基于超支化聚合物的介孔二氧化硅的制备和改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔材料和超支化聚合物是近二十年来化学和材料学研究的热点领域。介孔材料具有高比表面积、大孔道容量、孔径在2.0~50.0 nm之间由合成条件任意调节等结构特征,从而赋予其许多独特的性能,在多相催化、传感器、吸附与分离等众多领域具有潜在的应用价值。超支化聚合物具有较好的流动性、良好的溶解性、大量的末端官能团等特点,且合成简单,使其在表面修饰、聚合物加工、生物医药、吸附等领域具有广泛的应用前景。本文结合介孔材料和超支化聚合物的相关特性,将超支化聚合物应用于介孔二氧化硅的制备和改性。论文实验工作从三个方面展开,共四章。第二章和第三章利用双亲性超支化共聚醚的自组装性能,以其作为模板,成功制备了介孔二氧化硅;第四章在常规介孔二氧化硅上接枝超支化聚砜胺,研究了其在酸性染料吸附中的应用;第五章将介孔材料的制备和改性相结合,以超支化聚砜胺作为模板制备了介孔二氧化硅,以共缩合法在介孔二氧化硅的制备过程中将超支化聚砜胺直接接枝在介孔二氧化硅中,并用于酸性染料的吸附。具体的研究内容和主要结论如下:
     1.基于弱两亲性的超支化PEHO-star-PPO的介孔二氧化硅的制备及表征
     采用活性阳离子开环聚合法制备了以憎水性超支化PEHO为核、弱亲水性PPO为臂的共聚醚。由于PEHO-star-PPO是具有弱亲水性的两亲性超支化共聚醚,难以在水中直接形成胶束,因此引入了共溶剂。利用超支化PEHO-star-PPO作为模板剂,在共溶剂和选择性溶剂体系中,以TEOS作为硅源,成功制备了孔径均一的介孔材料。在该体系中,起模板作用的是PEHO-star-PPO在共溶剂/选择性溶剂体系中形成的组装体,因而能够通过改变组装体尺寸的因素来调控所制备介孔二氧化硅的介孔尺寸。可采用三种方法对这种介孔二氧化硅的孔径进行调节:(1)通过调节超支化PEHO-star-PPO中PO和EHO的摩尔比,可改变所制备介孔材料的孔径。当超支化共聚醚中PO的比例增加时,导致聚集体尺寸变小,相应的介孔材料的孔径随之变小。(2)改变共溶剂和选择性溶剂的体积比,将改变组装体的尺寸,对介孔材料的孔径造成很大的影响。当甲醇或乙醇用作共溶剂,水用作选择性溶剂,提高水/醇的体积比,所制备的介孔材料的孔径大幅度增加。(3)共溶剂的极性对所制备的材料的孔径有十分重要的影响。当DMSO和丙酮用作共溶剂时,所制备的介孔材料的氮气吸附-脱附曲线呈H2型滞后环,所制备材料的介孔尺寸较小;而当甲醇和乙醇作共溶剂时,所制备介孔材料的氮气吸附-脱附曲线呈H1型滞后环,所制备材料的介孔尺寸较大。
     2.基于两亲性超支化PEHO-star-PPO的介孔二氧化硅的制备及表征
     采用活性阳离子开环聚合法制备了以憎水性超支化PEHO为核、亲水性PEO为臂的共聚醚。超支化PEHO-star-PEO是一种两亲性超支化共聚醚,在水中直接形成胶束。本章利用超支化PEHO-star-PEO作为模板剂,以TEOS作为硅源,成功制备了介孔二氧化硅。模板剂的去除可以通过煅烧或溶剂抽提来实现。由于PEHO-star-PEO结构的不均一性,导致以其为模板而制备的介孔二氧化硅的孔径大小不一,分布较宽。在该体系中,起模板作用的是PEHO-star-PEO形成的组装体或单分子胶束,因而能够通过改变组装体尺寸控制因素调节所制备介孔二氧化硅的介孔尺寸。可采用三种方法对这种介孔二氧化硅的孔径进行调节:(1)通过改变合成体系的温度来调节介孔二氧化硅的孔径。随着体系合成温度的上升,胶束中嵌段共聚物的聚集数增加,而且亲水链段的憎水性有所加强,两者共同作用造成胶束的增大,因而以胶束为模板制备的介孔材料孔径随之增大。(2)加入扩孔剂来扩大所制备材料的介孔孔径。少量三甲苯的加入可大大增加介孔二氧化硅的孔径。(3)溶剂对所制备材料的孔径有十分重要的影响。当水用作溶剂时,所制备的介孔二氧化硅的氮气吸附-脱附曲线呈H3型滞后环,制备的介孔尺寸较大,起作用的模板剂为PEHO-star-PEO的组装体;而当丙酮用作溶剂时,所制备介孔材料的氮气吸附-脱附曲线呈H2型滞后环,所制备材料的介孔尺寸较小,其介孔大小与单分子胶束大小相符。
     3. SBA-15接枝超支化聚砜胺及其在酸性染料吸附中的应用
     利用线型两亲性共聚物PEO-PPO-PEO合成了介孔二氧化硅SBA-15,通过硅烷偶联剂首先将胺丙基引入到SBA-15的内外表面,使其与二乙烯基砜和胺乙基哌嗪进一步反应,将超支化聚砜胺接枝到介孔二氧化硅表面。对改性前后的介孔材料进行了系统的表征,发现超支化聚砜胺的接枝并未改变孔洞的有序结构,但孔径、比表面积和孔容有所减小。研究了改性前后的介孔二氧化硅对山德兰红的吸附作用,并与活性炭的吸附作了比较,超支化聚砜胺接枝的介孔二氧化硅的最大吸附量可达活性炭的3.3~4.7倍,其吸附复合符合Langmuir方程,吸附动力学可用拟二级动力学方程解释,可以认为吸附主要是单分子层吸附。超支化聚砜胺的接枝量、染料溶液的pH值和温度对SBA-HPSA吸附染料的平衡吸附量有一定的影响。
     4.超支化聚砜胺/介孔二氧化硅杂化材料的制备和表征
     采用超支化聚砜胺为模板剂制备了聚砜胺/二氧化硅杂化材料,对杂化材料与煅烧后的无机物进行了测试和分析,发现杂化体内的聚砜胺含量约为25.5%,以聚砜胺为模板可制备介孔二氧化硅。在此基础上,采用“one-spot”法在杂化时引入了胺丙基三乙氧基硅烷,在形成聚砜胺/二氧化硅杂化材料的同时,将超支化聚砜胺直接接枝在二氧化硅的内外表面,对这种改性杂化材料的结构和吸附酸性染料的性能进行了分析。测试结果表明,改性杂化材料对酸性染料的吸附能力远高于活性炭,其最大吸附量可达活性炭的3倍。
Mesoporous materials and hyperbranched polymers have attracted increasing attention in chemistry and material science since 1990’s. Mesoporous materials have unique structure, such as extremely high surface area, large pore volume, tunable pore size from 2 to 50 nm and versatile possibilities of surface functionalization. Therefore, they have potential application in catalysis, sensors, adsorption and separation. On the other hand, hyperbranched polymers possess some advantages such as low viscosity, good solubility, plentiful of terminal functional groups. Hyperbranched polymers can be prepared easily so that they have emerging application in surface modification, polymer processing, medicine, adsorption and nanotechnology. This dissertation focused on the preparation and modification of mesoporous silica based on hyperbranched polymer, which consisted of three primary parts. The second and third chapters described the preparation of mesoporous silica by the template of amphiphilic hyperbranched polymer self-assemblies. The fourth chapter paid attention to the modification of mesoporous silica with hyperbranched poly(sulfone-amine) and its application in acid dye removal. The fifth chapter concentrated on the preparation of mesoporous silica by the template of poly(sulfone-amine) and its direct simultaneous hypergrafting. The main results and conclusions are described as follows:
     1. Preparation and characterization of mesoporous silica by the template of poor amphiphilic hyperbranched PEHO-star-PPO
     Amphiphilic hyperbranched multiarm copolyethers with hydrophobic hyperbranched PEHO cores and linear poor hydrophilic PPO arms were synthesized by cationic ring-opening polymerization. The PEHO-star-PPO is difficult to self-aggregate directly in water due to poor hydrophilicity of PPO arms and hydrophobicity of hyperbranched PEHO cores. Therefore, hyperbranched copolyethers were dissolved in cosolvent and selective solvent for PEHO cores and PPO arms. Mesoporous silica was prepared successfully by the template of PEHO-star-PPO with TEOS as silica source in cosolvent and deoined water. DLS and nitrogen adsorption/desorption isotherms showed that the real structure-directing agent was the self-assemblies of amphiphilic PEHO-star-PPO. As a result, the aggregate size had an important influence on the mesoporous diameter. Three strategies had been used to adjust the mesoporous size: (1) Mesoporous size decreased with increasing of lipophile-hydrophile ratio (the molar ratio of PPO arms to PEHO cores) in the hyperbranched copolyethers template. (2) The volume ratio of selective solvent to cosolvent had great influence on the aggregate size and consequently had effect on the mesoporous size. Mesoporous size increased rapidly with the increasing of water volume ratio in ethanol/methanol and water mixed solvent. (3) The polarity of cosolvent had great effect on the mesopore. When DMSO or acetone as cosolvent, the adsorption/desorption showed H2 hysteresis loop and mesoporous size was small. However, the adsorption/desorption showed H1 hysteresis loop and mesoporous size was much larger with methanol or ethanol as cosolvent.
     2. Preparation and characterization of mesoporous silica by the template of amphiphilic hyperbranched PEHO-star-PEO
     Amphiphilic hyperbranched multiarm copolyethers with hydrophobic hyperbranched PEHO cores and linear hydrophilic PEO arms were synthesized by cationic ring-opening polymerization. The PEHO-star-PEO was a typical amphiphilic hyperbranched copolyether and it could form micelles in water. Mesoporous silica was prepared successfully by the template of PEHO-star-PEO with TEOS as silica source. The pore size of as-synthesized mesoporous silica is uneven because of high polydisperse index. Nitrogen adsorption/desorption isotherms showed that the real structure-directing agent was the self-assemblies or unimolecular micelles of amphiphilic PEHO-star-PEO. As a result, the aggregate size had influence on the mesoporous diameter. Three strategies had been used to adjust the mesoporous size: (1) Higher temperature made micelles larger, therefore the pore size increased. (2) Pore-expanding agent, such as trimethylbenzene, could expand the pore size of mesoporous silica. (3) Solvent had effect on pore size of as-synthesized mesoporous silica. When water as solvent, the adsorption/desorption showed H3 hysteresis loop and mesoporous size was large. The real structure-directing agent was the self-assemblies of hyperbranched PEHO-star-PEO. However, the adsorption/desorption showed H2 hysteresis loop and mesoporous size was small with acetone as solvent. The mesoporous size was consistent with unimolecular micelles.
     3. Modified SBA-15 with hyperbranched poly(sulfone-amine) grafting and its adsorption capacity in acid dye removal
     Mesoporous SBA-15 was synthesized by the template of linear amphiphilic PEO-PPO-PEO. Aminopropyl was anchored, and then hyperbranched poly(sulfone-amine) was grafted onto the SBA-15. The structure and morphology of unmodified and modified mesoporous silica were characterized by FTIR, 29Si CP/MAS NMR, TGA, elemental analysis, XRD, SEM, TEM and nitrogen adsorption/desorption isotherms. Hyperbranched poly(sulfone-amine) grafting did not change the order of mesopore. However, pore size, BET surface area and pore volume were reduced with modification. The adsorption behaviors of Sandolan Red on SBA-15 with and without modification were studied. The maximum adsorption capacity of SBA-15 with hyperbranched poly(sulfone-amine) grafting was 3.3-4.7 times as that of active carbon. The adsorption equilibrium data could be fitted well by the Langmuir adsorption isotherm model. It was then concluded that once a dye molecule occupied a site, no further adsorption could take place at that site and a saturation value was reached which corresponded to the completion of a monolayer. The adsorption process obeyed the pseudo-second-order model, indicating anionic dye had a very strong affinity on SBA-15 with hyperbranched poly(sulfone-amine) grafting. The effect of the experimental parameters, such as grafting content, temperature and solution pH was investigated through a number of batch adsorption experiments. It was found that the removal of acid dye increased with the increase in grafting content of hyperbranched polymer. Temperature and solution pH had effect on the adsorption capacity of Sandolan Red.
     4. Preparation, characterization and application in dye adsorption of hyperbranched poly(sulfone-amine)/mesoporous silica hybrids
     Poly(sulfone-amine)/mesoporous silica hybrids and their calcined silica were prepared and characterized. The hybrids had 25.5% poly(sulfone-amine), and the inorganic framework was mesoporous silica with 3.2 nm mesopore. Then, aminopropyltriethoxylsilane was introduced at the same time of hybrid. Hyperbranched poly(sulfone-amine) was grafting onto mesoporous silica with“one-spot”method. The adsorption behaviors of Sandolan Red on modified poly(sulfone-amine)/silica hybrids were studied. Their maximum adsorption capacity of Sandolan Red was 3 times as that of active carbon.
引文
1. Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C., The Preparation of Alkyltrimethylammonium-Kanemite Complexes and Their Conversion to Microporous Materials. Bull. Chem. Soc. Jpn. 1990, 63, 988-992.
    2. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, (6397), 710-712.
    3. Beck, J. S.; Vartuli, J. S.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olsonk, D. H.; Sheppard, E. W.; Mccullun, S. B.; Higgins, J. B.; Schlenker, J. L., A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc. 1992, 114, 10834-10843.
    4. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, (5350), 548-552.
    5. Stucky, G. D.; Monnier, A.; Schuth, F.; Huo, Q.; Margolese, D.; Kumar, D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F., Molecular and Atomic Arrays in Nanoporous and Mesoporous Materials Synthesis. Molecular Crystals and Liquid Crystals Science and Technology Section a-Molecular Crystals and Liquid Crystals 1994, 240, 187-200.
    6. Huo, Q.; Margolese, D. I.; Clesla, U.; Feng, P.; Gler, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D., Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994, 368, (6469), 317-321.
    7.王连洲;施剑林;禹剑;严东生,介孔氧化硅材料的研究进展.无机材料学报1999, 14, (3), 333-342.
    8. Qiu, H. B.; Wang, S. G.; Zhang, W. B.; Sakamoto, K.; Terasaki, O.; Inoue, Y.; Che, S., Steric and temperature control of enantiopurity of chiral mesoporous silica. Journal of Physical Chemistry C 2008, 112, (6), 1871-1877.
    9. Gao, C.; Sakamoto, Y.; Terasaki, O.; Sakamoto, K.; Che, S., Molecular design of the surfactant and the co-structure-directing agent (CSDA) toward rational synthesis of targeted anionic surfactant templated mesoporous silica. Journal of Materials Chemistry 2007, 17, (34), 3591-3602.
    10. Che, S., Chiral mesoporous materials based on the self-assembly. Journal of Nanoscience and Nanotechnology 2006, 6, (6), 1557-1564.
    11. Garcia-Bennett, A. E.; Kupferschmidt, N.; Sakamoto, Y.; Che, S.; Terasaki, O., Synthesis of mesocage structures by kinetic control of self-assembly in anionic surfactants. Angewandte Chemie-International Edition 2005, 44, (33), 5317-5322.
    12. Che, S.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Terasaki, O.; Tatsumi, T., Synthesis and characterization of chiral mesoporous silica. Nature 2004, 429, (6989), 281-284.
    13.高川波;车顺爱,以阴离子表面活性剂为模板的二氧化硅介孔材料(AMS).石油学报:石油加工2006, 22, (B10), 22-32.
    14. Tanev, P. T.; Pinnavaia, T. J., A Neutral Templating Route to Mesoporous Molecular-Sieves. Science 1995, 267, (5199), 865-867.
    15. Tanev, P. T.; Pinnavaia, T. J., Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating: A comparison of physical properties. Chemistry of Materials 1996, 8, (8), 2068-2079.
    16. Zhang, W. H.; Froba, M.; Wang, J. L.; Tanev, P. T.; Wong, J.; Pinnavaia, T. J., Mesoporous titanosilicate molecular sieves prepared at ambient temperature by electrostatic (S+I-, S(+)X(-)I(+)) and neutral (S degrees I degrees) assembly pathways: A comparison of physical properties and catalytic activity for peroxide oxidations. Journal of the American Chemical Society 1996, 118, (38), 9164-9171.
    17. Wei, Y.; Jin, D. L.; Ding, T. Z.; Shih, W. H.; Liu, X. H.; Cheng, S. Z. D.; Fu, Q., A non-surfactant templating route to mesoporous silica materials. Advanced Materials 1998, 10, (4), 313-316.
    18.郑金玉;丘坤元;危岩,有机小分子模板法合成二氧化钛中孔材料.高等学校化学学报2000, 2(4), 647-649.
    19. Bagshaw, S. A.; Prouzet, E.; Pinnavaia, T. J., Templating of Mesoporous Molecular-Sieves by Nonionic Polyethylene Oxide Surfactants. Science 1995, 269, (5228), 1242-1244.
    20. Larsen, G.; Lotero, E.; Marquez, M., Use of polypropyleneimine tetrahexacontaamine (DAB-Am-64) dendrimer as a single-molecule template to produce mesoporous silicas. Chemistry of Materials 2000, 12, (6), 1513-+.
    21. Velarde-Ortiz, R.; Larsen, G., A poly(propylene imine) (DAP-Am-64) dendrimer as Cu2+ chelator for the synthesis of copper oxide clusters embedded in sol-gel derived matrixes. Chemistry of Materials 2002, 14, (2), 858-866.
    22. Rogers, M. C.; Adisa, B.; Bruce, D. A., Synthesis and characterization of dendrimer-templated mesoporous oxidation catalysts. Catalysis Letters 2004, 98, (1), 29-36.
    23. Hukkamaki, J.; Pakkanen, T. T., Amorphous silica materials prepared by neutral templating route using amine-terminated templates. Microporous and Mesoporous Materials 2003, 65, (2-3), 189-196.
    24. Huang, J. G.; Ichinose, I.; Kunitake, T., Replication of dendrimer monolayer as nanopores in titania ultrathin film. Chemical Communications 2002, (18), 2070-2071.
    25. Bouchara, A.; Rozes, L.; Soler-Illia, G. J. D.; Sanchez, C.; Turrin, C. O.; Caminade, A. M.; Majoral, J. P., Use of functional dendritic macromolecules for the design of metal oxo based hybrid materials. Journal of Sol-Gel Science and Technology 2003, 26, (1-3), 629-633.
    26. Martinez-Ferrero, E.; Franc, G.; Mazeres, S.; Turrin, U. O.; Boissiere, U.; Caminade, A. M.; Majoral, J. P.; Sanchez, C., Optical properties of hybrid dendritic-mesoporous titania nanocomposite films. Chemistry-a European Journal 2008, 14, (25), 7658-7669.
    27. Volden, S.; Glomm, W. R.; Magnusson, H.; Oye, G.; Sjoblom, J., Dendrimers and hyperbranched polyesters as structure-directing agents in the formation of nanoporous silica. Journal of Dispersion Science and Technology 2006, 27, (6), 893-897.
    28. Magbitang, T.; Lee, V. Y.; Cha, J. N.; Wang, H. L.; Chung, W. R.; Miller, R. D.; Dubois, G.; Volksen, W.; Kim, H. C.; Hedrick, J. L., Oriented nanoporous lamellar organosilicates templated from topologically unsymmetrical dendritic-linear block copolymers. Angewandte Chemie-International Edition 2005, 44, (46), 7574-7580.
    29. Vanhest, J. C. M.; Delnoye, D. A. P.; Baars, M.; Vangenderen, M. H. P.; Meijer, E. W., Polystyrene-Dendrimer Amphiphilic Block-Copolymers with a Generation-Dependent Aggregation. Science 1995, 268, (5217), 1592-1595.
    30. Vanhest, J. C. M.; Baars, M.; Elissenroman, C.; Vangenderen, M. H. P.; Meijer, E. W., Acid-Functionalized Amphiphiles Derived from Polystyrene-Poly(Propylene Imine) Dendrimers, with a Ph-Dependent Aggregation. Macromolecules 1995, 28, (19), 6689-6691.
    31. Donners, J.; Heywood, B. R.; Meijer, E. W.; Nolte, R. J. M.; Roman, C.; Schenning, A.; Sommerdijk, N., Amorphous calcium carbonate stabilised by poly(propylene imine) dendrimers. Chemical Communications 2000, (19), 1937-1938.
    32. Maenami, H.; Watanabe, O.; Ishida, H.; Mitsuda, T., Hydrothermal solidification of kaolinite-quartz-lime mixtures. Journal of the American Ceramic Society 2000, 83, (7), 1739-1744.
    33. Gillies, E. R.; Jonsson, T. B.; Frechet, J. M. J., Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. Journal of the American Chemical Society 2004, 126, (38), 11936-11943.
    34. Cho, B. K.; Jain, A.; Gruner, S. M.; Wiesner, U., Nanoparticle-induced packing transition in mesostructured block dendron-silica hybrids. Chemistry of Materials 2007, 19, (15), 3611-3614.
    35. Cho, B. K.; Jain, A.; Mahajan, S.; Ow, H.; Gruner, S. M.; Wiesner, U., Nanohybrids from liquid crystalline extended amphiphilic dendrimers. Journal of the American Chemical Society 2004, 126, 4070-4071.
    36. Cho, B. K.; Jain, A.; Nieberle, J.; Mahajan, S.; Wiesner, U.; Gruner, S. M.; Turk, S.; Rader, H. J., Synthesis and self-assembly of amphiphilic dendrimers based on aliphatic polyether-type dendritic cores. Macromolecules 2004, 37, (11), 4227-4234.
    37. Lin, H. P.; Yang, L. Y.; Mou, C. Y.; Liu, S. B.; Lee, H. K., A direct surface silyl modification of acid-synthesized mesoporous silica. New Journal of Chemistry 2000, 24, (5), 253-255.
    38. Morey, M. S.; O'Brien, S.; Schwarz, S.; Stucky, G. D., Hydrothermal and postsynthesis surface modification of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium. Chemistry of Materials 2000, 12, (4), 898-911.
    39. Antochshuk, V.; Jaroniec, M., Simultaneous modification of mesopores and extraction of templatemolecules from MCM-41 with trialkylchlorosilanes. Chemical Communications 1999, (23), 2373-2374.
    40. Huang, J. H.; Tian, G.; Wang, H. S.; Xu, L.; Kan, Q. B., Large-pore cubic Ia-3d mesoporous silicas: Synthesis, modification and catalytic applications. Journal of Molecular Catalysis a-Chemical 2007, 271, (1-2), 200-208.
    41. Song, S. W.; Hidajat, K.; Kawi, S., Functionalized SBA-15 materials as carriers for controlled drug delivery: Influence of surface properties on matrix-drug interactions. Langmuir 2005, 21, (21), 9568-9575.
    42. Yang, Q.; Yang, L.; Liu, J.; Li, Y.; Li, C., Synthesis and characterization of phosphonic acid functionalized organosilicas with bimodal nanostructure. Chemistry of Materials 2005, 17, (11), 3019-3024.
    43. Yang, Q.; Liu, J.; Yang, J.; Zhang, L.; Feng, Z.; Zhang, J.; Li, C., Acid catalyzed synthesis of ordered bifunctionalized mesoporous organosilicas with large pore. Microporous and Mesoporous Materials 2005, 77, (2-3), 257-264.
    44. Kubota, Y.; Jin, C.; Tatsumi, T., Performance of organic-inorganic hybrid catalysts based on Ia-3d mesoporous silica. Catalysis Today 2008, 132, (1-4), 75-80.
    45. Wang, L.; Qi, T.; Zhang, Y., Novel organic-inorganic hybrid mesoporous materials for boron adsorption. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2006, 275, (1-3), 73-78.
    46. Luca, V.; Soler-Illia, G.; Angelome, P. C.; Steinberg, P. Y.; Drabarek, E.; Hanley, T. L., Striving for order and compositional homogeneity in bulk mesoporous zirconium titanium mixed metal oxides from triblock copolymers and metal chlorides. Microporous and Mesoporous Materials 2009, 118, (1-3), 443-452.
    47. Fattakhova-Rohlfing, D.; Rathousky, J.; Rohlfing, Y.; Bartels, O.; Wark, M., Functionalized mesoporous silica films as a matrix for anchoring electrochemically active guests. Langmuir 2005, 21, 11320-11329.
    48. Izumi, Y.; Kiyotaki, F.; Yagi, N.; Vlaicu, A.-M.; Nisawa, A.; Fukushima, S.; Yoshitake, H.; Iwasawa, Y., X-ray absorption fine structure combined with X-ray fluorescence spectrometry. Part 15. Monitoring of vanadium site transformations on titania and in mesoporous titania by selective detection of the vanadium kai fluorescence. Journal of Physical Chemistry B 2005, 109, (31), 14884-14891.
    49. He, J.; Shen, Y. B.; Evans, D. G., A nanocomposite structure based on modified MCM-48 and polystyrene. Microporous and Mesoporous Materials 2008, 109, 73-83.
    50. He, J.; Shen, Y. B.; Evans, D. G., A nanocomposite structure based on modified MCM-48 and polystyrene. Microporous and Mesoporous Materials 2008, 109, (1-3), 73-83.
    51. Sasidharan, M.; Mal, N. K.; Bhaumik, A., In-situ polymerization of grafted aniline in the channels of mesoporous silica SBA-15. Journal of Materials Chemistry 2007, 17, (3), 278-283.
    52. Rosenholm, J. M.; Linden, M., Wet-chemical analysis of surface concentration of accessible groups on different amino-functionalized mesoporous SBA-15 silicas. Chemistry of Materials 2007, 19,5023-5034.
    53. Moon, J. H.; Ramaraj, B.; Lee, S. M.; Yoon, K. R., Direct grafting of epsilon-caprolactone on solid core/mesoporous shell silica spheres by surface-initiated ring-opening polymerization. Journal of Applied Polymer Science 2008, 107, (4), 2689-2694.
    54. Nguyen, J. V.; Jones, C. W., Design, behavior, and recycling of silica-supported CuBr-bipyridine ATRP catalysts. Macromolecules 2004, 37, (4), 1190-1203.
    55. Nguyen, J. V.; Jones, C. W., Effect of the synthetic method and support porosity on the structure and performance of silica-supported CuBr/pyridylmethanimine atom transfer radical polymerization catalysts. II. Polymerization of methyl methacrylate. Journal of Polymer Science Part a-Polymer Chemistry 2004, 42, (6), 1384-1399.
    56. Nguyen, J. V.; Jones, C. W., Effect of the synthetic method and support porosity on the structure and performance of silica-supported CuBr/pyridylmethanimine atom transfer radical polymerization catalysts. I. Catalyst preparation and characterization. Journal of Polymer Science Part a-Polymer Chemistry 2004, 42, (6), 1367-1383.
    57. Save, M.; Granvorka, G.; Bernard, J.; Charleux, B.; Boissiere, C.; Grosso, D.; Sanchez, C., Atom transfer radical polymerization of styrene and methyl methacrylate from mesoporous ordered silica particles. Macromolecular Rapid Communications 2006, 27, (6), 393-398.
    58. Zhou, Z. Y.; Zhu, S. M.; Zhang, D., Grafting of thermo-responsive polymer inside mesoporous silica with large pore size using ATRP and investigation of its use in drug release. Journal of Materials Chemistry 2007, 17, (23), 2428-2433.
    59. Hong, C. Y.; Li, X.; Pan, C. Y., Smart core-shell nanostructure with a mesoporous core and a stimuli-responsive nanoshell synthesized via surface reversible addition-fragmentation chain transfer polymerization. Journal of Physical Chemistry C 2008, 112, (39), 15320-15324.
    60. Hong, C. Y.; Li, X.; Pan, C. Y., Grafting polymer nanoshell onto the exterior surface of mesoporous silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization. European Polymer Journal 2007, 43, 4114-4122.
    61. Lenarda, M.; Chessa, G.; Moretti, E.; Polizzi, S.; Storaro, L.; Talon, A., Toward the preparation of a nanocomposite material through surface initiated controlled/"living" radical polymerization of styrene inside the channels of MCM-41 silica. Journal of Materials Science 2006, 41, (19), 6305-6312.
    62. Reynhardt, J. P. K.; Yang, Y.; Sayari, A.; Alper, H., Rhodium complexed C-2-PAMAM dendrimers supported on large pore Davisil silica as catalysts for the hydroformylation of olefins. Advanced Synthesis & Catalysis 2005, 347, (10), 1379-1388.
    63. Reynhardt, J. P. K.; Yang, Y.; Sayari, A.; Alper, H., Polyamidoamine dendrimers prepared inside the channels of pore-expanded periodic mesoporous silica. Advanced Functional Materials 2005, 15, (10), 1641-1646.
    64. Reynhardt, J. P. K.; Yang, Y.; Sayari, A.; Alper, H., Periodic mesoporous silica-supported recyclable rhodium-complexed dendrimer catalysts. Chemistry of Materials 2004, 16, (21), 4095-4102.
    65. Radu, D. R.; Lai, C. Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S. Y., A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. Journal of the American Chemical Society 2004, 126, (41), 13216-13217.
    66. Kageyama, K.; Tamazawa, J.; Aida, T., Extrusion polymerization: Catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica. Science 1999, 285, (5436), 2113-2115.
    67. Zhang, L. X.; Shi, J. L.; Yu, J.; Hua, Z. L.; Zhao, X. G.; Ruan, M. L., A new in-situ reduction route for the synthesis of Pt nanoclusters in the channels of mesoporous silica SBA-15. Advanced Materials 2002, 14, (20), 1510-+.
    68. Corma, A.; Grande, M. S.; GonzalezAlfaro, V.; Orchilles, A. V., Cracking activity and hydrothermal stability of MCM-41 and its comparison with amorphous silica-alumina and a USY zeolite. Journal of Catalysis 1996, 159, (2), 375-382.
    69. Tanev, P. T.; Chibwe, M.; Pinnavaia, T. J., Titanium-Containing Mesoporous Molecular-Sieves for Catalytic-Oxidation of Aromatic-Compounds. Nature 1994, 368, (6469), 321-323.
    70. Wu, C. G.; T.Bein, Conducting Polyaniline Filaments in Mesoporous Channel Host. Science 1994, 264, 1757-1759.
    71. Eliseev, A. A.; Napolskii, K. S.; Lukashin, A. V.; Tretyakov, Y. D., Ordered iron nanowires in the mesoporous silica matrix. Journal of Magnetism and Magnetic Materials 2004, 272-276, 1609-1611.
    72. Lu, Y. F.; Yang, Y.; Sellinger, A.; Lu, M. C.; Huang, J. M.; Fan, H. Y.; Haddad, R.; Lopez, G.; Burns, A. R.; Sasaki, D. Y.; Shelnutt, J.; Brinker, C. J., Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature 2001, 410, (6831), 913-917.
    73. Wang, D.; Zhou, W. L.; McCaughy, B. F.; Hampsey, J. E.; Ji, X.; Jiang, Y.-B.; Xu, H.; Tang, J.; Schmehl, R. H.; O'Connor, C.; Brinker, C. J.; Lu, Y., Electrodeposition of metallic nanowire thin films using mesoporous silica templates. Advanced Materials 2003, 15, (2), 130-133.
    74. Ryan, K. M.; Erts, D.; Olin, H.; Morris, M. A.; Holmes, J. D., Three dimensional architectures of ultra-high density semiconducting nanowires deposited on chip. Journal of the American Chemical Society 2003, 125, (20), 6284-6288.
    75. Marlow, F.; Zhao, D. Y.; Stucky, G. D., Doped mesoporous silica fibers: the internal structure. Microporous and Mesoporous Materials 2000, 39, (1-2), 37-42.
    76. Yang, P.; Wirnsberger, G.; Huang, H. C.; Cordero, S. R.; McGehee, M. D.; Scott, B.; Deng, T.; Whitesides, G. M.; Chmelka, B. F.; Buratto, S. K.; Stucky, G. D., Mirrorless lasing from mesostructured waveguides patterned by soft lithography. Science 2000, 287, (5452), 465-467.
    77. Schomburg, C.; Wohrle, D.; SchulzEkloff, G., In situ synthesis of azo dyes in mesoporous Y zeolites. Zeolites 1996, 17, (3), 232-236.
    78. Loerke, J.; Marlow, F., Laser emission from dye-doped mesoporous silica fibers. Advanced Materials 2002, 14, (23), 1745-+.
    79. Wirnsberger, G.; Yang, P. D.; Huang, H. C.; Scott, B.; Deng, T.; Whitesides, G. M.; Chmelka, B. F.;Stucky, G. D., Patterned block-copolymer-silica mesostructures as host media for the laser dye rhodamine 6G. Journal of Physical Chemistry B 2001, 105, (27), 6307-6313.
    80. Yang, P. D.; Wirnsberger, G.; Huang, H. C.; Cordero, S. R.; McGehee, M. D.; Scott, B.; Deng, T.; Whitesides, G. M.; Chmelka, B. F.; Buratto, S. K.; Stucky, G. D., Mirrorless lasing from mesostructured waveguides patterned by soft lithography. Science 2000, 287, (5452), 465-467.
    81. Dag, O.; Ozin, G. A.; Yang, H.; Reber, C.; Bussiere, G., Photoluminescent silicon clusters in oriented hexagonal mesoporous silica film. Advanced Materials 1999, 11, (6), 474-+.
    82. Zhao, D.; Yang, P.; Melosh, N.; Feng, J.; Chmelka, B. F.; Stucky, G. D., Continuous mesoporous silica films with highly ordered large pore structures. Advanced Materials 1998, 10, (16), 1380-+.
    83. Fan, H. Y.; Bentley, H. R.; Kathan, K. R.; Clem, P.; Lu, Y. F.; Brinker, C. J., Self-assembled aerogel-like low dielectric constant films. Journal of Non-Crystalline Solids 2001, 285, (1-3), 79-83.
    84. C. M. Yang; A. T. Choi; F. M. Pan; T. G. Tsai; K. J. Chao, Spin-on mesoporous silica films with ultralow dielectric constants, ordered pore structures, and hydrophobic surfaces. Adv. Mater. 2001, 13, 1099.
    85. Tsai, T. G.; Cho, A. T.; Yang, C. M.; Pan, F. M.; Chao, K. J., Formation and microstructure of mesoporous silica films with ultralow dielectric constants. Journal of the Electrochemical Society 2002, 149, (9), F116-F121.
    86. Yang, C. M.; Cho, A. T.; Pan, F. M.; Tsai, T. G.; Chao, K. J., Spin-on mesoporous silica films with ultralow dielectric constants, ordered pore structures, and hydrophobic surfaces. Advanced Materials 2001, 13, (14), 1099-+.
    87. Baskaran, S.; Liu, J.; Domansky, K.; Kohler, N.; Li, X. H.; Coyle, C.; Fryxell, G. E.; Thevuthasan, S.; Williford, R. E., Low dielectric constant mesoporous silica films through molecularly templated synthesis. Advanced Materials 2000, 12, (4), 291-294.
    88. Lu, Y. F.; Fan, H. Y.; Doke, N.; Loy, D. A.; Assink, R. A.; LaVan, D. A.; Brinker, C. J., Evaporation-induced self-assembly of hybrid bridged silsesquioxane film and particulate mesophases with integral organic functionality. Journal of the American Chemical Society 2000, 122, (22), 5258-5261.
    89. J.S.Beck; R.S.Socha; Dl.S.Shibaabi, USP 5113707 1993.
    90. Liu, J.; Feng, X.; Fryxell, G. E.; Gong, M.; Baskaran, S.; Chen, X., Heavy metal separation by functionalized mesoporous materials. Abstracts of Papers of the American Chemical Society 1997, 214, 90-IEC.
    91. Kang, T.; Park, Y.; Yi, J., Highly selective adsorption of Pt2+ and Pd2+ using thiol-functionalized mesoporous silica. Industrial & Engineering Chemistry Research 2004, 43, (6), 1478-1484.
    92. Olkhovyk, O.; Antochshuk, V.; Jaroniec, M., Benzoylthiourea-modified MCM-48 mesoporous silica for mercury(II) adsorption from aqueous solutions. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2004, 236, (1-3), 69-72.
    93. Walcarius, A.; Etienne, M.; Delacote, C., Uptake of inorganic Hg-II by organically modifiedsilicates: influence of pH and chloride concentration on the binding pathways and electrochemical monitoring of the processes. Analytica Chimica Acta 2004, 508, (1), 87-98.
    94. Chen, X. B.; Feng, X. D.; Liu, J.; Fryxell, G. E.; Gong, M. L., Mercury separation and immobilization using self-assembled monolayers on mesoporous supports (SAMMS). Separation Science and Technology 1999, 34, (6-7), 1121-1132.
    95. Mattigod, S. V.; Feng, X. D.; Fryxell, G. E.; Liu, J.; Gong, M. L., Separation of complexed mercury from aqueous wastes using self-assembled mercaptan on mesoporous silica. Separation Science and Technology 1999, 34, (12), 2329-2345.
    96. Nyman, M.; Hobbs, D. T., A family of peroxo-titanate materials tailored for optimal strontium and actinide sorption. Chemistry of Materials 2006, 18, (26), 6425-6435.
    97. Yantasee, W.; Fryxell, G. E.; Lin, Y. H., Voltammetric analysis of europium at screen-printed electrodes modified with salicylamide self-assembled on mesoporous silica. Analyst 2006, 131, (12), 1342-1346.
    98. Fryxell, G. E.; Lin, Y. H.; Fiskum, S.; Birnbaum, J. C.; Wu, H.; Kemner, K.; Kelly, S., Actinide sequestration using self-assembled monolayers on mesoporous supports. Environmental Science & Technology 2005, 39, (5), 1324-1331.
    99. Lin, Y. H.; Fiskum, S. K.; Yantasee, W.; Wu, H.; Mattigod, S. V.; Vorpagel, E.; Fryxell, G. E.; Raymond, K. N.; Xu, J. D., Incorporation of hydroxypyridinone ligands into self-assembled monolayers on mesoporous supports for selective actinide sequestration. Environmental Science & Technology 2005, 39, (5), 1332-1337.
    100.国伟林;王西奎,有序介孔材料的合成及其在环境科学中的应用.济南大学学报(自然科学版) 2002, 16, (1), 101-103.
    101. Asouhidou, D. D.; Triantafylidis, K. S.; Lazaridis, N. K.; Matis, K. A.; Kim, S. S.; Pinnavaia, T. J., Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons. Microporous and Mesoporous Materials 2009, 117, (1-2), 257-267.
    102. Pauporte, T.; Rathousky, J., Electrodeposited mesoporous ZnO thin films as efficient photocatalysts for the degradation of dye pollutants. Journal of Physical Chemistry C 2007, 111, (21), 7639-7644.
    103. Cestari, A. R.; Vieira, E. F. S.; Vieira, G. S.; Almeida, L. E., Aggregation and adsorption of reactive dyes in the presence of an anionic surfactant on mesoporous aminopropyl silica. Journal of Colloid and Interface Science 2007, 309, (2), 402-411.
    104. Yan, Z.; Li, G. T.; Mu, L.; Tao, S. Y., Pyridine-functionalized mesoporous silica as an efficient adsorbent for the removal of acid dyestuffs. Journal of Materials Chemistry 2006, 16, (18), 1717-1725.
    105. Bearzotti, A.; Mio Bertolo, J.; Innocenzi, P.; Falcaro, P.; Traversa, E. In Relative humidity and alcohol sensors based on mesoporous silica thin films synthesised from block copolymers, Prague, Czech Republic, 2003; Elsevier: Prague, Czech Republic, 2003; pp 107-110.
    106. Innocenzi, P.; Martucci, A.; Guglielmi, M.; Bearzotti, A.; Traversa, E. In Electrical and structuralcharacterisation of mesoporous silica thin films as humidity sensors, Basel, 2001; Elsevier Science B.V.: Basel, 2001; pp 299-303.
    107. Bearzotti, A.; Bertolo, J. M.; Innocenzi, P.; Falcaro, P.; Traversa, E., Humidity sensors based on mesoporous silica thin films synthesised by block copolymers. Journal of the European Ceramic Society 2004, 24, (6), 1969-1972.
    108. Rebrov, E. V.; Berenguer-Murcia, A.; Johnson, B. F. G.; Schouten, J. C., Gold supported on mesoporous titania thin films for application in microstructured reactors in low-temperature water-gas shift reaction. Catalysis Today 2008, 138, (3-4), 210-215.
    109. Fiorilli, S.; Onida, B.; Macquarrie, D.; Garrone, E., Mesoporous SBA-15 silica impregnated with Reichardt's dye: A material optically responding to NH3. Sensors and Actuators, B: Chemical 2004, 100, (1-2), 103-106.
    110. Varghese, O. K.; Gong, D.; Dreschel, W. R.; Ong, K. G.; Grimes, C. A., Ammonia detection using nanoporous alumina resistive and surface acoustic wave sensors. Sensors and Actuators, B: Chemical 2003, 94, (1), 27-35.
    111. Wang, C. L.; Zhu, G. S.; Li, J.; Cai, X. H.; Wei, Y. H.; Zhang, D. L.; Qiu, S. L., Rigid nanoscopic containers for highly dispersed, stable metal and bimetal nanoparticles with both size and site control. Chemistry-a European Journal 2005, 11, (17), 4975-4982.
    112. Chaillou, A.; Charrier, J.; Lorrain, N.; Sarret, M.; Haji, L. In Porous silicon ammonia gas sensor, Strasbourg, France, 2006; International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States: Strasbourg, France, 2006; p 61890.
    113. Onida, B.; Fiorilli, S.; Borello, L.; Viscardi, G.; Macquarrie, D.; Garrone, E., Mechanism of the optical response of mesoporous silica impregnated with Reichardt's dye to NH3 and other gases. Journal of Physical Chemistry B 2004, 108, (43), 16617-16620.
    114. Gimon-Kinsel, M. E.; Balkus, K. J., Pulsed laser deposition of mesoporous niobium oxide thin films and application as chemical sensors. Microporous and Mesoporous Materials 1999, 28, (1), 113-123.
    115. Qi, Q.; Zhang, T.; Zheng, X. J.; Wan, L. F., Preparation and humidity sensing properties of Fe-doped mesoporous silica SBA-15. Sensors and Actuators B-Chemical 2008, 135, (1), 255-261.
    116. Yang, X. Y.; Li, Z. Q.; Liu, B.; Klein-Hofmann, A.; Tian, G.; Feng, Y. F.; Ding, Y.; Su, D. S.; Xiao, F. S., "Fish-in-net" encapsulation of enzymes in macroporous cages for stable, reusable, and active heterogeneous biocatalysts. Advanced Materials 2006, 18, (4), 410-+.
    117. Payra, P.; Dutta, P. K., Development of a dissolved oxygen sensor using tris(bipyridyl) ruthenium (II) complexes entrapped in highly siliceous zeolites. Microporous and Mesoporous Materials 2003, 64, (1-3), 109-118.
    118. Mulik, S.; Sotiriou-Leventis, C.; Leventis, N., Macroporous Electrically Conducting Carbon Networks by Pyrolysis of Isocyanate-Cross-Linked Resorcinol-Formaldehyde Aerogels. Chemistry of Materials 2008, 20, (22), 6985-6997.
    119. Bai, Y.; Yang, H.; Yang, W.; Li, Y.; Sun, C., Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction. Sensors and Actuators, B: Chemical 2007, 124, (1), 179-186.
    120. Dai, Z.; Fang, M.; Bao, J.; Wang, H.; Lu, T., An amperometric glucose biosensor constructed by immobilizing glucose oxidase on titanium-containing mesoporous composite material of no. 41 modified screen-printed electrodes. Analytica Chimica Acta 2007, 591, (2), 195-199.
    121. Zhao, X.; Lin, H. X.; Cui, K.; Yao, Y. W.; Cai, Q.; Feng, Q. L.; Li, H. D., Preparation of radiolarian-like mesoporous silica from water-diethyl ether binary solvent system. Chemical Journal of Chinese Universities-Chinese 2007, 28, (3), 419-421.
    122. Telbiz, G. M.; Gerda, V. I.; Il'in, V. G.; Starodub, N. F., Mesoporous silica materials as sensitive components for chemo- and biosensors. Ukrainskij Khimicheskij Zhurnal 2005, 71, (9-10), 64-68.
    123. Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hyeon, T., Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery. Angewandte Chemie-International Edition 2008, 47, (44), 8438-8441.
    124. Cosnier, S.; Senillou, A.; Gratzel, M.; Comte, P.; Vlachopoulos, N.; Renault, N. J.; Martelet, C., A glucose biosensor based on enzyme entrapment within polypyrrole films electrodeposited on mesoporous titanium dioxide. Journal of Electroanalytical Chemistry 1999, 469, (2), 176-181.
    125. Cosnier, S.; Gondran, C.; Senillou, A.; Gratzel, M.; Vlachopoulos, N., Mesoporous TiO2 films: New catalytic electrode materials for fabricating amperometric biosensors based on oxidases. Electroanalysis 1997, 9, (18), 1387-1392.
    126. Setzu, S.; Salis, S.; Demontis, V.; Salis, A.; Monduzzi, M.; Mula, G., Porous silicon-based Potentiometric biosensor for triglycerides. Physica Status Solidi (A) Applications and Materials 2007, 204, (5), 1434-1438.
    127. Liu, B.; Hu, R.; Deng, J., Characterization of immobilization of an enzyme in a modified Y zeolite matrix and its application to an amperometric glucose biosensor. Analytical Chemistry 1997, 69, (13), 2343-2348.
    128. Moore, K. L.; Tsybeskov, L.; Fauchet, P. M.; Hall, D. G. In Room temperature band-edge luminescence from silicon grains prepared by the recrystallization of mesoporous silicon, Boston, MA, USA, 1997; Materials Research Society, Pittsburgh, PA, USA: Boston, MA, USA, 1997; pp 517-522.
    129. Gao, Z.; Varshney, S. K.; Wong, S.; Eisenberg, A., Block copolymer `crew-cut' micelles in water. Macromolecules 1994, 27, (26), 7923-7927.
    130. Desbaumes, L.; Eisenberg, A., Single-solvent preparation of crew-cut aggregates of various morphologies from an amphiphilic diblock copolymer. Langmuir 1999, 15, (1), 36-38.
    131. Zhang, L.; Eisenberg, A., Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution. Polymers for Advanced Technologies 1998, 9, (10-11), 677-699.
    132. Zhang, L.; Eisenberg, A., Multiple morphologies and characteristics of `crew-cut' micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. Journal of the American Chemical Society 1996, 118, (13), 3168-3181.
    133. Zhang, L.; Eisenberg, A. In Thermodynamic vs kinetic aspects for the morphological transitions of crew-cut aggregates formed by the self-assembly of PS-b-PAA diblock copolymers in solution, Boston, MA, USA, 1998; ACS, Washington, DC, USA: Boston, MA, USA, 1998; pp 382-383.
    134. Yu, Y.; Zhang, L.; Eisenberg, A., Morphogenic effect of solvent on crew-cut aggregates of apmphiphilic diblock copolymers. Macromolecules 1998, 31, (4), 1144-1154.
    135. Zhang, L.; Yu, K.; Eisenberg, A., Ion-induced morphological changes in 'crew-cut' aggregates of amphiphilic block copolymers. Science 1996, 272, (5269), 1777-1779.
    136. Yu, K.; Eisenberg, A., Bilayer morphologies of self-assembled crew-cut aggregates of amphiphilic PS-b-PEO diblock copolymers in solution. Macromolecules 1998, 31, (11), 3509-3518.
    137. Zhang, L.; Eisenberg, A., Crew-cut aggregates from self-assembly of blends of polystyrene-b-poly(acrylic acid) block copolymers and homopolystyrene in solution. Journal of Polymer Science, Part B: Polymer Physics 1999, 37, (13), 1469-1484.
    138. Yu, Y.; Eisenberg, A. In Morphologies of crew-cut aggregates of polystyrene-b-poly(4-vinylpyridium methyl iodide) block polyelectrolytes, Boston, MA, USA, 1998; ACS, Washington, DC, USA: Boston, MA, USA, 1998; pp 776-777.
    139. Zhao, Y.; Zou, H.; Shi, W.; Tang, L., Preparation and characterization of mesoporous silica spheres with bimodal pore structure from silica/hyperbranched polyester nanocomposites. Microporous and Mesoporous Materials 2006, 92, (1-3), 251-258.
    140. Zhang, L.; Shen, H.; Eisenberg, A., Phase separation behavior and crew-cut micelle formation of polystyrene-b-poly(acrylic acid) copolymers in solutions. Macromolecules 1997, 30, (4), 1001-1011.
    141. Riegel, I. C.; Eisenberg, A.; Petzhold, C. L.; Samios, D., Novel bowl-shaped morphology of crew-cut aggregates from amphiphilic block copolymers of styrene and 5-(N,N-diethylamino)isoprene. Langmuir 2002, 18, (8), 3358-3363.
    142. Zhang, L.; Eisenberg, A., Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions. Macromolecules 1996, 29, (27), 8805-8815.
    143. Zhang, L.; Eisenberg, A., Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution. Macromolecules 1999, 32, (7), 2239-2249.
    144. Yu, Y. S.; Eisenberg, A., Control of morphology through polymer-solvent interactions in crew-cut aggregates of amphiphilic block copolymers. Journal of the American Chemical Society 1997, 119, (35), 8383-8384.
    145. Ndamanisha, J. C.; Bai, J.; Qj, B.; Guo, L., Application of electrochemical properties of ordered mesoporous carbon to the determination of glutathione and cysteine. Analytical Biochemistry 2009,386, (1), 79-84.
    146. Qiu, T.; Tang, L. M.; Tuo, X. L.; Zhang, X. L.; Liu, D. S., Study on self-assembly properties of aryl-alkyl hyperbranched polyesters with carboxylic end groups. Polymer Bulletin 2001, 47, (3-4), 337-342.
    147.邱藤;唐黎明;庹新林;由虎;王晓工;刘德山,端基结构对超支化聚合物静电吸附自组装行为的影响.高等学校化学学报2004, 25, (5), 971-974.
    148.唐黎明;邱藤;由虎;方宇;庹新林;刘德山,超支化聚负离子P超支化聚正离子自组装膜的制备及反应.高分子学报2005, (4), 625-628.
    149.张昊宇;和亚宁;李煜;王晓工,超支化偶氮大分子重氮盐静电层-层自组装膜的制备及光响应性研究.高分子学报2008, (4), 383-387.
    150. Ornatska, M.; Peleshanko, S.; Genson, K. L.; Rybak, B.; Bergman, K. N.; Tsukruk, V. V., Assembling of amphiphilic highly branched molecules in supramolecular nanofibers. Journal of the American Chemical Society 2004, 126, (31), 9675-9684.
    151. Ornatska, M.; Peleshanko, S.; Rybak, B.; Holzmueller, J.; Tsukruk, V. V., Supramolecular multiscale fibers through one-dimensional assembly of dendritic molecules. Advanced Materials 2004, 16, (23-24), 2206-+.
    152. Ornatska, M.; Bergman, K. N.; Rybak, B.; Peleshanko, E.; Tsukruk, V. V., Nanofibers from functionalized dendritic molecules. Angewandte Chemie-International Edition 2004, 43, (39), 5246-5249.
    153. Ornatska, M.; Bergman, K. N.; Goodman, M.; Peleshanko, S.; Shevchenko, V. V.; Tsukruk, V. V., Role of functionalized terminal groups in formation of nanofibrillar morphology of hyperbranched polyesters. Polymer 2006, 47, (24), 8137-8146.
    154. Yan, D. Y.; Zhou, Y. F.; Hou, J., Supramolecular self-assembly of macroscopic tubes. Science 2004, 303, (5654), 65-67.
    155. Zhou, Y. F.; Yan, D. Y., Supramolecular self-assembly of giant polymer vesicles with controlled sizes. Angewandte Chemie-International Edition 2004, 43, (37), 4896-4899.
    156. Zhou, Y. F.; Yan, D. Y.; Dong, W. Y.; Tian, Y., Temperature-responsive phase transition of polymer vesicles: Real-time morphology observation and molecular mechanism. Journal of Physical Chemistry B 2007, 111, (6), 1262-1270.
    157. Zhou, Y. F.; Yan, D. Y., Real-time membrane fission of giant polymer vesicles. Angewandte Chemie-International Edition 2005, 44, (21), 3223-3226.
    158. Zhou, Y. F.; Yan, D. Y., Real-time membrane fusion of giant polymer vesicles. Journal of the American Chemical Society 2005, 127, (30), 10468-10469.
    159. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y., Synthesis and size-controllable self-assembly of a novel amphiphilic hyperbranched multiarm copolyether. Macromolecules 2005, 38, (21), 8679-8686.
    160. Dong, W. Y.; Zhou, Y. F.; Yan, D. Y.; Mai, Y. Y.; He, L.; Jin, C. Y., Honeycomb-Structured Microporous Films Made from Hyperbranched Polymers by the Breath Figure Method. Langmuir 2009,25, (1), 173-178.
    161. Jia, Z. F.; Zhou, Y. F.; Yan, D. Y., Amphiphilic star-block copolymers based on a hyperbranched core: Synthesis and supramolecular self-assembly. Journal of Polymer Science Part a-Polymer Chemistry 2005, 43, (24), 6534-6544.
    162. Jiang, G. H.; Wang, L.; Chen, T.; Dong, X. C.; Yu, H. J.; Wang, J. F.; Chen, C., Synthesis and self-assembly of hyperbranched polymers with benzoyl terminal arms. Journal of Polymer Science Part a-Polymer Chemistry 2005, 43, (22), 5554-5561.
    163. Jiang, G. H.; Wang, L.; Chen, T.; Yu, H. J.; Dong, X. C.; Chen, C., Synthesis and self-assembly of hyperbranched polyester peripherally modified by touluene-4-sulfonyl groups. Polymer 2005, 46, (22), 9501-9507.
    164. Jiang, G. H.; Wang, L.; Chen, T.; Yu, H. J.; Wang, C. L.; Chen, C., Synthesis and macroscopic self-assembly of multiarm hyperbranched polyethers with benzoyl-terminated groups. Polymer 2005, 46, (14), 5351-5357.
    165. Jiang, G. H.; Wang, L.; Chen, W. X., Synthesis of multi-arm star polystyrene with hyperbranched polyether core. European Polymer Journal 2006, 42, (12), 3333-3340.
    166. Jiang, G. H.; Wang, L.; Dong, X. C.; Chen, C.; Chen, T., Synthesis and self-assembly of hyperbranched polyethers peripherally modified with adenosine 5 '-monophosphate. Journal of Applied Polymer Science 2006, 99, (3), 1147-1152.
    167. Jiang, G. H.; Wang, L.; Chen, T.; Chen, C.; Yu, H. J., Synthesis of multi-arm star polystyrene with hyperbranched polyester initiators by atom transfer radical polymerization. Journal of Applied Polymer Science 2006, 99, (3), 728-733.
    168. Jiang, M.; Wu, Y.; He, Y.; Nie, J., Micelles formed by self-assembly of hyperbranched poly[(amine-ester)-co-(D,L-lactide)] (HPAE-co-PLA) copolymers for protein drug delivery. Polymer International 2009, 58, (1), 31-39.
    169. Gao, C.; Yan, D., Hyperbranched polymers: from synthesis to applications. Progress in Polymer Science 2004, 29, (3), 183-275.
    170. Slagt, M. Q.; Stiriba, S. E.; Gebbink, R.; Kautz, H.; Frey, H.; van Koten, G., Encapsulation off hydrophilic pincer-platinum(II) complexes in amphiphilic hyperbranched polyglycerol nanocapsules. Macromolecules 2002, 35, (15), DOI 10.1021/ma020094s|UNSP MA020094S.
    171. Slagt, M. Q.; Stiriba, S. E.; Kautz, H.; Gebbink, R.; Frey, H.; van Koten, G., Optically active hyperbranched polyglycerol as scaffold for covalent and noncovalent immobilization of platinum(II) NCN-pincer complexes. Catalytic application and recovery. Organometallics 2004, 23, (7), 1525-1532.
    172. Stiriba, S. E.; Slagt, M. Q.; Kautz, H.; Gebbink, R.; Thomann, R.; Frey, H.; van Koten, G., Synthesis and supramolecular association of immobilized NCN-pincer platinum(II) complexes on hyperbranched polyglycerol supports. Chemistry-a European Journal 2004, 10, (5), 1267-1273.
    173. Mecking, S.; Thomann, R.; Frey, H.; Sunder, A., Preparation of catalytically active palladium nanoclusters in compartments of amphiphilic hyperbranched polyglycerols. Macromolecules 2000, 33,(11), 3958-3960.
    174. Zhai, J.; He, Q. G.; Li, Y. S.; Jiang, L.; Bai, F. L., Self-assembly of nanoparticles via conjugated polymer film matrix. Synthetic Metals 2003, 135, (1-3), 821-822.
    175. Zhai, J.; Bai, F. L.; He, Q. G.; Li, Y. S.; Jiang, L.; Lin, T., Novel covalently linked self-assembled films from a functional hyperbranched conjugated poly (phenylene vinylene). Chinese Chemical Letters 2000, 11, (9), 819-822.
    176. Yang, J. L.; Lin, H. Z.; He, Q. G.; Ling, L. S.; Zhu, C. F.; Bai, F. L., Composition of hyperbranched conjugated polymers with nanosized cadmium sulfide particles. Langmuir 2001, 17, (19), 5978-5983.
    177. Wang, J. L.; Ye, Z. B.; Joly, H., Synthesis and characterization of hyperbranched polyethylenes tethered with polyhedral oligomeric silsesquioxane (POSS) nanoparticles by chain walking ethylene copolymerization with Acryloisobutyl-POSS. Macromolecules 2007, 40, (17), 6150-6163.
    178. Liu, C. Q.; Naismith, N.; Huang, Y. Q.; Economy, J., Synthesis and characterization of novel hyperbranched poly(imide silsesquioxane) membranes. Journal of Polymer Science Part a-Polymer Chemistry 2003, 41, (23), 3736-3743.
    179. Nguyen, C.; Hawker, C. J.; Miller, R. D.; Huang, E.; Hedrick, J. L.; Gauderon, R.; Hilborn, J. G., Hyperbranched polyesters as nanoporosity templating agents for organosilicates. Macromolecules 2000, 33, (11), 4281-4284.
    180. Hedrick, J. L.; Hawker, C. J.; Miller, R. D.; Twieg, R.; Srinivasan, S. A.; Trollsas, M., Structure control in organic-inorganic hybrids using hyperbranched high-temperature polymers. Macromolecules 1997, 30, (24), 7607-7610.
    181. Kim, J. S.; Kim, H. C.; Lee, B.; Ree, M., Imprinting of nanopores in organosilicate dielectric thin films with hyperbranched ketalized polyglycidol. Polymer 2005, 46, (18), 7394-7402.
    182. Sun, Q. H.; Xu, K. T.; Lam, J. W. Y.; Cha, J. A. K.; Zhang, X. X.; Tang, B. Z., Nanostructured magnetoceramics from hyperbranched polymer precursors. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2001, 16, (1-2), 107-112.
    183. Haussler, M.; Sun, Q. H.; Xu, K. T.; Lam, J. W. Y.; Doug, H. C.; Tang, B. Z., Hyperbranched poly(ferrocenylene)s containing groups 14 and 15 elements: Syntheses, optical and thermal properties, and pyrolytic transformations into nanostructured magnetoceramics. Journal of Inorganic and Organometallic Polymers and Materials 2005, 15, (1), 67-81.
    184. Haussler, M.; Lam, J. W. Y.; Zheng, R. H.; Dong, H. C.; Tong, H.; Tang, B. Z., Synthesis of cobalt-containing hyperbranched polyynes and their utilization as precursors to nanostructured magnetoceramics. Journal of Inorganic and Organometallic Polymers and Materials 2005, 15, (4), 519-526.
    185. Sun, Q. H.; Lam, J. W. Y.; Xu, K. T.; Xu, H. Y.; Cha, J. A. K.; Wong, P. C. L.; Wen, G. H.; Zhang, X. X.; Jing, X. B.; Wang, F. S.; Tang, B. Z., Nanocluster-containing mesoporous magnetoceramics from hyperbranched organometallic polymer precursors. Chemistry of Materials 2000, 12, (9), 2617-2624.
    186. Soraru, G. D.; Liu, Q.; Interrante, L. V.; Apple, T., Role of precursor molecular structure on the microstructure and high temperature stability of silicon oxycarbide glasses derived from methylene-bridged polycarbosilanes. Chemistry of Materials 1998, 10, (12), 4047-4054.
    187. Rathore, J. S.; Interrante, L. V.; Dubois, G., Ultra Low-k Films Derived from Hyperbranched Polycarbosilanes (HBPCS). Advanced Functional Materials 2008, 18, (24), 4022-4028.
    188. Sayari, A.; Hamoudi, S., Periodic mesoporous silica-based organic - Inorganic nanocomposite materials. Chemistry of Materials 2001, 13, (10), 3151-3168.
    189. Oh, S.; Kang, T.; Kim, H.; Moon, J.; Hong, S.; Yi, J., Preparation of novel ceramic membranes modified by mesoporous silica with 3-aminopropyltriethoxysilane (APTES) and its application to Cu2+ separation in the aqueous phase. Journal of Membrane Science 2007, 301, (1-2), 118-125.
    190. Zhao, H.; Sun, R. M.; Luo, Y. J.; Li, J., A novel method of hyperbranched poly(amide-ester) modifying nano-SiO2 and study of mechanical properties of PVC/nano-SiO2 composites. Polymer Composites 2008, 29, (9), 1014-1019.
    191. Mu, B.; Wang, T. M.; Liu, P., Well-defined dendritic-graft copolymer grafted silica nanoparticle by consecutive surface-initiated atom transfer radical polymerizations. Industrial & Engineering Chemistry Research 2007, 46, (10), 3069-3072.
    192. Seino, M.; Yokomachi, K.; Hayakawa, T.; Kikuchi, R.; Kakimoto, M.; Horiuchi, S., Preparation of poly(N-isopropylacrylamide) grafted silica bead using hyperbranched polysiloxysilane as polymer brush and application to temperature-responsive HPLC. Polymer 2006, 47, (6), 1946-1952.
    193. Taniguchi, Y.; Shirai, K.; Saitoh, H.; Yamauchi, T.; Tsubokawa, N., Postgrafting of vinyl polymers onto hyperbranched poly (amidoamine)-grafted nano-sized silica surface. Polymer 2005, 46, (8), 2541-2547.
    194. Bergbreiter, D. E.; Simanek, E. E.; Owsik, I., New synthetic methods for the formation of basic, polyvalent, hyperbranched grafts. Journal of Polymer Science Part a-Polymer Chemistry 2005, 43, (19), 4654-4665.
    195. Bucknall, D. G.; Anderson, H. L., Polymers get organized. Science 2003, 302, (5652), 1904-1905.
    196. Whitesides, G. M.; Grzybowski, B., Self-assembly at all scales. Science 2002, 295, (5564), 2418-2421.
    197. Rosler, A.; Vandermeulen, G. W. M.; Klok, H. A., Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Advanced Drug Delivery Reviews 2001, 53, (1), 95-108.
    198. Letchford, K.; Burt, H., A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. European Journal of Pharmaceutics and Biopharmaceutics 2007, 65, (3), 259-269.
    199. Antonietti, M.; Forster, S., Vesicles and liposomes: A self-assembly principle beyond lipids. Advanced Materials 2003, 15, (16), 1323-1333.
    200. Wan, Y.; Shi, Y. F.; Zhao, D. Y., Designed synthesis of mesoporous solids vianonionic-surfactant-templating approach. Chemical Communications 2007, (9), 897-926.
    201. Smarsly, B.; Antonietti, M., Block copolymer assemblies as templates for the generation of mesoporous inorganic materials and crystalline films. European Journal of Inorganic Chemistry 2006, (6), 1111-1119.
    202. Hunks, W. J.; Ozin, G. A., Challenges and advances in the chemistry of periodic mesoporous organosilicas (PMOs). Journal of Materials Chemistry 2005, 15, (35-36), 3716-3724.
    203. Kimura, T., Surfactant-templated mesoporous aluminophosphate-based materials and the recent progress. Microporous and Mesoporous Materials 2005, 77, (2-3), 97-107.
    204. Hamley, I. W., Nanostructure fabrication using block copolymers. Nanotechnology 2003, 14, (10), R39-R54.
    205. Soler-Illia, G.; Crepaldi, E. L.; Grosso, D.; Sanchez, C., Block copolymer-templated mesoporous oxides. Current Opinion in Colloid & Interface Science 2003, 8, (1), 109-126.
    206. Xu, Y. P.; Xu, S. J.; Emmler, T.; Roelofs, F.; Boettcher, C.; Haag, R.; Buntkowsky, G., A novel green template for the synthesis of mesoporous silica. Chemistry-a European Journal 2008, 14, (11), 3311-3315.
    207. Czerniewski, A. A.; Liu, X. J.; Rolland, O.; Hourani, R.; Four, M.; Kakkar, A., Templating silica network construction using 3,5-dihydroxybenzylalcohol based dendrimers: influence of dendrimer aggregation on evolving network structure. Journal of Materials Chemistry 2007, 17, (26), 2737-2745.
    208. Luo, X. Z.; Imae, T., Synthesis of mesoporous iron phosphate using PAMAM dendrimer as a single molecular template. Chemistry Letters 2005, 34, (8), 1132-1133.
    209. Mitra, A.; Bhaumik, A.; Imae, T., Synthesis and characterization of nanoporous silica using dendrimer molecules. Journal of Nanoscience and Nanotechnology 2004, 4, (8), 1052-1055.
    210. Donners, J.; Heywood, B. R.; Meijer, E. W.; Nolte, R. J. M.; Sommerdijk, N., Control over calcium carbonate phase formation by dendrimer/surfactant templates. Chemistry-a European Journal 2002, 8, (11), 2561-2567.
    211. Darling, S. B., Directing the self-assembly of block copolymers. Progress in Polymer Science 2007, 32, 1152-1204.
    212. Cheng, J. Y.; Ross, C. A.; Smith, H. I.; Thomas, E. L., Templated self-assembly of block copolymers: Top-down helps bottom-up. Advanced Materials 2006, 18, (19), 2505-2521.
    213. Grason, G. M., The packing of soft materials: Molecular asymmetry, geometric frustration and optimal lattices in block copolymer melts. Physics Reports-Review Section of Physics Letters 2006, 433, (1), 1-64.
    214. Lecommandoux, S.; Borsali, R., On the physics of block copolymers. Polymer International 2006, 55, (10), 1161-1168.
    215. Mecke, A.; Dittrich, C.; Meier, W., Biomimetic membranes designed from amphiphilic block copolymers. Soft Matter 2006, 2, (9), 751-759.
    216. Soo, P. L.; Eisenberg, A., Preparation of block copolymer vesicles in solution. Journal of PolymerScience Part B-Polymer Physics 2004, 42, (6), 923-938.
    217. Riess, G., Micellization of block copolymers. Progress in Polymer Science 2003, 28, (7), 1107-1170.
    218. Jiang, D. L.; Aida, T., Bioinspired molecular design of functional dendrimers. Progress in Polymer Science 2005, 30, (3-4), 403-422.
    219. Svobodova, L.; Snejdarkova, M., Poly(amidoamine) dendrimers: Synthesis, properties and self-assembly. Chemicke Listy 2004, 98, (4), 161-165.
    220. Mery, D.; Astruc, D., Dendritic catalysis: Major concepts and recent progress. Coordination Chemistry Reviews 2006, 250, (15-16), 1965-1979.
    221. Templin, M.; Franck, A.; DuChesne, A.; Leist, H.; Zhang, Y. M.; Ulrich, R.; Schadler, V.; Wiesner, U., Organically modified aluminosilicate mesostructures from block copolymer phases. Science 1997, 278, (5344), 1795-1798.
    222. Schenning, A.; Elissen-Roman, C.; Weener, J. W.; Baars, M.; van der Gaast, S. J.; Meijer, E. W., Amphiphilic dendrimers as building blocks in supramolecular assemblies. Journal of the American Chemical Society 1998, 120, (32), 8199-8208.
    223. Wang, B. B.; Zhang, X.; Jia, X. R.; Li, Z. C.; Ji, Y.; Yang, L.; Wei, Y., Fluorescence and aggregation behavior of poly(amidoamine) dendrimers peripherally modified with aromatic chromophores: the effect of dendritic architectures. Journal of the American Chemical Society 2004, 126, (46), 15180-15194.
    224. Wang, B. B.; Zhang, X.; Jia, X. R.; Luo, Y. F.; Sun, Z.; Yang, L.; Ji, Y.; Wei, Y., Poly(amidoamine) dendrimers with phenyl shells: fluorescence and aggregation behavior. Polymer 2004, 45, (25), 8395-8402.
    225. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y., Real-time hierarchical setf-assembly of large compound vesicles from an amphiphilic hyperbranched multiarm copolymer. Small 2007, 3, (7), 1170-1173.
    226. Jesberger, M.; Barner, L.; Stenzel, M. H.; Malmstrom, E.; Davis, T. P.; Barner-Kowollik, C., Hyperbranched polymers as scaffolds for multifunctional reversible addition-fragmentation chain-transfer agents: A route to polystyrene-core-polyesters and polystyrene-block-poly(butyl acrylate)-core-polyesters. Journal of Polymer Science Part a-Polymer Chemistry 2003, 41, (23), 3847-3861.
    227.侯建,超支化聚合物的制备和功能化.上海交通大学博士学位论文2000.
    228. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y., Effect of degree of branching on glass transition temperature for hyperbranched polyether. Chemical Journal of Chinese Universities-Chinese 2004, 25, (7), 1373-1374.
    229. Xu, Y. Y.; Gao, C.; Kong, H.; Yan, D. Y.; Luo, P.; Li, W. W.; Mai, Y. Y., One-pot synthesis of amphiphilic core-shell suprabranched macromolecules. Macromolecules 2004, 37, (17), 6264-6267.
    230. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y.; Lu, H. W., Effect of reaction temperature on degree of branching in cationic polymerization of 3-ethyl-3-(hydroxymethyl)oxetane. Macromolecules 2003, 36,(25), 9667-9669.
    231. Mao, J.; Ni, P. H.; Mai, Y. Y.; Yan, D. Y., Multicompartment micelles from hyperbranched star-block copolymers containing polycations and fluoropolymer segment. Langmuir 2007, 23, (9), 5127-5134.
    232. Walther, A.; Goldmann, A. S.; Yelamanchili, R. S.; Drechsler, M.; Schmalz, H.; Eisenberg, A.; Muller, A. H. E., Multiple morphologies, phase transitions, and cross-linking of crew-cut aggregates of polybutadiene-block-poly(2-vinylpyridine) diblock copolymers. Macromolecules 2008, 41, (9), 3254-3260.
    233. Zhang, L. F.; Yu, K.; Eisenberg, A., Ion-induced morphological changes in ''crew-cut'' aggregates of amphiphilic block copolymers. Science 1996, 272, (5269), 1777-1779.
    234. Zhang, L. F.; Eisenberg, A., Multiple morphologies and characteristics of ''crew-cut'' micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. Journal of the American Chemical Society 1996, 118, (13), 3168-3181.
    235. Zhang, L. F.; Eisenberg, A., Multiple Morphologies of Crew-Cut Aggregates of Polystyrene-B-Poly(Acrylic Acid) Block-Copolymers. Science 1995, 268, (5218), 1728-1731.
    236. Gregg, S. J.; K.S.W. Sing, . Adsorption, Surface Area and Porosity, Second ed. Academic Press, London 1992.
    237.何曼君,高分子物理.复旦大学出版社1990.
    238. Discher, D. E.; Eisenberg, A., Polymer vesicles. Science 2002, 297, (5583), 967-973.
    239. Pinnavaia, T. J.; Zhang, W.; Pauly, T. R.; Tanev, P. T. Preparation of quasi crystalline inorganic oxide composition, e.g. for catalysis, comprises reacting neutral amine template dissolved in solution of water and organic solvent, a neutral inorganic oxide precursor, and aging precipitate. US6410473-B1, 2002.
    240. Tanev, P. T.; Pinnavaia, T. J., Biomimetic assembly of porous lamellar silica molecular sieves with a vesicular particle architecture. Supramolecular Science 1998, 5, (3-4), 399-404.
    241. Tanev, P. T.; Pinnavaia, T. J. Crystalline inorganic oxide composition for use in adsorbents, ion-exchangers, catalysts, catalytic carriers or composite membranes|is prepared by reacting neutral amine template and neutral inorganic oxide precursor to form reaction product, hydrolysing precursor to form gel and ageing gel. US5800800-A, 1998.
    242. Mercier, L.; Pinnavaia, T. J., Heavy metal lan adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves: Factors affecting Hg(II) uptake. Environmental Science & Technology 1998, 32, (18), 2749-2754.
    243. Mortensen, K.; Pedersen, J. S., Structural Study on the Micelle Formation of Poly(Ethylene Oxide) Poly(Propylene Oxide) Poly(Ethylene Oxide) Triblock Copolymer in Aqueous-Solution. Macromolecules 1993, 26, (4), 805-812.
    244. Mortensen, K.; Brown, W., Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Oxide) Triblock Copolymers in Aqueous-Solution - the Influence of Relative Block Size. Macromolecules1993, 26, (16), 4128-4135.
    245. Yamada, T.; Zhou, H. S.; Asai, K.; Honma, I., Pore size controlled mesoporous silicate powder prepared by triblock copolymer templates. Materials Letters 2002, 56, (1-2), PII S0167-577X(02)00424-X.
    246. Nguyen, T. P. B.; Lee, J. W.; Shim, W. G.; Moon, H., Synthesis of functionalized SBA-15 with ordered large pore size and its adsorption properties of BSA. Microporous and Mesoporous Materials 2008, 110, (2-3), 560-569.
    247. Derylo-Marczewska, A.; Marczewski, A. W.; Skrzypek, I.; Pikus, S.; Kozak, M., Effect of addition of pore expanding agent on changes of structure characteristics of ordered mesoporous silicas. Applied Surface Science 2008, 255, (5), 2851-2858.
    248. Rosenholm, J. M.; Duchanoy, A.; Linden, M., Hyperbranching surface polymerization as a tool for preferential functionalization of the outer surface of mesoporous silica. Chemistry of Materials 2008, 20, 1126-1133.
    249. Fu, Z. H.; Liao, H. Y.; Xiong, D. L.; Zhang, Z. H.; Jiang, Y.; Yin, D. L., A highly-efficient and environmental-friendly method for the preparation of Mn(III)-Salen complexes encapsulated HMS by using microwave irradiation. Microporous and Mesoporous Materials 2007, 106, 298-303.
    250. Kim, Y. H.; Webster, O. W., Water-soluble hyperbranched polyphenylene: "a unimolecular micelle?" J. Am. Chem. Soc. 1990, 112, 4592-4593.
    251. Kim, Y. H.; Webster, O. W., Hyperbranched polyphenylenes. Macromolecules 1992, 25, 5561~5572.
    252. Uhrich, K. E.; Hawker, C.; Fréchet, J. M. J.; Turner, S. R., One-pot synthesis of hyperbranched polyethers. Macromolecules 1992, 25, 4583~4587.
    253. Miller, T. M.; Neenan, T. X.; Zayas, R.; Bair, H. E., Synthesis and characterization of a series of monodisperse, 1,3,5-phenylene-based hydrocarbon dendrimers including C276H186 and their fluorinated analogues. J. Am. Chem. Soc. 1992, 114, 1018~1019.
    254. Malmstr?m, E.; Johansson, M.; Hult, A., Review of hyperbranched polyesters. Polym. News 1997, 22, 128.
    255. Yang, G.; Jikei, M.; Kakimoto, M. A., Synthesis and properties of hyperbranched aromatic polyamide. Macromolecules 1999, 32, (7), 2215-2220.
    256. Yang, G.; Jikei, M.; Kakimoto, M., Successful thermal self-polycondensation of AB(2) monomer to form hyperbranched aromatic polyamide. Macromolecules 1998, 31, (17), 5964-5966.
    257. Spindler, R.; Frechet, J. M. J., Synthesis and Characterization of Hyperbranched Polyurethanes Prepared from Blocked Isocyanate Monomers by Step-Growth Polymerization. Macromolecules 1993, 26, (18), 4809-4813.
    258. Mathias, L. J.; Carothers, T. W., Hyperbranched Poly(Siloxysilanes). Journal of the American Chemical Society 1991, 113, (10), 4043-4044.
    259. Hawker, C. J.; Chu, F. K., Hyperbranched poly(ether ketones): Manipulation of structure andphysical properties. Macromolecules 1996, 29, (12), 4370-4380.
    260. Bolton, D. H.; Wooley, K. L., Synthesis and characterization of hyperbranched polycarbonates. Macromolecules 1997, 30, (7), 1890-1896.
    261. Gao, C.; Yan, D. Y., Polyaddition of B-2 and BB '(2) type monomers to A(2) type monomer. 1. Synthesis of highly branched copoly(sulfone-amine)s. Macromolecules 2001, 34, (2), 156-161.
    262. Gao, C.; Tang, W.; Yan, D. Y.; Wang, Z. J.; Zhu, P. F.; Tao, P., Hyperbranched copolymers made from A(2), B-2 and BB '(2) type monomers (iv) - Copolymerization of divinyl sulfone with 4, 4 '-trimethylenedipiperidine and N-ethylethylenediamine. Science in China Series B-Chemistry 2001, 44, (2), 207-215.
    263. Yan, D. Y.; Gao, C., Hyperbranched polymers made from A(2) and BB '(2) type monomers. 1. Polyaddition of 1-(2-aminoethyl)piperazine to divinyl sulfone. Macromolecules 2000, 33, (21), 7693-7699.
    264. Gao, C.; Yan, D. Y.; Chen, W., Self-association and degree of branching: Fluorescence-probe study of hyperbranched poly(sulfone-amine)s in aqueous solution. Macromolecular Rapid Communications 2002, 23, (8), 465-469.
    265. Gao, C.; Yan, D. Y.; Zhang, B.; Chen, W., Fluorescence studies on the hydrophobic association of pyrene-labeled amphiphilic hyperbranched poly(sulfone-amine)s. Langmuir 2002, 18, (9), 3708-3713.
    266. Gao, C.; Yan, D. Y., Synthesis of hyperbranched polymers from commercially available A(2) and BB '(2) type monomers. Chemical Communications 2001, (01), 107-108.
    267. Gao, C.; Yan, D. Y.; Tang, W., Hyperbranched polymers made from A(2-) and BB '(2-)type monomers. 3. N-methyl-1,3-propanediamine to divinyl sulfone. Macromolecular Chemistry and Physics 2001, 202, (12), 2623-2629.
    268. Gao, C.; Yan, D. Y.; Tang, W., Hyperbranched copolymers made from A(2), B-2 and BB '(2) type monomers, 3 - Comparison of copoly(sulfone-amine)s containing piperazine and 4,4 '-trimethylenedipiperidine units. Macromolecular Chemistry and Physics 2001, 202, (15), 3035-3042.
    269. Gao, C.; Tang, W.; Yan, D. Y.; Zhu, P. F.; Tao, P., Hyperbranched polymers made from A(2), B-2 and BB '(2) type monomers, 2. Preparation of hyperbranched copoly(sulfone-amine)s by polyaddition of N-ethylethylenediamine and piperazine to divinylsulfone. Polymer 2001, 42, (8), 3437-3443.
    270. Gao, C.; Yan, D. Y.; Zhu, X. Y.; Huang, W., Preparation of water-soluble hyperbranched poly(sulfone-amine)s by polyaddition of N-ethylethylenediamine to divinyl sulfone. Polymer 2001, 42, (18), 7603-7610.
    271. Gao, C.; Yan, D. Y.; Zhang, B.; Tang, W., Water-soluble fluorescent hyperbranched polysulfone-amine. Abstracts of Papers of the American Chemical Society 2001, 222, U276-U276.
    272. Gao, C.; Qian, H.; Wang, S. J.; Yan, D. Y.; Chen, W.; Yu, G. T., Self-association of hyperbranched poly(sulfone-amine) in water: studies with pyrene-fluorescence probe and fluorescence label. Polymer 2003, 44, (5), 1547-1552.
    273. Wang, K. C.; Gao, C.; Huang, W.; Xu, Y. M.; Yan, D. Y., Synthesis of water-solublehyperbranched polymer with alternating amido, tertiary amino and ester units from benzene-1,2,4-tricarboxylic acid-1,2-anhydride find N-(2-hydroxyethyl)piperazine. Acta Chimica Sinica 2003, 61, (5), 795-799.
    274. Liu, C. H.; Gao, C.; Yan, D. Y., Dye-encapsulation selectivity of amphiphilic dendritic boxes. Nanoscience and Technology, Pts 1 and 2 2007, 121-123, 717-720.
    275. Liu, C. H.; Gao, C.; Yan, D. Y., Honeycomb-patterned photoluminescent films fabricated by self-assembly of hyperbranched polymers. Angewandte Chemie-International Edition 2007, 46, (22), 4128-4131.
    276. Liu, C. H.; Gao, C.; Yan, D. Y., Synergistic supramolecular encapsulation of amphiphilic hyperbranched polymer to dyes. Macromolecules 2006, 39, (23), 8102-8111.
    277. Liu, C. H.; Gao, C.; Zeng, H.; Yan, D. Y., Reversible and high dye-loading of amphiphilic hyperbranched poly(sulfone-amine)s. Chemical Journal of Chinese Universities-Chinese 2005, 26, (10), 1941-1945.
    278. Kimura, T.; Saeki, S.; Sugahara, Y.; Kuroda, K., Organic modification of FSM-type mesoporous silicas derived from kanemite by silylation. Langmuir 1999, 15, (8), 2794-2798.
    279. Diaz, I.; Perez-Pariente, J., Synthesis of spongelike functionalized MCM-41 materials from gels containing amino acids. Chemistry of Materials 2002, 14, (11), 4641-4646.
    280. Muller, C. A.; Schneider, M.; Mallat, T.; Baiker, A., Amine-modified titania-silica hybrid gels as epoxidation catalysts. Applied Catalysis a-General 2000, 201, (2), 253-261.
    281. Jaroniec, C. P.; Gilpin, R. K.; Jaroniec, M., Adsorption and thermogravimetric studies of silica-based amide bonded phases. Journal of Physical Chemistry B 1997, 101, (35), 6861-6866.
    282.李勇华,王少波,印染废水的特点及处理方法.舰船防化2008, (3), 19~22.
    283. Zhao, M. F.; Tang, Z. B.; Liu, P., Removal of methylene blue from aqueous solution with silica nano-sheets derived from vermiculite. Journal of Hazardous Materials 2008, 158, (1), 43-51.
    284. Mohamed, M. M., Acid dye removal: comparison of surfactant-modified mesoporous FSM-16 with activated carbon derived from rice husk. Journal of Colloid and Interface Science 2004, 272, (1), 28-34.
    285. Ho, K. Y.; McKay, G.; Yeung, K. L., Selective adsorbents from ordered mesoporous silica. Langmuir 2003, 19, (7), 3019-3024.
    286.周贵忠;谭惠民;罗运军;周睿华;王彩旗;张学同,聚酰胺胺树形分子在染料废水处理中的应用研究.环境科学与技术2003, 16, (1), 1.
    287. Allen, S. J.; Mckayb, G.; Porter, J. F., Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. . J. Colloid Interface Sci. 2004, 280, 322-333.
    288. Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361-1403.
    289. Dogan, K.; T., M.; A., E.; T., S.; F., A., Adsorption Equilibrium and Kinetics of Reactive Black 5 and Reactive Red 239 in Aqueous Solution onto Surfactant-Modified Zeolite. J. Chem. Eng. Data 2007,52, 1615-1620.
    290. Martin, M. J.; Artola, A.; Balaguer, M. D.; Rigola, M., Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions. Chemical Engineering Journal 2003, 94, (3), 231-239.
    291. Arami, M.; Limaee, N. Y.; Mahmoodi, N. M., Evaluation of the adsorption kinetics and equilibrium for the potential removal of acid dyes using a biosorbent. Chemical Engineering Journal 2008, 139, (1), 2-10.
    292. Tsai, W. T.; Hsien, K. J.; Yang, J. M., Silica adsorbent prepared from spent diatomaceous earth and its application to removal of dye from aqueous solution. Journal of Colloid and Interface Science 2004, 275, (2), 428-433.
    293. Emad, N. E. Q.; Stephen, J. A.; Gavin, M. W., Kinetic Modeling of the Adsorption of Basic Dyes onto Steam-Activated Bituminous Coal. Ind. Eng. Chem. Res. 2007, 46, 4764-4771.
    294. Hu, Q. H.; Qiao, S. Z.; Haghseresht, F.; Wilson, M. A.; Lu, G. Q., Adsorption study for removal of basic red dye using bentonite. Industrial & Engineering Chemistry Research 2006, 45, (2), 733-738.
    295. Mall, I. D.; Srivastava, V. C.; Kumar, G. V. A.; Mishra, I. M., Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2006, 278, (1-3), 175-187.
    296.谈慕华.;黄蕴元.,表面物理化学,北京:中国建筑工业出版社. 1985, 357 - 358.
    297.赵振国.,界面化学基础.北京:化学工业出版社2004.
    298. Karadag, D.; Akgul, E.; Tok, S.; Erturk, F.; Kaya, M. A.; Turan, M., Basic and reactive dye removal using natural and modified zeolites. Journal of Chemical and Engineering Data 2007, 52, 2436-2441.
    299. Yupeng, G.; Shaofeng, Y.; Wuyou, F.; Jurui, Q.; Renzhi, L.; Zichen, W.; Hongding, X., Adsorption of malachite green on micro- and mesoporousrice husk-based active carbon. Dyes and Pigments 2003, 56, 219-229.
    300. Pauly, T. R.; Pinnavaia, T. J., Pore size modification of mesoporous HMS molecular sieve silicas with wormhole framework structures. Chemistry of Materials 2001, 13, (3), 987-993.
    301. Mercier, L.; Pinnavaia, T. J., Direct synthesis of hybrid organic-inorganic nanoporous silica by a neutral amine assembly route: Structure-function control by stoichiometric incorporation of organosiloxane molecules. Chemistry of Materials 2000, 12, (1), 188-196.
    302. Zhang, W. Z.; Pauly, T. R.; Pinnavaia, T. J., Tailoring the framework and textural mesopores of HMS molecular sieves through an electrically neutral (S degrees I degrees) assembly pathway. Chemistry of Materials 1997, 9, (11), 2491-2498.
    303. Tanev, P. T.; Pinnavaia, T. J., Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies. Science 1996, 271, (5253), 1267-1269.
    304.刘超;成国祥,模板法制备介孔材料的研究进展.离子交换与吸附2003, 19(4), 374~384.
    305. Kim, S. S.; Zhang, W. Z.; Pinnavaia, T. J., Ultrastable mesostructured silica vesicles. Science 1998, 282, (5392), 1302-1305.
    306. Park, I.; Wang, Z.; Pinnavaia, T. J., Assembly of large-pore silica mesophases with wormhole framework structures from alpha,omega-diamine porogens. Chemistry of Materials 2005, 17, (2), 383-386.
    307. Larsen, G.; Lotero, E.; Marquez, M., Amine dendrimers as templates for amorphous silicas. Journal of Physical Chemistry B 2000, 104, (20), 4840-4843.
    308. Shylesh, S.; Samuel, P. P.; Sisodiya, S.; Singh, A. P., Periodic Mesoporous Silicas and Organosilicas: An Overview Towards Catalysis. Catalysis Surveys from Asia 2008, 12, (4), 266-282.
    309. Shibasaki, Y.; Kondo, J. N., Homogeneous Chemical Functionalization of the Mesoporous Silica Interior and the Utilization as the Polymerization Sites. Journal of Synthetic Organic Chemistry Japan 2008, 66, (12), 1187-1198.
    310. Shevchenko, N.; Zaitsev, V.; Walcarius, A., Bifunctionalized mesoporous silicas for Cr(VI) reduction and concomitant Cr(III) immobilization. Environmental Science & Technology 2008, 42, (18), 6922-6928.
    311. Feng, Y. F.; Yang, X. Y.; Di, Y.; Du, Y. C.; Zhang, Y. L.; Xiao, F. S., Mesoporous silica materials with an extremely high content of organic sulfonic groups and their comparable activities with that of concentrated sulfuric acid in catalytic esterification. Journal of Physical Chemistry B 2006, 110, (29), 14142-14147.
    312. Moller, K.; Bein, T.; Fischer, R. X., Synthesis of ordered mesoporous methacrylate hybrid systems: Hosts for molecular polymer composites. Chemistry of Materials 1999, 11, (3), 665-673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700