上,将聚乙二醇、聚甲基丙烯酸N,N-二甲氨基乙酯引入到超支化共轭聚合物表面,制备了星状共轭共聚物单分子胶束。采用单分子胶束化策略,通过自组装、温度调控和有机/无机杂化等方式构建了不同功能化的共轭纳米粒子,并应用于纳米科学和生物成像等领域。主要研究内容和结论概括如下:
     1.自组装控制星状共轭共聚物的光学性质
     利用自组装方法成功控制了星状共轭共聚物的光学性质。首先,通过Wittig交叉偶联法,以N-(正己基)-3,6-二醛基咔唑和1,3,5-(三苯基膦基)溴代均三甲苯为单体,合成了超支化共轭聚合物,并进一步通用酰腙键将聚乙二醇接枝到超支化共轭聚合物上,得到了星状共轭聚合物。通过核磁共振(NMR)、红外光谱(FTIR)、凝胶渗透色谱(GPC)等测试手段对超支化共轭聚合物和星状共轭共聚物的结构进行了分析表征。由于具有两亲性,星状共轭聚合物在共溶剂中发生自组装。借助动态光散射(DLS)、透射电镜(TEM)、核磁共振(NMR)和紫外-可见光谱(UV-vis)等测试手段,对组装体的形貌和光学性质进行了观察分析。在酸性环境下,酰腙键的存在改变了聚合物链的共轭长度,从而改变了星状共轭聚合物的光学性能。自组装破坏了酰腙键的质子化能力,从而影响了星状共轭聚合物的光学性质。
     2.多胶束聚集自组装增强星状共轭共聚物的荧光性能
     研究共溶剂自组装方法对星状共轭共聚物组装体荧光性能的影响。星状共轭共聚物具有三维核-壳结构,在自组装过程中形成单分子胶束的多胶束聚集体。在这种聚集体中,超支化共轭聚合物核被外围聚合物臂所保护,有效防止了浓度自淬灭效应的发生,限制了共轭聚合物核的分子间相互聚集,从而提高了聚合物组装体的荧光性能。动态光散射(DLS)、透射电镜(TEM)和荧光分光光度计(PL)等实验结果表明,星状共轭共聚物的单分子胶束形成了多胶束聚集体。通过调节星状共轭共聚物的结构,可以控制星状共轭共聚物组装体的荧光性能。具有优良荧光性能的星状共轭共聚物组装体可用于细胞成像。
     3.星状共轭共聚物荧光监测药物的细胞内释放
     以星状共轭共聚物为药物载体,利用其荧光性能监测了药物在肿瘤细胞中的释放过程。首先,采用核磁共振(NMR)、红外光谱(FTIR)、凝胶渗透色谱(GPC)等对星状共轭共聚物进行了结构表征。动态光散射(DLS)和透射电镜(TEM)实验结果表明,星状共轭共聚物在水溶液中自组装成单分子胶束的多胶束聚集体。以MTT方法测定了星状共轭共聚物胶束的细胞毒性,在1mg/mL聚合物浓度下,NIH-3T3细胞在48小时后存活率为80%,表明星状共轭共聚物具有较低的细胞毒性。以阿霉素为模型药物,利用星状共轭共聚物胶束对药物进行负载。体外释放研究表明,药物在酸性环境下的释放要明显快于中性环境,具有pH响应性的星状共轭共聚物更有利于药物的释放。由于π-π堆积和能量共振转移,阿霉素淬灭超支化共轭聚合物的荧光。随着药物的释放,π-π堆积和能量转移减弱,星状共轭共聚物的荧光强度逐渐恢复。利用这种荧光变化,可以实时监测药物阿霉素在细胞内的释放。
     4.温度诱导增强星状共轭共聚物的荧光性能及细菌检测
     通过温度诱导增强了星状共轭共聚物的荧光性能。首先以超支化共轭聚合物为大分子引发剂,采用原子转移自由基聚合方法在共轭聚合物的表面接枝不同臂长的温度响应性聚甲基丙烯酸-2-(N,N-二甲氨基)乙酯(PDMAEMA),制备了星状共轭共聚物(HCP-star-PDMAEMA),并通过核磁共振(NMR)、红外光谱(FTIR)、凝胶渗透色谱(GPC)等测试手段对星状共轭共聚物的结构进行了分析表征。变温紫外-可见光谱(UV-vis)实验结果表明,接枝了PDMAEMA的星状共轭共聚物具有典型的温敏相转变行为。当溶液温度高于PDMAEMA的最低临界共溶温度(LCST)时,星状共轭共聚物中的超支化共轭聚合物核被坍缩的PDMAEMA分子链所包覆,限制了其浓度自淬灭效应,因而增强了星状共轭聚合物的荧光性能。利用温度诱导星状共轭共聚物的荧光增强,成功实现了大肠杆菌的检测。
     5.荧光性单分子核壳有机/无机纳米杂化材料的制备和应用
     以单分子胶束为模板制备具有优异荧光性能的单分子核壳有机/无机纳米杂化材料,实现其在生物成像中的应用。以超支化共轭聚合物为核、聚甲基丙烯酸-2-(N,N-二甲氨基)乙酯为臂的星状共轭共聚物(HCP-star-PDMAEMA)为模板,合成了单分子核壳有机/无机纳米杂化材料(HCP@SiO_2),并借助红外光谱(FTIR)、热重分析(TGA)、动态光散射(DLS)、透射电镜(TEM)和能量色散谱(EDS)进行了结构和性能表征。二氧化硅外壳的存在有效限制了共轭聚合物核与核之间的π-π相互作用,使得单分子核壳有机/无机纳米杂化颗粒不仅具有很强的荧光性能,而且还保持着共轭聚合物原有的光学性质。通过MTT方法测定了单分子核壳有机/无机纳米杂化颗粒对NIH-3T3细胞的毒性,当细胞在最大浓度为500μg/mL的纳米粒子溶液中孵育24小时后,细胞的存活率大于90%,说明纳米粒子具有较低的细胞毒性。流式细胞分析和荧光显微镜实验结果表明,具有优良荧光性能的单分子核壳有机/无机纳米杂化颗粒可用作生物成像探针,其表面电荷对纳米粒子的细胞内摄具有很大影响。
Conjugated polymers are the long π-delocalized polymers with carbon-carbon single bond,double bond or triple bond backbone. Conjugated polymers have become a promising fieldin interdisciplinary subject of chemistry and material science, due to their uniqueflorescence/phosphorescence or conductive properties. Among various conjugated polymers,the hyperbranched conjugated polymers have highly branched three-dimensional architecture.Compared with those of linear conjugated polymers, hyperbranched conjugated polymersshow good optical properties under the aggregated state. To construct the unimolecularmicelle system, other functional polymers, such as amphiphility, stimuli-responsibility andso on, have been introduced onto the surface of hyperbranched conjugated polymers toextend the application of conjugate polymers and develop newly functional materials. In thisdissertation, based on the summarization of previous research works about the influence ofself-assembly on the optical properties of conjugated polymers, poly(ethylene glycol) andpoly(2-(dimethylamino) ethyl methacrylate) chain were introduced into hyperbranchedconjugated polymer to form the star conjugated copolymer. With the helpf of unimolecularmicellization strategy, the conjugated nanoparticles with different functionalization wereprepared through self-assembly, temperature variation and organic/inorganic hybridapproaches, which could be used in various applications, like nano-science and bioimaing.The main research contents and results are shown as follows:
     1. Self-assembly control of the optical properties of star conjugated copolymer
     Self-assembly approach to tune the optical properties of the star conjugated copolymer hasbeen developed. The hyperbranched conjugated polymer (HCP) was synthesized via Wittigcoupling reaction of N-(n-hexyl)-3,6-diformylcarbazole and1,3,5-bis[(p-triphenyl phosphonio) methyl] benzene tribromide. Subsequently, the linear poly(ethylene glycol)arms were grafted onto the HCP by acylhydrazone connection to form the star conjugatedcopolymer (HCP-star-PEG). The structures of HCP and HCP-star-PEG were characterizedby NMR, FTIR and GPC techniques. Due to its amphiphilic structure, HCP-star-PEG couldself-assemble in the co-solvent of chloroform and acetonitrile. The morphologies and opticalproperties of HCP-star-PEG had been characterized by DLS, TEM, NMR and UV-visspectra. Owing to the protonation of imine group (C=N) in acyldydrazone bond in the acidcondition, the conjugation of HCP-star-PEG increased and the optical properties changedfrom pale green to red. Co-solvent self-assembly would affect the protonation of imine groupgreatly, resulting in the control of optical properties of HCP-star-PEG.
     2. Emission enhancement of conjugated polymer through self-assembly ofunimolecular micelles to multi-micelle aggregates
     The emission of star conjugated copolymer (HCP-star-PEG) was enhanced greatly byco-solvent self-assembly approach. Owing to the three-dimensional architecture ofhyperbranched conjugated polymer, the HCP-star-PEG could form multi-micelle aggregatesfrom unimolecular micelles, which was characterized by DLS and TEM. For themulti-micelle aggregates, the HCP core was well wrapped in the interior of the unimolecularmicelles by PEG arms, resulting in emission enhancement of HCP-star-PEG in the aggregatestate through restriction of concentration self-quenching and intermolecular aggregation ofconjugated polymer core. The length of PEG arm showed great influence on the size andoptical properties of self-assembled HCP-star-PEG. The high emission of HCP-star-PEGmicelles exhibits excellent cellular imaging application.
     3. Real-time monitoring of drug release from star conjugated copolymer in tumor cell
     Star conjugated copolymer was used as drug carrier to monitor the drug release in tumorcell by fluorescent change. The star conjugated copolymer combined hyperbranchedconjugated polymer core and poly(ethylene glycol) arms with acylhydrazone or ether linkagewas synthesized successfully, named as HCP-star-PEG and HCP-O-PEG, respectively. Thestructures of HCP-star-PEG and HCP-O-PEG were characterized by NMR, FTIR, GPC,TGA, etc. The DLS and TEM results confirmed that star conjugated polymers self-assemblyinto multi-micelle aggregates from unimolecular micelles. The in vitro cytotoxicity ofHCP-star-PEG and HCP-O-PEG micelles was evaluated by MTT assay against NIH-3T3normal cells. The cell viabilities after48h incubation with star conjugated copolymers at concentration of1mg/mL remained above80%, compared to the untreated cells. The resultssuggested that HCP-star-PEG and HCP-O-PEG showed the low cytotoxicity. Doxorubicin(DOX), used as model drug, was encapsulated into star conjugated copolymer micelles. Invitro release studies demonstrated that the release of DOX from micelles was significantlyfaster at mildly acid pH of5.0compared to physiological pH of7.4. Owing to the existenceof acylhydrazone bond, the release of drug from HCP-star-PEG micelles was much fasterthan that from HCP-O-PEG micelles at acid environment. The emission of star conjugatedcopolymer was quenched efficiently by DOX through π-π stacking and fluorescenceresonance energy transfer. After DOX release from polymeric micelles, the fluorescentintensity of HCP-star-PEG or HCP-O-PEG was recovered gradually. The fluorescencechange of star conjugated copolymer demonstrates the drug release in tumor cell.
     4. Temperature-induced emission enhancement of star conjugated copolymer withthermo-responsive poly(2-(dimethylamino) ethyl methacrylate) coronas for bacteriadetection
     A facile strategy for temperature-induced emission enhancement of star copolymer hasbeen developed. The star polymers (HCP-star-PDMAEMA) with different PDMAEMAchain length were synthesized successfully from the hyperbranched conjugated polymermacroinitiator by atom transfer radical polymerization (ATRP). The structures ofHCP-star-PDMAEMAs were characterized by NMR, FTIR, GPC and TGA. Thevariable-temperature UV-vis measurements confirmed that star conjugated copolymersexhibited classical thermo-responsive phase transitions with adjustable lower critical solutiontemperature (LCST), depending on the pH of copolymer solution. Above the LCST, theemission of HCP-star-PDMAEMA was enhanced greatly through restriction ofintermolecular aggregation of conjugated polymer core. The emission performance ofHCP-star-PDMAEMA could be readily adjusted by changing PDMAEMA length. Thistemperature-dependent emission enhancement of HCP-star-PDMAEMA is a good candidatefor detection of E. coil.
     5. Highly fluorescent core-shell hybrid nanoparticles from unimolecular starconjugated polymer for biological tool
     Highly fluorescent unimolecular core-shell hybrid nanoparticles (HCP@SiO_2) wereprepared for their application in biological imaging. The nanoparticles were readilyfabricated from the soft template of unimolecular star conjugated polymer (HCP-star-PDMAEMA) under mild condition, which were confirmed by FTIR, TGA, DLSand EDS. With the isolation of hyperbranched conjugated polymer (HCP) core from SiO_2shell, the fluorescent performance of HCP@SiO_2were retained in the aqueous solution. Thecytotoxicity of HCP@SiO_2was evaluated by MTT assay against NIH-3T3normal cells.After24h incubation with HCP@SiO_2at concentration of500μg/mL, the cell viabilitiesremained above90%compared with the untreated cells, suggesting the low cytotoxicity ofHCP@SiO_2. This highly fluorescent HCP@SiO_2could be used as biological imaging. Theflow cytometry and fluorescence microscope measurements demonstrated that the surfacecharge of HCP@SiO_2had profound effect on the cellular uptake of nanoparticles by HeLacells.
引文
[1]. McQuade, D. T.; Pullen, A. E.; Swager, T. M., Conjugated polymer-based chemical sensors.Chem. Rev.2000,100,2537-2574.
    [2]. Thomas, S. W.; Joly, G. D.; Swager, T. M., Chemical sensors based on amplifying fluorescentconjugated polymers. Chem. Rev.2007,107,1339-1386.
    [3]. Jiang, H.; Taranekar, P.; Reynolds, J. R.; Schanze, K. S., Conjugated polyelectrolytes:Synthesis, photophysics, and applications. Angew. Chem. Int. Ed.2009,48,4300-4316.
    [4]. Cheng, Y. J.; Yang, S. H.; Hsu, C. S., Synthesis of conjugated polymers for organic solar cellapplications. Chem. Rev.2009,109,5868-5923.
    [5]. Mitschke, U.; Bauerle, P., The electroluminescence of organic materials. J. Mater. Chem.2000,10,1471-1507.
    [6]. Duarte, A.; Pu, K. Y.; Liu, B.; Bazan, G. C., Recent advances in conjugated polyelectrolytesfor emerging optoelectronic applications. Chem. Mater.2011,23,501-515.
    [7]. Shirakawa, H.; Louis, E. J.; Macdiarmid, A. G.; Chiang, C. K.; Heeger, A. J., Synthesis ofelectrically conducting organic polymers-halogen derivatives of polyacetylene. J. Chem. Soc.Chem. Comm.1977,578-580.
    [8]. Bredas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J., Charge-transfer and energy-transferprocesses in pi-conjugated oligomers and polymers: A molecular picture. Chem. Rev.2004,104,4971-5003.
    [9]. Hatchett, D. W.; Josowicz, M., Composites of intrinsically conducting polymers as sensingnanomaterials. Chem. Rev.2008,108,746-769.
    [10]. Lam, J. W. Y.; Tang, B. Z., Functional polyacetylenes. Acc. Chem. Res.2005,38,745-754.
    [11]. Deschamps, J.; Dutremez, S. G.; Boury, B.; Cottet, H., Size-based characterization of anionic polydiacetylene by Taylor dispersion analysis and capillary electrophoresis.Macromolecules2009,42,2679-2685.
    [12]. Lee, J.; Jun, H.; Kim, J., Polydiacetylene-liposome microarrays for selective and sensitivemercury (II) detection. Adv. Mater.2009,21,3674-3677.
    [13]. Osterbacka, R.; An, C. P.; Jiang, X. M.; Vardeny, Z. V., Two-dimensional electronicexcitations in self-assembled conjugated polymer nanocrystals. Science2000,287,839-842.
    [14]. Brocorens, P.; Van Vooren, A.; Chabinyc, M. L.; Toney, M. F.; Shkunov, M.; Heeney, M.;McCulloch, I.; Cornil, J.; Lazzoroni, R., Solid-state supramolecular organization ofpolythiophene chains containing thienothiophene units. Adv. Mater.2009,21,1193-1198.
    [15]. He, M.; Zhao, L.; Wang, J.; Han, W.; Yang, Y. L.; Qiu, F.; Lin, Z. Q., Self-assembly ofall-conjugated poly(3-alkylthiophene) diblock copolymer nanostructures from mixedselective solvents. ACS Nano2010,4,3241-3247.
    [16]. KorriYoussoufi, H.; Garnier, F.; Srivastava, P.; Godillot, P.; Yassar, A., Towardbioelectronics: Specific DNA recognition based on an oligonucleotide-functionalizedpolypyrrole. J. Am. Chem. Soc.1997,119,7388-7389.
    [17]. Selvan, S. T.; Spatz, J. P.; Klok, H. A.; Moller, M., Gold-polypyrrole core-shell particles indiblock copolymer micelles. Adv. Mater.1998,10,132-134.
    [18]. Chen, G. Z.; Shaffer, M. S. P.; Coleby, D.; Dixon, G.; Zhou, W. Z.; Fray, D. J.; Windle, A. H.,Carbon nanotube and polypyrrole composites: Coating and doping. Adv. Mater.2000,12,522-526.
    [19]. Qiu, H. J.; Wan, M. X.; Matthews, B.; Dai, L. M., Conducting polyaniline nanotubes bytemplate-free polymerization. Macromolecules2001,34,675-677.
    [20]. Wei, Z. X.; Wan, M. X., Hollow microspheres of polyaniline synthesized with an anilineemulsion template. Adv. Mater.2002,14,1314-1317.
    [21]. Zengin, H.; Zhou, W. S.; Jin, J. Y.; Czerw, R.; Smith, D. W.; Echegoyen, L.; Carroll, D. L.;Foulger, S. H.; Ballato, J., Carbon nanotube doped polyaniline. Adv. Mater.2002,14,1480-1483.
    [22]. Huang, J. X.; Virji, S.; Weiller, B. H.; Kaner, R. B., Polyaniline nanofibers: Facile synthesisand chemical sensors. J. Am. Chem. Soc.2003,125,314-315.
    [23]. Wallow, T. I.; Novak, B. M., IN Aqua synthesis of water-soluble poly(para-phenylene)derivatives. J. Am. Chem. Soc.1991,113,7411-7412.
    [24]. Hertel, D.; Setayesh, S.; Nothofer, H. G.; Scherf, U.; Mullen, K.; Bassler, H.,Phosphorescence in conjugated poly(para-phenylene)-derivatives. Adv. Mater.2001,13,65-70.
    [25]. Wohlgenannt, M.; Tandon, K.; Mazumdar, S.; Ramasesha, S.; Vardeny, Z. V., Formationcross-sections of singlet and triplet excitons in π-conjugated polymers. Nature2001,409,494-497.
    [26]. Kraft, A.; Grimsdale, A. C.; Holmes, A. B., Electroluminescent conjugated polymers-Seeing polymers in a new light. Angew. Chem. Int. Ed.1998,37,402-428.
    [27]. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.;Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R.,Electroluminescence in conjugated polymers. Nature1999,397,121-128.
    [28]. Cao, Y.; Parker, I. D.; Yu, G.; Zhang, C.; Heeger, A. J., Improved quantum efficiency forelectroluminescence in semiconducting polymers. Nature1999,397,414-417.
    [29]. Kim, J.; Swager, T. M., Control of conformational and interpolymer effects in conjugatedpolymers. Nature2001,411,1030-1034.
    [30]. Tan, C. Y.; Pinto, M. R.; Schanze, K. S., Photophysics, aggregation and amplified quenchingof a water-soluble poly(phenylene ethynylene). Chem. Commun.2002,446-447.
    [31]. Pinto, M. R.; Kristal, B. M.; Schanze, K. S., A water-soluble poly(phenylene ethynylene)with pendant phosphonate groups. Synthesis, photophysics, and layer-by-layerself-assembled films. Langmuir2003,19,6523-6533.
    [32]. Wosnick, J. H.; Mello, C. M.; Swager, T. M., Synthesis and application of poly(phenyleneethynylene)s for bioconjugation: A conjugated polymer-based fluorogenic probe for proteases.J. Am. Chem. Soc.2005,127,3400-3405.
    [33]. Ranger, M.; Rondeau, D.; Leclerc, M., New well-defined poly(2,7-fluorene) derivatives:Photoluminescence and base doping. Macromolecules1997,30,7686-7691.
    [34]. Grice, A. W.; Bradley, D. D. C.; Bernius, M. T.; Inbasekaran, M.; Wu, W. W.; Woo, E. P.,High brightness and efficiency blue light-emitting polymer diodes. Appl. Phys. Lett.1998,73,629-631.
    [35]. Grell, M.; Bradley, D. D. C.; Ungar, G.; Hill, J.; Whitehead, K. S., Interplay of physicalstructure and photophysics for a liquid crystalline polyfluorene. Macromolecules1999,32,5810-5817.
    [36]. Scherf, U.; List, E. J. W., Semiconducting polyfluorenes-Towards reliablestructure-property relationships. Adv. Mater.2002,14,477-487.
    [37]. Verghese, M. M.; Ram, M. K.; Vardhan, H.; Malhotra, B. D.; Ashraf, S. M., Electrochromicproperties of polycarbazole films. Polymer1997,38,1625-1629.
    [38]. Baba, A.; Onishi, K.; Knoll, W.; Advincula, R. C., Investigating work function tunablehole-injection/transport layers of electrodeposited polycarbazole network thin films. J. Phys.Chem. B2004,108,18949-18955.
    [39]. Macit, H.; Sen, S.; Sacak, M., Electrochemical synthesis and characterization ofpolycarbazole. J. Appl. Polym. Sci.2005,96,894-898.
    [40]. Levesque, I.; Bertrand, P. O.; Blouin, N.; Leclerc, M.; Zecchin, S.; Zotti, G.; Ratcliffe, C. I.;Klug, D. D.; Gao, X.; Gao, F. M.; Tse, J. S., Synthesis and thermoelectric properties ofpolycarbazole, polyindolocarbazole, and polydiindolocarbazole derivatives. Chem. Mater.2007,19,2128-2138.
    [41]. Chu, T. Y.; Alem, S.; Verly, P. G.; Wakim, S.; Lu, J. P.; Tao, Y.; Beaupre, S.; Leclerc, M.;Belanger, F.; Desilets, D.; Rodman, S.; Waller, D.; Gaudiana, R., Highly efficientpolycarbazole-based organic photovoltaic devices. Appl. Phys. Lett.2009,95,063304.
    [42]. Wang, F. K.; Bazan, G. C., Aggregation-mediated optical properties of pH-responsiveanionic conjugated polyelectrolytes. J. Am. Chem. Soc.2006,128,15786-15792.
    [43]. Liu, J.; Zhou, Q. G.; Cheng, Y. X.; Geng, Y. H.; Wang, L. X.; Ma, D. G.; Jing, X. B.; Wang, F.S., The first single polymer with simultaneous blue, green, and red emission for whiteelectroluminescence. Adv. Mater.2005,17,2974-2978.
    [44]. Lemmer U.; Heun S.; Mahrt R. F.; Scherf U.; Hopmeier M.; Siegner U.; G bel E. O.;Müllen K.; Bassler H., Aggregate fluorescence in conjugated polymers. Chem. Phys. Lett.1995,240,373-378.
    [45]. Andersson, M. R.; Yu, G.; Heeger, A. J., Photoluminescence and electroluminescence offilms from soluble PPV-polymers. Synth. Met.1997,85,1275-1276.
    [46]. Schwartz, B. J.; Hide, F.; Andersson, M. R.; Heeger, A. J., Ultrafast studies of stimulatedemission and gain in solid films of conjugated polymers. Chem. Phys. Lett.1997,265,327-333.
    [47]. Kim, K.; Hong, Y. R.; Lee, S. W.; Jin, J. I.; Park, Y.; Sohn, B. H.; Kim, W. H.; Park, J. K.,Synthesis and luminescence properties of poly(p-phenylenevinylene) derivatives carryingdirectly attached carbazole pendants. J. Mater. Chem.2001,11,3023-3030.
    [48]. Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Mullen, K.; Meghdadi, F.; List, E. J.W.; Leising, G., Polyfluorenes with polyphenylene dendron side chains: Towardnon-aggregating, light-emitting polymers. J. Am. Chem. Soc.2001,123,946-953.
    [49]. Pogantsch, A.; Wenzl, F. P.; List, E. J. W.; Leising, G.; Grimsdale, A. C.; Mullen, K.,Polyfluorenes with dendron side chains as the active materials for polymer light-emittingdevices. Adv. Mater.2002,14,1061-1064.
    [50]. Malenfant, P. R. L.; Groenendaal, L.; Frechet, J. M. J., Well-defined triblock hybriddendrimers based on lengthy oligothiophene cores and poly(benzyl ether) dendrons. J. Am.Chem. Soc.1998,120,10990-10991.
    [51]. Devadoss, C.; Bharathi, P.; Moore, J. S., Energy transfer in dendritic macromolecules:Molecular size effects and the role of an energy gradient. J. Am. Chem. Soc.1996,118,9635-9644.
    [52]. Pugh, V. J.; Hu, Q. S.; Pu, L., The first dendrimer-based enantioselective fluorescent sensorfor the recognition of chiral amino alcohols. Angew. Chem. Int. Ed.2000,39,3638-3641.
    [53]. Wang, J. L.; Luo, J.; Liu, L. H.; Zhou, Q. F.; Ma, Y. G.; Pei, J., Nanosized gradientpi-conjugated thienylethynylene dendrimers for light harvesting: Synthesis and properties.Org. Lett.2006,8,2281-2284.
    [54]. Yang, J. L.; Lin, H. Z.; He, Q. G.; Ling, L. S.; Zhu, C. F.; Bai, F. L., Composition ofhyperbranched conjugated polymers with nanosized cadmium sulfide particles. Langmuir2001,17,5978-5983.
    [55]. Morgenroth, F.; Kubel, C.; Mullen, K., Nanosized polyphenylene dendrimers based uponpentaphenylbenzene units. J. Mater. Chem.1997,7,1207-1211.
    [56]. Malenfant, P. R. L.; Jayaraman, M.; Fréchet, J. M. J., Dendrimer-supported oligothiophenesynthesis: Aliphatic ether dendrimers in the preparation of oligothiophenes with minimalsubstitution. Chem. Mat.1999,11,3420-3422.
    [57]. Wang, F.; Rauh, R. D.; Rose, T. L., An electrically conducting star polymer. J. Am. Chem.Soc.1997,119,11106-11107.
    [58]. Ito, S.; Murata, K.; Teshima, S.; Aizawa, R.; Asako, Y.; Takahashi, K.; Hoffman, B. M.,Simple synthesis of water-soluble conducting polyaniline. Synth. Met.1998,96,161-163.
    [59]. Li, Y. F.; He, G. F., Effect of preparation conditions on the two doping structures ofpolypyrrole. Synth. Met.1998,94,127-129.
    [60]. Fan, Q. L.; Zhou, Y.; Lu, X. M.; Hou, X. Y.; Huang, W., Water-soluble cationicpoly(p-phenyleneethynylene)s (PPEs): Effects of acidity and ionic strength on opticalbehaviour. Macromolecules2005,38,2927-2936.
    [61]. Gao, Y.; Wang, C. C.; Wang, L.; Wang, H. L., Conjugated polyelectrolytes withpH-dependent conformations and optical properties. Langmuir2007,23,7760-7767.
    [62]. Pope, M.; Kallmann, H. P.; Magnante, P., Electroluminescence in organic crystals. J. Chem.Phys.1963,38,2042-2043.
    [63]. Tang, C. W.; Vanslyke, S. A., Organic electroluminescent diodes. Appl. Phys. Lett.1987,51,913-915.
    [64]. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.;Burns, P. L.; Holmes, A. B., Light-emitting diodes based on conjugated polymers. Nature1990,347,539-541.
    [65]. Gustufsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J., Flexiblelight-emitting diodes made from soluble conducting polymers. Nature1992,357,477-479.
    [66]. Cao, Y.; Treacy, G. M.; Smith P.; Heeger A. J., Solution-cast films of polyaniline: Opticalquality transparent electrodes. Appl. Phys. Lett.1992,60,2711-2713.
    [67]. Gu, G.; Shen, Z.; Burrows, P. E.; Forrest, S. R., Transparent flexible organic light-emittingdevices. Adv. Mater.1997,9,725-728.
    [68]. Lungenschmied, C.; Dennler, G.; Neugebauer, H.; Sariciftci, S. N.; Glatthaar, M.; Meyer, T.;Meyer, A., Flexible, long-lived, large-area, organic solar cells. Sol. Energy Mater. Sol. Cells2007,91,379-384.
    [69]. Campoy-Quiles, M.; Ferenczi, T.; Agostinelli, T.; Etchegoin, P. G.; Kim, Y.; Anthopoulos, T.D.; Stavrinou, P. N.; Bradley, D. D. C.; Nelson, J., Morphology evolution viaself-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends. Nat.Mater.2008,7,158-164.
    [70]. Ebisawa, F.; Kurokawa, T.; Nara, S., Electrical properties of polyacetylene/polysiloxaneinterface. J. Appl. Phys.1983,54,3255-3259.
    [71]. Tsumura, A.; Koezuka, H.; Ando, T., Macromolecular electronic device: Field-effecttransistor with a polythiophene thin film. Appl. Phys. Lett.1986,49,1210-1212.
    [72]. Zhou, Q.; Swager, T. M., Method for enhancing the sensitivity of fluorescent chemosensors:energy migration in conjugated polymers. J. Am. Chem. Soc.1995,117,7017-7018.
    [73]. Zhou, Q.; Swager, T. M., Fluorescent Chemosensors based on energy migration inconjugated polymers: The molecular wire approach to increased sensitivity. J. Am. Chem. Soc.1995,117,12593-12602.
    [74]. Liu, J. Z.; Zhong, Y. C.; Lu, P.; Hong, Y. N.; Lam, J. W. Y.; Faisal, M.; Yu, Y.; Wong, K. S.;Tang, B. Z., A superamplification effect in the detection of explosives by a fluorescenthyperbranched poly(silylenephenylene) with aggregation-enhanced emission characteristics.Polym. Chem.2010,1,426-429.
    [75]. Feng, F. D.; He, F.; An, L. L.; Wang, S.; Li, Y. H.; Zhu, D. B., Fluorescent conjugatedpolyelectrolytes for biomacromolecule detection. Adv. Mater.2008,20,2959-2964.
    [76]. Duan, X. R.; Liu, L. B.; Feng, F. D.; Wang, S., Cationic conjugated polymers for opticaldetection of DNA methylation, lesions, and single nucleotide polymorphisms. Acc. Chem.Res.2010,43,260-270.
    [77]. Feng, F. D.; Liu, L. B.; Yang, Q. O.; Wang, S., Water-soluble conjugated polymers forfluorescent-enzyme assays. Macromol. Rapid Commun.2010,31,1405-1421.
    [78]. Dishari, S. K.; Pu, K. Y.; Liu, B., Combinatorial energy transfer between an end-cappedconjugated polyelectrolyte and chromophore-labeled PNA for strand-specific DNA detection.Macromol. Rapid Commun.2009,30,1645-1650.
    [79]. Weissleder, R., Molecular imaging in cancer. Science2006,312,1168-1171.
    [80]. Kim, H. M.; Jeong, B. H.; Hyon, J. Y.; An, M. J.; Seo, M. S.; Hong, J. H.; Lee, K. J.; Kim, C.H.; Joo, T. H.; Hong, S. C.; Cho, B. R., Two-photon fluorescent turn-on probe for lipid raftsin live cell and tissue. J. Am. Chem. Soc.2008,130,4246-4247.
    [81]. Verveer, P. J.; Wouters, F. S.; Reynolds, A. R.; Bastiaens, P. I. H., Quantitative imaging oflateral ErbB1receptor signal propagation in the plasma membrane. Science2000,290,1567-1570.
    [82]. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.;Wu, A. M.; Gambhir, S. S.; Weiss, S., Quantum dots for live cells, in vivo imaging, anddiagnostics. Science2005,307,538-544.
    [83]. Sigurdson, C. J.; Peter, K.; Nilsson, R.; Hornemann, S.; Manco, G.; Polymenidou, M.;Schwarz, P.; Leclerc, M.; Hammarstrom, P.; Wuthrich, K.; Aguzzi, A., Prion straindiscrimination using luminescent conjugated polymers. Nat. Methods2007,4,1023-1030.
    [84]. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., Quantum dot bioconjugates forimaging, labelling and sensing. Nat. Mater.2005,4,435-446.
    [85]. Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T., Quantum dotsversus organic dyes as fluorescent labels. Nat. Methods2008,5,763-775.
    [86]. Feng, X. L.; Liu, L. B.; Wang, S.; Zhu, D. B., Water-soluble fluorescent conjugatedpolymers and their interactions with biomacromolecules for sensitive biosensors. Chem. Soc.Rev.2010,39,2411-2419.
    [87]. McRae, R. L.; Phillips, R. L.; Kim, I. B.; Bunz, U. H. F.; Fahrni, C. J., Molecularrecognition based on low-affinity polyvalent interactions: Selective binding of a carboxylatedpolymer to fibronectin fibrils of live fibroblast cells. J. Am. Chem. Soc.2008,130,7851-7853.
    [88]. Pu, K. Y.; Li, K.; Liu, B., A molecular brush approach to enhance quantum yield andsuppress nonspecific interactions of conjugated polyelectrolyte for targetedfar-red/near-infrared fluorescence cell imaging. Adv. Funct. Mater.2010,20,2770-2777.
    [89]. Aslund, A.; Sigurdson, C. J.; Klingstedt, T.; Grathwohl, S.; Bolmont, T.; Dickstein, D. L.;Glimsdal, E.; Prokop, S.; Lindgren, M.; Konradsson, P.; Holtzman, D. M.; Hof, P. R.;Heppner, F. L.; Gandy, S.; Jucker, M.; Aguzzi, A.; Hammarstrom, P.; Nilsson, K. P. R., Novelpentameric thiophene derivatives for in vitro and in vivo optical imaging of a plethora ofprotein aggregates in cerebral amyloidoses. ACS Chem. Biol.2009,4,673-684.
    [90]. Voit, B., New developments in hyperbranched polymers. J. Polym. Sci. Poylm. Chem.2000,38,2505-2525.
    [91]. Fréchet, J. M. J.; Tomalia, D. A. Dendrimers and other dendritic polymers. West Sussex:Wiley2001.
    [92]. Jikei, M.; Kakimoto, M., Hyperbranched polymers: a promising new class of materials.Prog. Polym. Sci.2001,26,1233-1285.
    [93]. Gao, C.; Yan, D., Hyperbranched polymers: from synthesis to applications. Prog. Polym. Sci.2004,29,183-275.
    [94]. Special Issue Branched polymers: Frey, H., guest ed. Macromol. Chem. Phys.2007,208,1607-1611.
    [95]. Ishida, Y.; Sun, A. C. F.; Jikei, M.; Kakimoto, M., Synthesis of hyperbranched aromaticpolyamides starting from dendrons as AB(x) monomers: Effect of monomer multiplicity onthe degree of branching. Macromolecules2000,33,2832-2838.
    [96]. Uhrich, K. E.; Hawker, C. J.; Frechet, J. M. J.; Turner, S. R., One pot synthesis ofhyperbranched polyethers. Macromolecules1992,25,4583-4587.
    [97]. Matyjaszewski, K.; Gaynor, S. G.; Kulfan, A.; Podwika, M., Preparation of hyperbranchedpolyacrylates by atom transfer radical polymerization.1. Acrylic AB*monomers in ''living''radical polymerizations. Macromolecules1997,30,5192-5194.
    [98]. Yoon, K.; Son, D. Y., Syntheses of hyperbranched poly(carbosilarylenes). Macromolecules1999,32,5210-5216.
    [99]. Sunder, A.; Mulhaupt, R.; Frey, H., Hyperbranched polyether-polyols based on polyglycerol:Polarity design by block copolymerization with propylene oxide. Macromolecules2000,33,309-314.
    [100]. Chang, H. T.; Fréchet, J. M. J., Proton-transfer polymerization: A new approach tohyperbranched polymers. J. Am. Chem. Soc.1999,121,2313-2314.
    [101]. Kim, Y. H.; Webster, O. W. Hyperbranched polyphenylene. Macromolecules1992,25,5561-5572.
    [102]. Wang, R.; Wang, W. Z.; Yang, G. Z.; Liu, T. X.; Yu, J. S.; Jiang, Y. D., Synthesis andcharacterization of highly stable blue-light-emitting hyperbranched conjugated polymers. J.Polym. Sci. Polym. Chem.2008,46,790-802.
    [103]. Liu, X. M.; He, C. B.; Hao, X. T.; Tan, L. W.; Li, Y. Q.; Ong, K. S., Hyperbranchedblue-light-emitting alternating copolymers of tetrabromoarylmethane/silane and9,9-dihexylfluorene-2,7-diboronic acid. Macromolecules2004,37,5965-5970.
    [104]. Li, J.; Bo, Z. S.,"AB(2)+AB" approach to hyperbranched polymers used as polymer bluelight emitting materials. Macromolecules2004,37,2013-2015.
    [105]. Fei, Z. P.; Li, B. S.; Bo, Z. S.; Lu, R., Synthesis and properties of hyperbranchedconjugated peorphyrins. Org. Lett.2004,6,4703-4706.
    [106]. Sun, Q. J.; He, Q. G.; Yang, C. H.; Bai, F. L.; Li, Y. F., Photo-and electroluminescencefrom hyperbranched phenylene vinylenes. Synth. Met.2003,139,417-423.
    [107].贺庆国,黄红敏,蔺洪振等.具有空穴传输基团的超支化聚合物发光材料的结构与光谱性质.发光学报,2003,24,469-472.
    [108]. Bharathi, P.; Moore, J. S., Solid-supported hyperbranched polymerization: Evidence forself-limited growth. J. Am. Chem. Soc.1997,119,3391-3392.
    [109]. Qin, A. J.; Li, Z.; Lam, J. W. Y.; Tang, B. Z., Linear and nonlinear optical properties oflinear and hyperbranched conjugated polymers. Proc. of SPIE2006,6331,33105.
    [110]. Haussler, M.; Tang, B. Z., Functional hyperbranched macromolecules constructed fromacetylenic triple-bond building blocks. Adv. Polym. Sci.2007,209,1-58.
    [111]. Peng, H.; Cheng, L.; Luo, J. D.; Xu, K. T.; Sun, Q. H.; Dong, Y. P.; Salhi, F.; Lee, P. P. S.;Chen, J. W.; Tang, B. Z., Simple synthesis, outstanding thermal stability, and tunablelight-emitting and optical-limiting properties of functional hyperbranched polyarylenes.Macromolecules2002,35,5349-5351.
    [112]. Zhang, F.; Bauerle, P., A controlled approach to well-defined oligothiophenes viaoxidatively induced reductive elimination of stable Pt(II) oligothienyl complexes. J. Am.Chem. Soc.2007,129,3090-3091.
    [113]. He, Q. Q.; Huang, H. M.; Bai, F. L.; Cao, Y., A facile method for controlling the molecularweight of hyperbranched light-emitting polymers. Macromol. Rapid Commun.2006,27,302-305.
    [114]. Yan, D. Y.; Muller, A. H. E.; Matyjaszewski, K., Molecular parameters of hyperbranchedpolymers made by self-condensing vinyl polymerization.2. Degree of branching.Macromolecules1997,30,7024-7033.
    [115]. Zhu, X. Y.; Zhou, Y. F.; Yan, D. Y., Influence of branching architecture on polymerproperties. J. Polym. Sci. Part B: Polym. Phys.2011,49,1277-1286.
    [116]. Hawker, C. J.; Lee, R.; Fréchet, J. M. J., One-step synthesis of hyperbranched dendriticpolyesters. J. Am. Chem. Soc.1991,113,4583-4588.
    [117]. Qin, A. J.; Lam, J. W. Y.; Jim, C. K. W.; Zhang, L.; Yan, J. J.; Haussler, M.; Liu, J. Z.;Dong, Y. Q.; Liang, D. H.; Chen, E. Q.; Jia, G. C.; Tang, B. Z., Hyperbranched polytriazoles:Click polymerization, regioisomeric structure, light emission, and fluorescent patterning.Macromolecules2008,41,3808-3822.
    [118]. Liu, X. M.; Lin, T. T.; Huang, J. C.; Hao, X. T.; Ong, K. S.; He, C. B., Hyperbranched blueto red light-emitting polymers with tetraarylsilyl cores: Synthesis, optical andelectroluminescence properties, and ab initio modeling studies. Macromolecules2005,38,4157-4168.
    [119]. Song, L.; Tu, C. L.; Shi, Y. F.; Qiu, F.; He, L.; Jiang, Y.; Zhu, Q.; Zhu, B. S.; Yan, D. Y.;Zhu, X. Y., Controlling the optical properties of hyperbranched conjugated polyazomethinesthrough terminal-backbone interactions. Macromol. Rapid Commun.2010,31,443-448.
    [120]. Deng, H. P.; Zhu, B. S.; Song, L.; Tu, C. L.; Qiu, F.; Shi, Y. F.; Wang, D. L.; Zhu, L. J.; Zhu,X. Y., Effect of branching architecture on the optical properties of polyazomethines. Polym.Chem.2012,3,421-428.
    [121]. Star, A.; Stoddart, J. F., Dispersion and solubilization of single-walled carbon nanotubeswith a hyperbranched polymer. Macromolecules2002,35,7516-7520.
    [122]. Whitesides, G. M.; Grzybowski, B., Self-assembly at all scales. Science2002,295,2418-2421.
    [123]. Percec, V.; Glodde, M.; Bera, T. K.; Miura, Y.; Shiyanovskaya, I.; Singer, K. D.;Balagurusamy, V. S. K.; Heiney, P. A.; Schnell, I.; Rapp, A.; Spiess, H. W.; Hudson, S. D.;Duan, H., Self-organization of supramolecular helical dendrimers into complex electronicmaterials. Nature2002,419,384-387.
    [124]. Lehn, J. M., Toward self-organization and complex matter. Science2002,295,2400-2403.
    [125]. Zhang, S. G., Fabrication of novel biomaterials through molecular self-assembly. Nat.Biotechnol.2003,21,1171-1178.
    [126]. Ikkala, O.; ten Brinke, G., Functional materials based on self-assembly of polymericsupramolecules. Science2002,295,2407-2409.
    [127]. Taylor, P.; Xu, C.; Fletcher, P. D. I.; Paunov, V. N., A novel technique for preparation ofmonodisperse giant liposomes. Chem. Commun.2003,1732-1733.
    [128]. Kabanov, A. V.; Bronich, T. K.; Kabanov, V. A.; Yu, K.; Eisenberg, A., Spontaneousformation of vesicles from complexes of block ionomers and surfactants. J. Am. Chem. Soc.1998,120,9941-9942.
    [129]. Kleitz, F.; Thomson, S. J.; Liu, Z.; Terasaki, O.; Schuth, F., Porous mesostructuredzirconium oxophosphate with cubic (Ia(3) over-bard) symmetry. Chem. Mater.2002,14,4134-4144.
    [130]. Caruso, F.; Caruso, R. A.; Mohwald, H., Nanoengineering of inorganic and hybrid hollowspheres by colloidal templating. Science1998,282,1111-1114.
    [131]. Che, S.; Garcia-Bennett, A. E.; Yokoi, T.; Sakamoto, K.; Kunieda, H.; Terasaki, O.;Tatsumi, T., A novel anionic surfactant templating route for synthesizing mesoporous silicawith unique structure. Nat. Mater.2003,2,801-805.
    [132]. Wang, Y. P.; Zhu, S. M.; Mai, Y. Y.; Zhou, Y. F.; Zhu, X. Y.; Yan, D. Y., Control of pore sizein mesoporous silica ternplated by a multiarm hyperbranched copolyether in water andcosolvent. Micro. Meso. Mat.2008,114,222-228.
    [133]. Howse, J. R.; Jones, R. A. L.; Battaglia, G.; Ducker, R. E.; Leggett, G. J.; Ryan, A. J.,Templated formation of giant polymer vesicles with controlled size distributions. Nat. Mater.2009,8,507-511.
    [134]. Zhang, L.; Eisenberg, A. Multiple morphologies of “crew-cut” aggregates ofpolystyrene-b-poly(acrylic acid) block copolymers. Science1995,268,1728-1731.
    [135]. Bucknall, D. G.; Anderson, H. L., Polymers get organized. Science2003,302,1904-1905.
    [136]. Percec, V.; Ahn, C. H.; Ungar, G.; Yeardley, D. J. P.; Moller, M.; Sheiko, S. S., Controllingpolymer shape through the self-assembly of dendritic side-groups. Nature1998,391,161-164.
    [137]. Yan, D. Y.; Zhou, Y. F.; Hou, J., Supramolecular self-assembly of macroscopic tubes.Science2004,303,65-67.
    [138]. Ajayaghosh, A.; Praveen, V. K., Pi-organogels of self-assembled p-phenylenevinylenes:Soft materials with distinct size, shape, and functions. Acc. Chem. Res.2007,40,644-656.
    [139]. Reitzel, N.; Greve, D. R.; Kjaer, K.; Hows, P. B.; Jayaraman, M.; Savoy, S.; McCullough,R. D.; McDevitt, J. T.; Bjornholm, T., Self-assembly of conjugated polymers at the air/waterinterface. Structure and properties of Langmuir and Langmuir-Blodgett films of amphiphilicregioregular polythiophenes. J. Am. Chem. Soc.2000,122,5788-5800.
    [140]. Praveen, V. K.; George, S. J.; Varghese, R.; Vijayakumar, C.; Ajayaghosh, A.,Self-assembled pi-nanotapes as donor scaffolds for selective and thermally gatedfluorescence resonance energy transfer (FRET). J. Am. Chem. Soc.2006,128,7542-7550.
    [141]. Wei, Z. X.; Laitinen, T.; Smarsly, B.; Ikkala, O.; Faul, C. F. J., Self-assembly and electricalconductivity transitions in conjugated oligoaniline-Surfactant complexes. Angew. Chem. Int.Ed.2005,44,751-756.
    [142]. Huang, K.; Wan, M. X., Self-assembled polyaniline nanostructures withphotoisomerization function. Chem. Mater.2002,14,3486-3492.
    [143]. Chiou, N. R.; Lee, L. J.; Epstein, A. J., Self-assembled polyaniline nanofibers/nanotubes.Chem. Mater.2007,19,3589-3591.
    [144]. Kuwabata, S.; Fukuzaki, R.; Nishizawa, M.; Martin, C. R.; Yoneyama, H., Electrochemicalformation of a polyaniline-analogue monolayer on a gold electrode. Langmuir1999,15,6807-6812.
    [145]. Liu, D. J.; Zhang, H.; Grim, P. C. M.; De Feyter, S.; Wiesler, U. M.; Berresheim, A. J.;Müllen, K.; De Schryver, F. C., Self-assembly of polyphenylene dendrimers into micrometerlong nanofibers: An atomic force microscopy study. Langmuir2002,18,2385-2391.
    [146]. Heyen, A.; Buron, C. C.; Tianshi, Q.; Bauer, R.; Jonas, A. M.; Müllen, K.; De Schryver, F.C.; De Feyter, S., Guiding the self-assembly of a second-generation polyphenytenedendrimer into well-defined patterns. Small2008,4,1160-1167.
    [147]. Liu, D. J.; De Feyter, S.; Grim, P. C. M.; Vosch, T.; Grebel-Koehler, D.; Wiesler, U. M.;Berresheim, A. J.; Müllen, K.; De Schryver, F. C., Self-assembled polyphenylene dendrimernanofibers on highly oriented pyrolytic graphite studied by atomic force microscopy.Langmuir2002,18,8223-8230.
    [148]. Liu, D. J.; De Feyter, S.; Cotlet, M.; Wiesler, U. M.; Weil, T.; Herrmann, A.; Mullen, K.;De Schryver, F. C., Fluorescent self-assembled polyphenylene dendrimer nanofibers.Macromolecules2003,36,8489-8498.
    [149]. de Cuendias, A.; Hiorns, R. C.; Cloutet, E.; Vignau, L.; Cramail, H., Conjugated rod-coilblock copolymers and optoelectronic applications. Polym. Int.2010,59,1452-1476.
    [150]. Bae, J.; Choi, J. H.; Yoo, Y. S.; Oh, N. K.; Kim, B. S.; Lee, M., Helical nanofibers fromaqueous self-assembly of an oligo(p-phenylene)-based molecular dumbbell. J. Am. Chem.Soc.2005,127,9668-9669.
    [151]. Jonkheijm, P.; van der Schoot, P.; Schenning, A.; Meijer, E. W., Probing thesolvent-assisted nucleation pathway in chemical self-assembly. Science2006,313,80-83.
    [152]. Jenekhe, S. A.; Chen, X. L., Self-assembly of ordered microporous materials from rod-coilblock copolymers. Science1999,283,372-375.
    [153]. Chen, T. A.; Wu, X. M.; Rieke, R. D., Regiocontrolled synthesis of polypoly(3-alkylthiophenes) mediated by rieke zinc: their characterization and solid-stateproperties. J. Am. Chem. Soc.1995,117,233-244.
    [154]. Brun, M.; Demadrille, R.; Rannou, P.; Pron, A.; Travers, J. P.; Grevin, B., Multiscalescanning tunneling microscopy study of self-assembly phenomena in two-dimensionalpolycrystals of π-conjugated polymers: The case of regioregular poly(dioctylbithiophene-alt-fluore-none). Adv. Mater.2004,16,2087-2092.
    [155]. van de Craats, A. M.; Warman, J. M.; Fechtenk tter, A.; Brand, J. D.; Harbison, M. A.;Müllen, K., Record charge carrier mobility in a room-temperature discotic liquid-crystallinederivative of hexabenzocoronene. Adv. Mater.1999,11,1469-1472.
    [156]. Feng, X. L.; Marcon, V.; Pisula, W.; Hansen, M. R.; Kirkpatrick, J.; Grozema, F.;Andrienko, D.; Kremer, K.; Müllen, K., Towards high charge-carrier mobilities by rationaldesign of the shape and periphery of discotics. Nat. Mater.2009,8,421-426.
    [157]. Pisula, W.; Feng, X. A.; Müllen, K., Tuning the columnar organization of discoticpolycyclic aromatic hydrocarbons. Adv. Mater.2010,22,3634-3649.
    [158]. Park, S. J.; Kang, S. G.; Fryd, M.; Saven, J. G., Highly tunable photoluminescent propertiesof amphiphilic conjugated block copolymers. J. Am. Chem. Soc.2010,132,9931-9933.
    [159]. de Cuendias, A.; Ibarboure, E.; Lecommandoux, S.; Cloutet, E.; Cramail, H., Synthesis andself-assembly in water of coil-rod-coil amphiphilic block copolymers with centralpi-conjugated sequence. J. Polym. Sci. Polym. Chem.2008,46,4602-4616.
    [160]. Hennebicq, E.; Pourtois, G.; Scholes, G. D.; Herz, L. M.; Russell, D. M.; Silva, C.;Setayesh, S.; Grimsdale, A. C.; Müllen, K.; Brédas, J. L.; Beljonne, D., Exciton migration inrigid-rod conjugated polymers: An improved F rster model. J. Am. Chem. Soc.2005,127,4744-4762.
    [161]. Pu, K. Y.; Liu, B., A multicolor cationic conjugated polymer for naked-eye detection andquantification of heparin. Macromolecules2008,41,6636-6640.
    [162]. Xiao, X.; Wu, Y. G.; Sun, M. H.; Zhou, J. J.; Bo, Z. S.; Li, L.; Chan, C. M., Synthesis andself-assembly of amphiphilic dendronized conjugated polymers. J. Polym. Sci. Polym. Chem.2008,46,574-584.
    [163]. Li, K.; Guo, H.; Liang, Z. Q.; Thiyagarajan, P.; Wang, Q., Oligo(p-phenyleneethynylene)-based coil-rod-coil triblock copolymer: Synthesis and controlled self-organization insolution. J. Polym. Sci. Polym. Chem.2005,43,6007-6019.
    [164]. Yin, M. Z.; Ding, K.; Gropeanu, R. A.; Shen, J.; Berger, R.; Weil, T.; Mullen, K., Dendriticstar polymers for efficient DNA binding and stimulus-dependent DNA release.Biomacromolecules2008,9,3231-3238.
    [165]. Yin, M.; Shen, J.; Pflugfelder, G. O.; Mullen, K., A fluorescent core-shell dendriticmacromolecule specifically stains the extracellular matrix. J. Am. Chem. Soc.2008,130,7806-7807.
    [166]. Ringsdorf, H.; Simon J., Snap-together vesicles. Nature1994,371,284-284.
    [167]. Won, Y. Y.; Davis, H. T.; Bates, F. S., Giant wormlike rubber micelles. Science1999,283,960-963.
    [168]. Oda, R.; Huc, I.; Schmutz, M.; Candau, S. J.; MacKintosh, F. C., Tuning bilayer twistusing chiral counterions. Nature1999,399,566-569.
    [169]. Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser, M.; Amstutz, A.,Supramolecular materials: Self-organized nanostructures. Science1997,276,384-389.
    [170]. Wang, D. L.; Su, Y.; Jin, C. Y.; Zhu, B. S.; Pang, Y.; Zhu, L. J.; Liu, J. Y.; Tu, C. L.; Yan, D.Y.; Zhu, X. Y., Supramolecular copolymer micelles based on the complementary multiplehydrogen bonds of nucleobases for drug delivery. Biomacromolecules2011,12,1370-1379.
    [171]. Xue, J.; Jia, Z. F.; Jiang, X. L.; Wang, Y. P.; Chen, L.; Zhou, L.; He, P.; Zhu, X. Y.; Yan, D.Y., Kinetic separation of polymers with different terminals through inclusion complexationwith cyclodextrin. Macromolecules2006,39,8905-8907.
    [172]. Tong, G. S.; Liu, T.; Zhu, S. M.; Zhu, B. S.; Yan, D. Y.; Zhu, X. Y.; Zhao, L., Facilefabrication and application of Au@MSN nanocomposites with a supramolecularstar-copolymer template. J. Mater. Chem.2011,21,12369-12374.
    [173]. Hoeben, F. J. M.; Herz, L. M.; Daniel, C.; Jonkheijm, P.; Schenning, A.; Silva, C.; Meskers,S. C. J.; Beljonne, D.; Phillips, R. T.; Friend, R. H.; Meijer, E. W., Efficient energy transfer inmixed columnar stacks of hydrogen-bonded oligo(p-phenylene vinylene)s in solution. Angew.Chem. Int. Ed.2004,43,1976-1979.
    [174]. An, B. K.; Lee, D. S.; Lee, J. S.; Park, Y. S.; Song, H. S.; Park, S. Y., Strongly fluorescentorganogel system comprising fibrillar self-assembly of a trifluoromethyl-based cyanostilbenederivative. J. Am. Chem. Soc.2004,126,10232-10233.
    [175]. Balakrishnan, K.; Datar, A.; Naddo, T.; Huang, J. L.; Oitker, R.; Yen, M.; Zhao, J. C.; Zang,L., Effect of side-chain substituents on self-assembly of perylene diimide molecules:Morphology control. J. Am. Chem. Soc.2006,128,7390-7398.
    [176]. Park, J. Y.; Koenen, N.; Forster, M.; Ponnapati, R.; Scherf, U.; Advincula, R., Interplay ofvesicle and lamellae formation in an amphiphilic polyfluorene-b-polythiopheneall-conjugated diblock copolymer at the air-water interface. Macromolecules2008,41,6169-6175.
    [177]. Feng, X. L.; Liang, Y. Y.; Zhi, L. J.; Thomas, A.; Wu, D. Q.; Lieberwirth, I.; Kolb, U.;Müllen, K., Synthesis of microporous carbon nanofibers and nanotubes from conjugatedpolymer network and evaluation in electrochemical capacitor. Adv. Funct. Mater.2009,19,2125-2129.
    [178]. Erdogan, B.; Song, L. L.; Wilson, J. N.; Park, J. O.; Srinivasarao, M.; Bunz, U. H. F.,Permanent bubble arrays from a cross-linked poly(para-phenyleneethynylene): Picoliter holeswithout microfabrication. J. Am. Chem. Soc.2004,126,3678-3679.
    [179]. Nurmawati, M. H.; Ajikumar, P. K.; Renu, R.; Valiyaveettil, S., Hierarchicalself-organization of nanomaterials into two-dimensional arrays using functional polymerscaffold. Adv. Funct. Mater.2008,18,3213-3218.
    [180]. Schenning, A.; Kilbinger, A. F. M.; Biscarini, F.; Cavallini, M.; Cooper, H. J.; Derrick, P. J.;Feast, W. J.; Lazzaroni, R.; Leclere, P.; McDonell, L. A.; Meijer, E. W.; Meskers, S. C. J.,Supramolecular organization of alpha,alpha'-disubstituted sexithiophenes. J. Am. Chem. Soc.2002,124,1269-1275.
    [181]. Lin, H. C.; Lee, K. W.; Tsai, C. M.; Wei, K. H., Synthesis and characterization of rod-coilpolymers based on poly(ethylene oxide)s sand novel luminescent aromatic cores.Macromolecules2006,39,3808-3816.
    [182]. Tao, Y. F.; McCulloch, B.; Kim, S.; Segalman, R. A., The relationship between morphologyand performance of donor-acceptor rod-coil block copolymer solar cells. Soft Matter2009,5,4219-4230.
    [183]. Maeda, H.; Ito, Y.; Haketa, Y.; Eifuku, N.; Lee, E.; Lee, M.; Hashishin, T.; Kaneko, K.,Solvent-assisted organized structures based on amphiphilic anion-responsive pi-conjugatedsystems. Chem. Eur. J.2009,15,3706-3719.
    [184]. Tao, Y. F.; Ma, B. W.; Segalman, R. A., Self-assembly of rod-coil block copolymers andtheir application in electroluminescent devices. Macromolecules2008,41,7152-7159.
    [185]. Ma, Z.; Lu, S.; Fan, Q. L.; Qing, C. Y.; Wang, Y. Y.; Wang, P.; Huang, W., Syntheses,characterization, and energy transfer properties of benzothiadiazole-based hyperbranchedpolyfluorenes. Polymer2006,47,7382-7390.
    [186]. Yu, J. M.; Chen, Y., Multifunctional hyperbranched oligo(fluorene vinylene) containingpendant crown ether: Synthesis, chemosensory, and electroluminescent properties.Macromolecules2009,42,8052-8061.
    [187]. Zou, L.; Liu, Y.; Ma, N.; Macoas, E.; Martinho, J. M. G.; Pettersson, M.; Chen, X. G.; Qin,J. U., Synthesis and photophysical properties of hyperbranched polyfluorenes containing2,4,6-tris(thiophen-2-yl)-1,3,5-triazine as the core. Phys. Chem. Chem. Phys.2011,13,8838-8846.
    [188]. Wu, C. W.; Lin, H. C., Synthesis and characterization of kinked and hyperbranchedcarbazole/fluorene-based copolymers. Macromolecules2006,39,7232-7240.
    [189]. Li, J. Y.; Liu, D.; Li, Y. Q.; Lee, C. S.; Kwong, H. L.; Lee, S. T., A high Tg carbazole-based hole-transporting material for organic light-emitting devices. Chem. Mater.2005,17,1208-1212.
    [190]. Yao, J. Z.; Son, D. Y., Hyperbranched poly(2,5-silylthiophenes). The possibility ofsigma-pi conjugation in three dimensions. Organometallics1999,18,1736-1740.
    [191]. Haussler, M.; Zheng, R. H.; Lam, J. W. Y.; Tong, H.; Dong, H. C.; Tang, B. Z.,Hyperbranched polyynes: Syntheses, photoluminescence, light refraction, thermal curing,metal complexation, pyrolytic ceramization, and soft magnetization. J. Phys. Chem. B2004,108,10645-10650.
    [192]. Dong, H. C.; Zheng, R. H.; Lam, J. W. Y.; Haussler, M.; Qin, A. J.; Tang, B. Z., A newroute to hyperbranched macromolecules: Syntheses of photosensitive poly(aroylarylene)s via1,3,5-regioselective polycyclotrimerization of bis(aroylacetylene)s. Macromolecules2005,38,6382-6391.
    [193]. Qin, A. J.; Lam, J. W. Y.; Dong, H. C.; Lu, W. X.; Jim, C. K. W.; Dong, Y. Q.; Haussler, M.;Sung, H. H. Y.; Williams, I. D.; Wong, G. K. L.; Tang, B. Z., Metal-free, regioselective diynepolycyclotrimerization: Synthesis, photoluminescence, solvatochromism, and two-photonabsorption of a triphenylamine-containing hyperbranched poly(aroylarylene).Macromolecules2007,40,4879-4886.
    [194]. Guan, R.; Xu, Y. H.; Ying, L.; Yang, W.; Wu, H. B.; Chen, Q. L.; Cao, Y., Novelgreen-light-emitting hyperbranched polymers with iridium complex as core and3,6-carbazole-co-2,6-pyridine unit as branch. J. Mater. Chem.2009,19,531-537.
    [195]. Qu, J. Q.; Shiotsuki, M.; Kobayashi, N.; Sanda, F.; Masuda, T., Synthesis and properties ofcarbazole-based hyperbranched conjugated polymers. Polymer2007,48,6481-6490.
    [196]. Iwan, A.; Sek, D.; Kasperczyk, J., Characterization and photoluminescence study of blueand green emitting polyketanils and their blends. Macromolecules2005,38,4384-4392.
    [197]. Dufour, B.; Rannou, P.; Djurado, D.; Janeczek, H.; Zagorska, M.; de Geyer, A.; Travers, J.P.; Pron, A., Low Tg, stretchable polyaniline of metallic-type conductivity: Role of dopantengineering in the control of polymer supramolecular organization and in the tuning of itsproperties. Chem. Mater.2003,15,1587-1592.
    [198]. Pedras, B.; Oliveira, E.; Santos, H.; Rodriguez, L.; Crehuet, R.; Aviles, T.; Capelo, J. L.;Lodeiro, C., A new tripodal poly-imine indole-containing ligand: Synthesis, complexation,spectroscopic and theoretical studies. Inorg. Chim. Acta2009,362,2627-2635.
    [199]. Sek, D.; Iwan, A.; Janeczek, H.; Rannou, P.; Pron, A., New conjugated polyketanils:Tuning of optical properties via chain design and protonic doping. Thin Solid Films2004,453,362-366.
    [200]. Yamamoto, K.; Higuchi, M.; Shiki, S.; Tsuruta, M.; Chiba, H., Stepwise radialcomplexation of imine groups in phenylazomethine dendrimers. Nature2002,415,509-511.
    [201]. Higuchi, M.; Tsuruta, M.; Chiba, H.; Shiki, S.; Yamamoto, K., Control of stepwise radialcomplexation in dendritic polyphenylazomethines. J. Am. Chem. Soc.2003,125,9988-9997.
    [202]. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y., Synthesis and size-controllable self-assembly of a novelamphiphilic hyperbranched multiarm copolyether. Macromolecules2005,38,8679-8686.
    [203]. Hong, H. Y.; Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y.; Cui, J., Self-assembly of largemultimolecular micelles from hyperbranched star copolymers. Macromol. Rapid Commun.2007,28,591-596.
    [204]. Song, T.; Dai, S.; Tam, K. C.; Lee, S. Y.; Goh, S. H., Aggregation behavior ofC60-end-capped poly(ethylene oxide)s. Langmuir2003,19,4798-4803.
    [205]. Mya, K. Y.; Li, X.; Chen, L.; Ni, X. P.; Li, J.; He, C. B., Core-corona structure of cubicsilsesquioxane-poly(ethylene oxide) in aqueous solution: Fluorescence, light scattering, andTEM studies. J. Phys. Chem. B2005,109,9455-9462.
    [206]. Hong, H. Y.; Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y.; Chen, Y., Synthesis and supramolecularself-assembly of thermosensitive amphiphilic star copolymers based on a hyperbranchedpolyether core. J. Polym. Sci. Polym. Chem.2008,46,668-681.
    [207]. Yang, J. X.; Tao, X. T.; Yuan, C. X.; Yan, Y. X.; Wang, L.; Liu, Z.; Ren, Y.; Jiang, M. H., Afacile synthesis and properties of multicarbazole molecules containing multiple vinylenebridges. J. Am. Chem. Soc.2005,127,3278-3279.
    [208]. Pecher, J.; Mecking, S., Nanoparticles of conjugated polymers. Chem. Rev.2010,110,6260-6279.
    [209]. Li, Y. C.; Chen, C. Y.; Chang, Y. X.; Chuang, P. Y.; Chen, J. H.; Chen, H. L.; Hsu, C. S.;Ivanov, V. A.; Khalatur, P. G.; Chen, S. A., Scattering study of the conformational structureand aggregation behavior of a conjugated polymer solution. Langmuir2009,25,4668-4677.
    [210]. Arnrutha, S. R.; Jayakannan, M., Probing the pi-stacking induced molecular aggregation inpi-conjugated polymers, oligomers, and their blends of p-phenylenevinylenes. J. Phys. Chem.B2008,112,1119-1129.
    [211]. Cao, X. Y.; Zhang, W. B.; Wang, J. L.; Zhou, X. H.; Lu, H.; Pei, J., Extended pi-conjugateddendrimers based on truxene. J. Am. Chem. Soc.2003,125,12430-12431.
    [212]. Yao, J. H.; Mya, K. Y.; Li, X.; Parameswaran, M.; Xu, Q. H.; Loh, K. P.; Chen, Z. K., Lightscattering and luminescence studies on self-aggregation behavior of amphiphilic copolymermicelles. J. Phys. Chem. B2008,112,749-755.
    [213]. Deans, R.; Kim, J.; Machacek, M. R.; Swager, T. M., A poly (p-phenyleneethynylene) witha highly emissive aggregated phase. J. Am. Chem. Soc.2000,122,8565-8566.
    [214]. Lee, Y. T.; Chiang, C. L.; Chen, C. T., Solid-state highly fluorescentdiphenylaminospirobifluorenylfumaronitrile red emitters for non-doped organiclight-emitting diodes. Chem. Commun.2008,217-219.
    [215]. Yang, J. S.; Yan, J. L., Central-ring functionalization and application of the rigid, aromatic,and H-shaped pentiptycene scaffold. Chem. Commun.2008,1501-1512.
    [216]. Hecht, S.; Fréchet, J. M. J., Dendritic encapsulation of function: Applying nature's siteisolation principle from biomimetics to materials science. Angew. Chem. Int. Ed.2001,40,74-91.
    [217]. Murali, M. G.; Naveen, P.; Udayakumar, D.; Yadav, V.; Srivastava, R., Synthesis andcharacterization of thiophene and fluorene based donor-acceptor conjugated polymercontaining1,3,4-oxadiazole units for light-emitting diodes. Tetrahedron Lett.2012,53,157-161.
    [218]. Taylor, P. N.; O'Connell, M. J.; McNeill, L. A.; Hall, M. J.; Aplin, R. T.; Anderson, H. L.,Insulated molecular wires: Synthesis of conjugated polyrotaxanes by Suzuki coupling inwater. Angew. Chem. Int. Ed.2000,39,3456-3460.
    [219]. Chen, J. W.; Peng, H.; Law, C. C. W.; Dong, Y. P.; Lam, J. W. Y.; Williams, I. D.; Tang, B.Z., Hyperbranched poly(phenylenesilolene)s: Synthesis, thermal stability, electronicconjugation, optical power limiting, and cooling-enhanced light emission. Macromolecules2003,36,4319-4327.
    [220]. Qin, A. J.; Lam, J. W. Y.; Tang, L.; Jim, C. K. W.; Zhao, H.; Sun, J. Z.; Tang, B. Z.,Polytriazoles with aggregation-induced emission characteristics: Synthesis by clickpolymerization and application as explosive chemosensors. Macromolecules2009,42,1421-1424.
    [221]. Liu, J. Z.; Zhong, Y. C.; Lam, J. W. Y.; Lu, P.; Hong, Y. N.; Yu, Y.; Yue, Y. N.; Faisal, M.;Sung, H. H. Y.; Williams, I. D.; Wong, K. S.; Tang, B. Z., Hyperbranched conjugatedpolysiloles: Synthesis, structure, aggregation-enhanced emission, multicolor fluorescentphotopatterning, and superamplified detection of explosives. Macromolecules2010,43,4921-4936.
    [222]. Zhou, Y. F.; Yan, D. Y., Supramolecular self-assembly of amphiphilic hyperbranchedpolymers at all scales and dimensions: progress, characteristics and perspectives. Chem.Commun.2009,1172-1188.
    [223]. Radowski, M. R.; Shukla, A.; von Berlepsch, H.; Bottcher, C.; Pickaert, G.; Rehage, H.;Haag, R., Supramolecular aggregates of dendritic multishell architectures as universalnanocarriers. Angew. Chem. Int. Ed.2007,46,1265-1269.
    [224]. Hsu, J. H.; Fann, W. S.; Tsao, P. H.; Chuang, K. R.; Chen, S. A., Fluorescence fromconjugated polymer aggregates in dilute poor solution. J. Phys. Chem. A1999,103,2375-2380.
    [225]. Nguyen, T. Q.; Doan, V.; Schwartz, B. J., Conjugated polymer aggregates in solution:Control of interchain interactions. J. Chem. Phys.1999,110,4068-4078.
    [226]. Zeng, Q.; Li, Z.; Dong, Y. Q.; Di, C. A.; Qin, A. J.; Hong, Y. N.; Ji, L.; Zhu, Z. C.; Jim, C.K. W.; Yu, G.; Li, Q. Q.; Li, Z. A.; Liu, Y. Q.; Qin, J. G.; Tang, B. Z., Fluorescenceenhancements of benzene-cored luminophors by restricted intramolecular rotations: AIE andAIEE effects. Chem. Commun.2007,70-72.
    [227]. Qin, A. J.; Jim, C. K. W.; Tang, Y. H.; Lam, J. W. Y.; Liu, J. Z.; Mahtab, F.; Gao, P.; Tang,B. Z., Aggregation-enhanced emissions of intramolecular excimers in disubstitutedpolyacetylenes. J. Phys. Chem. B2008,112,9281-9288.
    [228]. Wang, B.; Wang, Y. C.; Hua, J. L.; Jiang, Y. H.; Huang, J. H.; Qian, S. X.; Tian, H.,Starburst triarylamine donor-acceptor-donor quadrupolar derivatives based oncyano-substituted diphenylaminestyrylbenzene: Tunable aggregation-induced emission colorsand large two-photon absorption cross sections. Chem. Eur. J.2011,17,2647-2655.
    [229]. Mori, T.; Watanabe, T.; Minagawa, K.; Tanaka, M., Self-assembly ofoligo(p-phenylenevinylene)-block-poly(ethylene oxide) in polar media and solubilization ofan oligo(p-phenylenevinylene) homooligomer inside the assembly. J. Polym. Sci. Polym.Chem.2005,43,1569-1578.
    [230]. Mortensen, K., Structural properties of self-assembled polymeric aggregates in aqueoussolutions. Polym. Adv. Technol.2001,12,2-22.
    [231]. Westenhoff, S.; Kotov, N. A., Quantum dot on a rope. J. Am. Chem. Soc.2002,124,2448-2449.
    [232]. Duncan, R.; Sat, Y. N., Tumour targeting by enhanced permeability and retention (EPR)effect. Ann. Oncol.1998,9,39-39.
    [233]. Baban, D. F.; Seymour, L. W., Control of tumour vascular permeability. Adv. Drug Deliv.Rev.1998,34,109-119.
    [234]. Peer, D.; Karp, J. M.; Hong, S.; FaroKhzad, O. C.; Margalit, R.; Langer, R., Nanocarriersas an emerging platform for cancer therapy. Nat. Nanotechnol.2007,2,751-760.
    [235]. Fonseca, C.; Simoes, S.; Gaspar, R., Paclitaxel-loaded PLGA nanoparticles: Preparation,physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release2002,83,273-286.
    [236]. Kwon, G. S.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Kataoka, K., Enhanced tumoraccumulation and prolonged circulation times of micelle-forming poly (ethyleneoxide-aspartate) block copolymer-adriamycin conjugates. J. Control. Release1994,28,334-335.
    [237]. Zhang, L.; Gu, F. X.; Chan, J. M.; Wang, A. Z.; Langer, R. S.; Farokhzad, O. C.,Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol.Ther.2008,83,761-769.
    [238]. Diagaradjane, P.; Orenstein-Cardona, J. M.; Colon-Casasnovas, N. E.; Deorukhkar, A.;Shentu, S.; Kuno, N.; Schwartz, D. L.; Gelovani, J. G.; Krishnan, S., Imaging epidermalgrowth factor receptor expression in vivo: Pharmacokinetic and biodistributioncharacterization of a bioconjugated quantum dot nanoprobe. Clin. Cancer Res.2008,14,731-741.
    [239]. Messaritaki, A.; Black, S. J.; van der Walle, C. F.; Rigby, S. P., NMR and confocalmicroscopy studies of the mechanisms of burst drug release from PLGA microspheres. J.Control. Release2005,108,271-281.
    [240]. Bohmer, M. R.; Klibanov, A. L.; Tiemann, K.; Hall, C. S.; Gruell, H.; Steinbach, O. C.,Ultrasound triggered image-guided drug delivery. Eur. J. Radiol.2009,70,242-253.
    [241]. Mora, L.; Chumbimuni-Torres, K. Y.; Clawson, C.; Hernandez, L.; Zhang, L. F.; Wang, J.,Real-time electrochemical monitoring of drug release from therapeutic nanoparticles. J.Control. Release2009,140,69-73.
    [242]. Giepmans, B. N. G.; Adams, S. R.; Ellisman, M. H.; Tsien, R. Y., Review-The fluorescenttoolbox for assessing protein location and function. Science2006,312,217-224.
    [243]. Gao, X. H.; Yang, L. L.; Petros, J. A.; Marshal, F. F.; Simons, J. W.; Nie, S. M., In vivomolecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol.2005,16,63-72.
    [244]. Cui, W.; Lu, X. M.; Cui, K.; Wu, J.; Wei, Y.; Let, Q. H., Fluorescent nanoparticles ofchitosan complex for real-time monitoring drug release. Langmuir2011,27,8384-8390.
    [245]. Zhang, R. Y.; Hummelgard, M.; Lv, G.; Olin, H., Real time monitoring of the drug releaseof rhodamine B on graphene oxide. Carbon2011,49,1126-1132.
    [246]. Weinstain, R.; Segal, E.; Satchi-Fainaro, R.; Shabat, D., Real-time monitoring of drugrelease. Chem. Commun.2010,46,553-555.
    [247]. Yang, C. S.; Chang, C. H.; Tsai, P. J.; Chen, W. Y.; Tseng, F. G.; Lo, L. W.,Nanoparticle-based in vivo investigation on blood-brain barrier permeability followingischemia and reperfusion. Anal. Chem.2004,76,4465-4471.
    [248]. Feng, X. L.; Lv, F. T.; Liu, L. B.; Tang, H. W.; Xing, C. F.; Yang, Q. O.; Wang, S.,Conjugated polymer nanoparticles for drug delivery and imaging. ACS Appl. Mater.Interfaces2010,2,2429-2435.
    [249]. Bu, L. J.; Qu, Y.; Yan, D. H.; Geng, Y. H.; Wang, F. S., Synthesis and characterization ofcoil-rod-coil triblock copolymers comprising fluorene-based mesogenic monodisperseconjugated rod and poly(ethylene oxide) coil. Macromolecules2009,42,1580-1588.
    [250]. Shen, X. Q.; He, F.; Wu, J. H.; Xu, G. Q.; Yao, S. Q.; Xu, Q. H., Enhanced two-photonsinglet oxygen generation by photosensitizer-doped conjugated polymer nanoparticles.Langmuir2011,27,1739-1744.
    [251]. Zhu, L. J.; Tu, C. L.; Zhu, B. S.; Su, Y.; Pang, Y.; Yan, D. Y.; Wu, J. L.; Zhu, X. Y.,Construction and application of pH-triggered cleavable hyperbranched polyacylhydrazonefor drug delivery. Polym. Chem.2011,2,1761-1768.
    [252]. Gil, E. S.; Hudson, S. M., Stimuli-reponsive polymers and their bioconjugates. Prog.Polym. Sci.2004,29,1173-1222.
    [253]. Dimitrov, I.; Trzebicka, B.; Muller, A. H. E.; Dworak, A.; Tsvetanov, C. B.,Thermosensitive water-soluble copolymers with doubly responsive reversibly interactingentities. Prog. Polym. Sci.2007,32,1275-1343.
    [254]. Fujishige, S.; Kubota, K.; Ando, I. Phase transition of aqueous solutions ofpoly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J. Phys. Chem.1989,93,3311-3313.
    [255]. Dautzenberg, H.; Gao, Y. B.; Hahn, M., Formation, structure, and temperature behavior ofpolyelectrolyte complexes between ionically modified thermosensitive polymers. Langmuir2000,16,9070-9081.
    [256]. Fournier, D.; Hoogenboom, R.; Thijs, H. M. L.; Paulus, R. M.; Schubert, U. S., TunablepH-and temperature-sensitive copolymer libraries by reversible addition-fragmentation chaintransfer copolymerizations of methacrylates. Macromolecules2007,40,915-920.
    [257]. Plamper, F. A.; Schmalz, A.; Ballauff, M.; Muller, A. H. E., Tuning thethermoresponsiveness of weak polyelectrolytes by pH and light: Lower and uppercritical-solution temperature of poly(N,N-dimethylaminoethyl methacrylate). J. Am. Chem.Soc.2007,129,14538-14539.
    [258]. Schild, H.G. Poly(N-isopropylacrylamide): Experiment, theory and application. Prog.Polym. Sci.1992,17,163-249.
    [259]. Shibayama, M.; Tanaka, T. Volume phase transition and related phenomena of polymergels. Adv. Polym. Sci.1993,109,1-62.
    [260]. Chen, G.; Hoffman, A. S. Graft copolymers that exhibit temperature-induced phasetransition over a wide range of pH. Nature1996,373,49-52.
    [261]. Aoki, T.; Muramatsu, M.; Torii, T.; Sanui, K.; Ogata, N., Thermosensitive phase transitionof an optically active polymer in aqueous milieu. Macromolecules2001,34,3118-3119.
    [262]. Gan, L. H.; Gan, Y. Y.; Doon, G. R., Poly(N-acryloyl-N'-propylpiperazine): A newstimuli-responsive polymer. Macromolecules2000,33,7893-7897.
    [263]. Gan, L. H.; Deen, G. R.; Loh, X. J.; Gan, Y. Y., New stimuli-responsive copolymers ofN-acryloyl-N'-alkyl piperazine and methyl methacrylate and their hydrogels. Polymer2001,42,65-69.
    [264]. Yuk, S. H.; Cho, S. H.; Lee, S. H. pH/temperature-responsive polymer composed ofpoly((N,N-dimethylamino)ethyl methacrylate-co-ethylacrylamide). Macromolecules1997,30,6856-6859.
    [265]. Cho, S. H.; Jhon, M. S.; Yuk, S. H.; Lee, H. B. Temperature-induced phase transition ofpoly(N,N-dimethylaminoethyl methacrylate-co-acrylamide). J Polym. Sci., Polym. Phys.1997,35,595-598.
    [266]. Bütün, V.; Armes, S. P.; Billingham, N. C. Selective quaternization of2-(dimethylamino)ethyl methacrylate residues in tertiary amine methacrylate diblock copolymers.Macromolecules2001,34,1148-1159.
    [267]. Weaver, J. V. M.; Bannister, I.; Robinson, K. L.; Bories-Azeau, X.; Armes, S. P.;Smallridge, M.; Mckenna, P. Stimulus-responsive water-soluble polymers based on2-hydroxyethyl methacrylate. Macromolecules2004,37,2395-2403.
    [268]. Meeussen, F.; Nies, E.; Berghmans, H.; Verbrugghe, S.; Goethals, E.; Du Prez, F. Phasebehaviour of poly(N-vinyl caprolactam) in water. Polymer2000,41,8597-8602.
    [269]. Malmsten, M.; Lindman, B. Self-assembly in aqueous block copolymer solution.Macromolecules1992,25,5446-5450.
    [270]. Mortensen, K.; Perdersen, S. Structural study on micelle formation ofpoly(ethyleneoxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer inaqueous solution. Macromolecules1993,26,805-812.
    [271]. Alejandro, S.; Daniel, C. Ethoxysilane-capped PEO-PPO-PEO triblocks: A new family ofreverse thermo-responsive polymers. Biomaterials2004,25,2851-2858.
    [272]. Li, H.; Yu, G.; Price, C.; Booth, C.; Hecht, E.; Hofmann, H. Concentrated aqueous micellarsolutions of diblock copoly(oxyethylene/oxybutylene): A study of phase behavior.Macromolecules1997,30,1347-1354.
    [273]. Jeong, B.; Bae, Y. H.; Kim, S. W. Thermoreversible gelation of PEG-PLGA-PEG triblockcopolymer aqueous solutions. Macromolecules1999,32,7064-7069.
    [274]. Rochas, C.; Br let, A.; Guenet, J. M. Thermoreversible gelation of agarose inwater/dimethyl sulfoxide mixtures. Macromolecules1994,27,3830-3835.
    [275]. Fazel, N.; Br let, A.; Guenet, J.-M. Molecular structure and thermal behavior ofpoly(methyl methacrylate) thermoreversibie gels and aggregates. Macromolecules1994,27,3836-3842.
    [276]. Brown, W.; Schillén, K.; Hvidt, S. Triblock copolymers in aqueous solution studied bystatic and dynamic light scattering and oscillatory shear measurements. Influence of relativeblock sizes. J. Phys. Chem.1992,96,6038-6044.
    [277]. Jia, Z. F.; Chen, H.; Zhu, X. Y.; Yan, D. Y., Backbone-thermoresponsive hyperbranchedpolyethers. J. Am. Chem. Soc.2006,128,8144-8145.
    [278]. Huang, K. K.; Fang, Y. K.; Hsu, J. C.; Kuo, C. C.; Chang, W. H.; Chen, W. C., Synthesis,micellar structures, and multifunctional sensory properties of poly(3-hexylthiophene)-block-poly(2-(dimethylamino)ethyl methacrylate) rod-coil diblock copolymers. J. Polym.Sci. Polym. Chem.2011,49,147-155.
    [279]. Lin, S. T.; Tung, Y. C.; Chen, W. C., Synthesis, structures and multifunctional sensoryproperties of poly2,7-(9,9-dihexylfluorene)-block-poly(2-(dimethylamino)ethyl methacrylate)rod-coil diblock copolymers. J. Mater. Chem.2008,18,3985-3992.
    [280]. Xiao, X.; Fu, Y. Q.; Zhou, J. J.; Bo, Z. S.; Li, L.; Chan, C. M., Reversible thermallyresponsive and luminescent coil-rod-coil triblock copolymers. Macromol. Rapid Commun.2007,28,1003-1009.
    [281]. Lin, S. T.; Fuchise, K.; Chen, Y. G.; Sakai, R.; Satoh, T.; Kakuchi, T.; Chen, W. C.,Synthesis, thermomorphic characteristics, and fluorescent properties of poly2,7-(9,9-dihexylfluorene)-block-poly(N-isopropylacrylamide)-block-poly(N-hydroxyethylacrylamide) rod-coil-coil triblock copolymers. Soft Matter2009,5,3761-3770.
    [282]. An, B. K.; Kwon, S. K.; Jung, S. D.; Park, S. Y., Enhanced emission and its switching influorescent organic nanoparticles. J. Am. Chem. Soc.2002,124,14410-14415.
    [283]. Wang, Z. X.; Shao, H. X.; Ye, J. C.; Tang, L.; Lu, P., Dibenzosuberenylidene-endedfluorophores: Rapid and efficient synthesis, characterization, and aggregation-inducedemissions. J. Phys. Chem. B2005,109,19627-19633.
    [284]. Kim, S.; Zheng, Q.; He, G. S.; Bharali, D. J.; Pudavar, H. E.; Baev, A.; Prasad, P. N.,Aggregation-enhanced fluorescence and two-photon absorption in nanoaggregates of a9,10-bis4'-(4''-aminostyryl)styryl anthracene derivative. Adv. Funct. Mater.2006,16,2317-2323.
    [285]. Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z., Aggregation-induced emission: Phenomenon,mechanism and applications. Chem. Commun.2009,4332-4353.
    [286]. Tang, W. X.; Xiang, Y.; Tong, A. J., Salicylaldehyde azines as fluorophores ofaggregation-induced emission enhancement characteristics. J. Org. Chem.2009,74,2163-2166.
    [287]. Choi, J.; Ruiz, C. R.; Nesterov, E. E., Temperature-induced control of conformation andconjugation length in water-soluble fluorescent polythiophenes. Macromolecules2010,43,1964-1974.
    [288]. Hamal, S.; Hirayama, F., Actinometric determination of absolute fluorescence quantumyields. J. Phys. Chem.1983,87,8983-8989.
    [289]. Amalvy, J. I.; Unali, G. F.; Li, Y.; Granger-Bevan, S.; Armes, S. P.; Binks, B. P.; Rodrigues,J. A.; Whitby, C. P., Synthesis of sterically stabilized polystyrene latex particles usingcationic block copolymers and macromonomers and their application as stimulus-responsiveparticulate emulsifiers for oil-in-water emulsions. Langmuir2004,20,4345-4354.
    [290]. Plamper, F. A.; Ruppel, M.; Schmalz, A.; Borisov, O.; Ballauff, M.; Muller, A. H. E.,Tuning the thermoresponsive properties of weak polyelectrolytes: Aqueous solutions ofstar-shaped and linear Poly(N,N-dimethylaminoethyl methacrylate). Macromolecules2007,40,8361-8366.
    [291]. Cheng, H. X.; Xie, S. A.; Zhou, Y. F.; Huang, W.; Yan, D. Y.; Yang, J. T.; Ji, B., Effect ofdegree of branching on the thermoresponsive phase transition behaviors of hyperbranchedmultiarm copolymers: Comparison of systems with LCST transition based on coil-to-globuletransition or hydrophilic-hydrophobic balance. J. Phys. Chem. B2010,114,6291-6299.
    [292]. Wang, F.; Han, M. Y.; Mya, K. Y.; Wang, Y. B.; Lai, Y. H., Aggregation-driven growth ofsize-tunable organic nanoparticles using electronically altered conjugated polymers. J. Am.Chem. Soc.2005,127,10350-10355.
    [293]. Luo, S. Z.; Xu, J.; Zhu, Z. Y.; Wu, C.; Liu, S. Y., Phase transition behavior of unimolecularmicelles with thermoresponsive poly(N-isopropylacrylamide) coronas. J. Phys. Chem. B2006,110,9132-9139.
    [294]. Xu, J.; Luo, S. Z.; Shi, W. F.; Liu, S. Y., Two-stage collapse of unimolecular micelles withdouble thermoresponsive coronas. Langmuir2006,22,989-997.
    [295]. Yuan, W. Z.; Zhao, H.; Shen, X. Y.; Mahtab, F.; Lam, J. W. Y.; Sun, J. Z.; Tang, B. Z.,Luminogenic polyacetylenes and conjugated polyelectrolytes: Synthesis, hybridization withcarbon nanotubes, aggregation-induced emission, superamplification in emission quenchingby explosives, and fluorescent assay for protein quantitation. Macromolecules2009,42,9400-9411.
    [296]. Calabretta, M. K.; Kumar, A.; McDermott, A. M.; Cai, C. Z., Antibacterial activities ofpoly(amidoamine) dendrimers terminated with amino and poly(ethylene glycol) groups.Biomacromolecules2007,8,1807-1811.
    [297]. Qian, Y.; Li, S. Y.; Zhang, G. Q.; Wang, Q.; Wang, S. Q.; Xu, H. J.; Li, C. Z.; Li, Y.; Yang,G. Q., Aggregation-induced emission enhancement of2-(2'-hydroxyphenyl)benzothiazole-based excited-state intramolecular proton-transfer compounds. J. Phys. Chem. B2007,111,5861-5868.
    [298]. Qu, J. Q.; Zhang, J. Y.; Grimsdale, A. C.; Mullen, K.; Jaiser, F.; Yang, X. H.; Neher, D.,Dendronized perylene diimide emitters: Synthesis, luminescence, and electron and energytransfer studies. Macromolecules2004,37,8297-8306.
    [299]. Marsitzky, D.; Vestberg, R.; Blainey, P.; Tang, B. T.; Hawker, C. J.; Carter, K. R.,Self-encapsulation of poly-2,7-fluorenes in a dendrimer matrix. J. Am. Chem. Soc.2001,123,6965-6972.
    [300]. Bhongale, C. J.; Chang, C. W.; Lee, C. S.; Diau, E. W. G.; Hsu, C. S., Relaxation dynamicsand structural characterization of organic nanoparticles with enhanced emission. J. Phys.Chem. B2005,109,13472-13482.
    [301]. Tong, H.; Hong, Y. N.; Dong, Y. Q.; Haussler, M.; Lam, J. W. Y.; Li, Z.; Guo, Z. F.; Guo, Z.H.; Tang, B. Z., Fluorescent "light-up" bioprobes based on tetraphenylethylene derivativeswith aggregation-induced emission characteristics. Chem. Commun.2006,3705-3707.
    [302]. Liu, Y.; Tao, X. T.; Wang, F. Z.; Shi, J. H.; Sun, J. L.; Yu, W. T.; Ren, Y.; Zou, D. C.; Jiang,M. H., Intermolecular hydrogen bonds induce highly emissive excimers: Enhancement ofsolid-state luminescence. J. Phys. Chem. C2007,111,6544-6549.
    [303]. Ryu, S. Y.; Kim, S.; Seo, J.; Kim, Y. W.; Kwon, O. H.; Jang, D. J.; Park, S. Y., Strongfluorescence emission induced by supramolecular assembly and gelation: Luminescentorganogel from nonemissive oxadiazole-based benzene-1,3,5-tricarboxamide gelator. Chem.Commun.2004,70-71.
    [304]. Pu, K. Y.; Li, K.; Shi, J. B.; Liu, B., Fluorescent single-molecular core-shell nanospheres ofhyperbranched conjugated polyelectrolyte for live-cell imaging. Chem. Mater.2009,21,3816-3822.
    [305]. Pu, K. Y.; Shi, J. B.; Cai, L. P.; Li, K.; Liu, B., Affibody-attached hyperbranchedconjugated polyelectrolyte for targeted fluorescence imaging of HER2-positive cancer cell.Biomacromolecules2011,12,2966-2974.
    [306]. Wang, T. T.; Chai, F.; Fu, Q.; Zhang, L. Y.; Liu, H. Y.; Li, L.; Liao, Y.; Su, Z. M.; Wang, C.A.; Duan, B. Y.; Ren, D. X., Uniform hollow mesoporous silica nanocages for drug deliveryin vitro and in vivo for liver cancer therapy. J. Mater. Chem.2011,21,5299-5306.
    [307]. Rejman, J.; Oberle, V.; Zuhorn, I. S.; Hoekstra, D. Size-dependent internalization ofparticles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem. J.2004,377,159-169.
    [308]. Nam, Y. S.; Kang, H. S.; Park, J. K.; Park, T. G.; Han, S. H.; Chang, I. S. New micelle-likepolymer aggregates made from PEI–PLGA diblock copolymers: Micellar characteristics andcellular uptake. Biomaterials2003,24,2053-2059.
    [309]. Godbey, W. T.; Wu, K. K.; Mikos, A. G. Tracking the intracellular path ofpoly(ethylenimine)/DNA complexes for gene delivery. Proc. Natl. Acad. Sci. U. S. A.1999,96,5177-5181.
    [310]. Conner, S. D.; Schmid, S. L., Regulated portals of entry into the cell. Nature2003,422,37-44.
    [311]. Marsh, M.; McMahon, H. T., Cell biology-The structural era of endocytosis. Science1999,285,215-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700