量子密钥分发系统中的光子统计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从人类有了保密通信以来,怎样在通信中保密以及如何破译敌方的密码就是一对永恒的话题。保密通信不仅在军事、国防等领域发挥独特作用,而且在当今的经济和日常通信等方面也日渐重要。在经典的方案中,不论建立密钥的过程多么保密,原则上窃听者总可以窃取到这个密钥,而通信双方对此毫无察觉。这是因为密钥的建立过程总要利用某种载体的某种物理性质,而经典物理学指出,人们完全可以测量该载体的这些属性而不对其产生任何影响。故经典密码术的核心部分一密钥存在不安全因素。量子力学和密码学的结合一量子密码术,成功地解决了传统密码学中仅依靠数学无法完成的密钥保密传递问题。量子密码术潜在的巨大应用前景引起了全世界人们的广泛关注,量子密码也被称为改变人类未来的十大发明之一。
     量子密钥分发的一个重要前提条件就是使用单个光子携带信息,单光子源的质量是关系到整个通信过程安全性的重要因素。目前大多数量子密钥分发实验所用的光源都是经过强烈衰减的弱光脉冲,这种光源存在着许多的多光子和空脉冲事件,因此严重降低了密钥分发系统的传输效率,增大了误码率。所以当前在理论和实验上寻找单光子源已经成为推动量子密钥分发进一步发展的重要课题之一。
     本论文主要就自由空间量子密钥分发以及光子统计在自由空间量子密钥分发中的应用进行了理论分析和实验研究。基于偏振编码的B92协议在自由空间中进行了量子密钥分发的实验演示,研究了用于单光子探测的雪崩光电二极管的暂态发光特性,并且提出了基于外部光电开关的
Encrypt and decrypt have become a pair of immutable topics since the foundation of Cryptography. Cryptography plays an important role not only in the areas of military affairs and national defense, but also in the areas of economy and daily correspondence. In classical cryptography, keys must be bind to classical physical properties. These properties can be easily measured by anyone. So, eavesdropper can obtain keys without being discovered, no matter how the keys are distributed. There exists potential trouble with keys, which is the soul of classical cryptography. Quantum cryptography, the combination of cryptography and quantum mechanics, can perfectly settle the problem of key distribution, which cannot be settled by classical cryptography by using mathematic method. Thus, quantum key distribution (QKD) has become one of ten inventions that can change the world for its absorbing potential applications.
    One important presupposition of QKD is encoding one bit message on only one photon. The quality of single photon source is crucial to the safety of QKD. Although weak laser pulses are widely used in QKD experiments, they will decelerate the transmission speed for their excessive empty pulses and increase the error rate for their excessive multi-photon pulses. Therefore, theoretically and experimentally researching on single photon source becomes a crucial task for the further development of QKD.
    The main contents of this thesis are free-space QKD and the applications of photon statistics for QKD. QKD experiment has performed
引文
[1]. Wiesner S. Sigact News, 1983, Vol. 15, 78
    [2]. C. H. Bennett and G. Brassard. Proc. IEEE Internat. Conf. on Computers, Systems and Signal Processing, 1984, Bangalore, New Yourk, IEEE
    [3]. Charles H. Bennett. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett., 1992, Vol. 68, No. 21, 3121-3124
    [4]. Artur K. Ekert, Quantum cryptography based on bell's theorem. Phys. Rev. Lett., 1991. Vol. 67, 6. 661-663
    [5].吴令安.量子信息讲座:量子保密通信.物理,1998,Vol.27,No.9,544-551
    [6].曾贵华.量子信息讲座续讲:量子信息安全系统.物理,2000,Vol.29,No.10,623-626
    [7].郭光灿.量子信息引论.物理,2001,Vol.30,No.5,286-293
    [8].林敬德,林柏钢.三大密码体制:对称密码、公钥密码和量子密码的理论与技术.电讯技术2003,Vol.3,6-12
    [9].王育民,刘建伟.通信网的安全:理论与技术.西安电子科技大学出版社
    [10]. C. H. Bennett, F. Bessette, and G. Brassard et al. J. Cryptography, 1992, Vol. 5, 3
    [11]. H. Zbinden, N. Gisin, B. Huttner, A. Muller, and W. Tittel. Practical aspects of quantum cryptographic key distribution. J. Cryptology, 2000, Vol. 13, 207-220
    [12]. W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons. Practical free-space quantum key distribution over 1 km. Phys. Rev. Lett., 1998, Vol. 81, No. 15, 3283-3286
    [13]. M. Koashi and N. Imoto. Quantum cryptography based on split transmission of one-bit information in two steps. Phys. Rev. Lett., 1997, Vol. 79, No. 12, 2383-2386
    [14]. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy and H. Zbinden. Quantum key distribution over 67 km with a plug & play system. New J. Phys., 2002, Vol. 4, 41
    [15]. C. Gobby, Z. L. Yuan and A. J. Shields. Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett., 2004, Vol. 84, No. 19, 3762-3764
    [16]. Guoping Guo, Chuanfeng Li, Baosen Shi, Jian Li, and Guangcan Guo. Quantum key distribution scheme with orthogonal product states. Phys. Rev. A, 2001, Vol. 64, 042301
    [17]. B. S. Shi, Y. K. Jiang, and G. C. Guo. Quantum key distribution using different-frequency photons. Appl. Phys. B, 2000, Vol. 70, 415-417
    [18]. A. C. Funk, and M. G. Raymer. Quantum key distribution using nonclassical photon-number correlations in macroscopic light pulses. Phys. Rev. A, 2002, Vol. 65,042307
    [19]. M. Matsuoka, and T. Hirano. Quantum key distribution with a single photon from a squeezed coherent state. Phys. Rev. A, 2003, Vol. 67, 042307
    [20]. Ch. Silberhom, N. Korolkova, and G. Leuchs. Quantum key distribution with bright entangled beams. Phys. Rev. Lett., 2002, Vol. 88, 167902
    [21]. D. Gottesman, and J. Preskill. Secure quantum key distribution using squeezed states. Phys. Rev. A, 2001, Vol. 63, 022309
    [22]. S. Lorenz, N. Korolkova and G. Leuchs. Continuous-variable quantum key distribution using polatization encoding and post selection. Appl. Phys. B, 2004, Vol. 79, 273-277
    [23]. WK Wootters and WH Zurek. A single quantum cannot be cloned. Nature, 1982, Vol. 299, 802-803
    [24]. Arun Kumar Pati and Samuel L. Braunstein. Impossibility of deleting an unknown quantum state. Nature, 2000, Vol. 104, 164-165
    [25]. F. Treussart, R. Alleaume, L. T. Xiao, J. -M. Courty, and J. -F. Roch. Direct measurement of the photo statistics of a triggered single photon source, Phys. Rev. Lett., 2002, Vol. 89, No. 9, 093601
    [26]. F. Treussart, A. Clouqueur, C. Grossman and J. -F. Roch. Photon antibunching in the fluorescence of a single dye molecule embedded in a thin polymer film, Opt.Lett., 2001, Vol. 26, No. 19,1504-1506
    [27]. A. V. Sergienko, M. Atature, Z. Walton, G. Jaeger, B. E. A. Saleh and M. C. Teich. Quantum cryptography using femtosecond-pulsed parametric down-conversion. Phys. Rev. A, 1999, Vol. 60, No. 4, 2622-2625
    [28].李永明,樊代和,翟泽辉,张俊香,郜江瑞.单光子态的产生和测量.量子光学学报,2004,Vol.10,No.1,29-33
    [29]. L. Fleury, J. -M. Segura, G. Zumofen, B. Hecht and U. R Wild. Nonclassical photon statistics in single-molecule fluorescence at room temperature. Phys. Rev. Lett., 2000, Vol. 84, No. 6, 1148-1151
    [30]. R. Allraume, F. Treussart, G. Messin, Y. Dumeige, J-F. Roch, A. Beveratos, R. Brouri-Tualle, J-P. Poizat, and P. Grangier. Experimental open-air quantum key distribution with a single-photon source. New J. Phys., 2004, Vol. 6 92.[1]. Wiesner S. Sigact News, 1983, Vol. 15, 78
    [2]. C.H. Bennett and G. Brassard. Proc. IEEE Internat. Conf on Computers, Systems and Signal Processing, 1984, Bangalore, New Yourk, IEEE, 175
    [3]. Charles H. Bennett. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett., 1992, Vol. 68, No. 21, 3121-3124
    [4]. Artur K. Ekert, Quantum cryptography based on bell's theorem. Phys. Rev. Lett., 1991, Vol. 67, No. 6,661-663
    [5]. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin. Experimental quantum cryptography. J. Cryptography, 1992, Vol. 5, No. 1, 3-28
    [6]. A. Muller, J. Breguet, and N. Gisin. Experimental demonstration of quantum scyptography using polarized photons in optical fibre over more than 1 km. Europhy. Lett., 1993, Vol. 23, No. 6, 383-388
    [7]. A. Muller, H. Zbinden, and N. Gisin. Quantum cryptography over 23 km in installed under-lake telecom fibre. Europhy. Lett., 1996, Vol. 33, No.5, 335-339
    [8]. C. Gobby, Z. L. Yuan and A. J. Shields. Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett., 2004, Vol. 84, No. 19, 3762-3764
    [9]. C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, J. G. Rarity. A step towards global key distribution. Nature, 2002, Vol. 419, 450
    [10]. S. J. D. Phoenix, S. M. Barnett, P. D. Townsend and K. J. Blow. Multi-user quantum cryptography on optical networks. J. Mod Opt., 1995, Vol. 42, No. 6, 1155-1163
    [11]. P. D. Townsend. Quantum cryptography on multi-user optical fibre networks. Nature, 1997, Vol. 385, No. 6611, 47-49
    [12].绍进,吴令安.用单光子偏振态的量子密码通信实验.量子光学学报,1995,Vol.1,No.1,41-44
    [13].梁创,符东浩,梁冰,廖静,吴令安,姚德成,吕述望.850nm光纤中1.1km量子密钥分发实验.物理学报,2001,Vol.50,No.8,1429-1433
    [14].周春源,吴光,陈修亮,李和祥,曾和平.50km光纤中量子保密通信.中国科??学(G辑),2003,Vol.33,No.6,538-543
    [15].苗二龙,莫小范,桂有珍,韩正甫,郭光灿.相位调制自由空间量子密钥分配.物理学报,2004,Vol.53,No.7,2123-2126
    [16].吴伟,刘伟涛,冯少辉,欧保全,梁林梅,李承祖.一种稳定的自由空间量子密码分配实验系统.量子光学学报,2004,Vol.10,No.3,135-138
    [17]. Cheng-Zhi Peng, Tao Yang, Xiao-Hui Bao, Jun Zhang, Xian-Min Jin, Fa-Yong Feng, Bin Yang, Jian Yang, Juan Yin, Qiang Zhang, Nan Li, Bao-Li Tian, and Jian-Wei Pan. Experimental Free-Space Distribution of Entangled Photon Pairs Over 13 kin: Towards Satellite-Based Global Quantum Communication. Phys. Rev. A, 2005, Vol. 94, No.15, 150501
    [18]. Lior Goldenberg and Lev Vaidman. Quantum Cryptography Based on Orthogonal States. Phys. Rev. Lett., 1995, Vol. 75, No. 7, 1239-1243
    [19]. M. Koashi and N. Imoto. Quantum cryptography based on split transmission of one-bit information in two steps. Phys. Rev. Lett., 1997, Vol. 79, No. 12, 2383-2386
    [20]. Zhang Xiao-yu and Guo Guang-can. Quantum cryptography using coherent state. Chin. Phys. Lett., 1996, Vol. 13, No. 4, 277-280
    [21]. Peng Xue, Chuan-Feng Li, and Guang-Can Guo. Efficient quantum key distribution scheme with nonmaximally entangled states. Phys. Rev. A, 2001, Vol. 64, 032305
    [22]. Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Quantum key distribution via quantum encryption. Phys. Rev. A, 2001, Vol. 64, 024302
    [23]. T. C. Ralph. Continuous variable quantum cryptography. Phys. Rev. A, 1999, Vol. 61, 010303
    [24].李永民,张宽收,谢常德.利用正交压缩态光场实现连续变量的量子密码术.量子光学学报,2002,Vol.8,No.2,71-75[1]. S. Chianggal, P. Zardal, T. Jennewein, and H. Weinfurter. Towards practical quantum cryptography. Appl. Phys. B, 1999, Vol. 69, 389-393
    [2]. W.T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, and J. E. Nordholt. Practical Free-Space Quantum Key Distribution over 1 km. Phy Rev. Lett., 1991, Vol. 81, No. 15.3283-3286
    [3]. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden. Quantum key distribution over 67 km with a plug & play system. New Journal of Physics, 2002, Vol. 4, 41.1-41.8
    [4]. J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. T. Corrie, and Y. E. Goldman. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature, 2003, Vol. 422, 399-404
    [5]. R. Alleaume, F. Treussart, J. -M. Courty and J. -F. Roch. Photon statistics characterization of a single-photon source. New d. Phys., 2004, Vol. 6, 85
    [6]. Treussart F, Clouqueur A, Grossman C and Roch J F Photon antibunching in the fluorescence of a single dye molecule embedded in a thin polymer film, Opt.Lett., 2001, Vol. 26, No. 19, 1504-1506
    [7]. Damien Stucki~1, Gregoire Ribordy, Andre Stefanov, Hugo Zbinde, John G. Rarity, Tom Wall. Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs. d. Mod Opt., 2001, Vol. 48, No. 13, 1967-1981
    [8]. James S. Allen. The detection of single positive ions, electrons and photons by a secondary electron multiplier. Phys. Rev., 1939, Vol. 55, No. 1,966-967
    [9]. F. grosshans, G. V. Assche, J. Wenger, R. Brourl, H. J. Cref and P. Grangler. Quantum key distribution using Gaussian-modulated coherent states. Nature, 2003, Vol. 421, No. 16, 238-241
    [10]. E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto. Secure communication: Quantum cryptography with a photon turnstile. Nature, 2002, Vol. 420, 762
    [11]. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, Quantum correlation among photons from a single quantum dot at??room temperature. Nature, 2000, Vol. 406, 968-970
    [12]. T. Maruyama, F. Narusawa, M. Kudo, and M. Tanaka, Development of a near-infrared photon-counting system using an InGaAs avalanche photodiode. Opt. Eng., 2002, Vol. 41, 395-402
    [13]. E. Gramsch and R. E. Avila. Performance of a novel planar-processed avalanche photodiode for light and x-ray detection. Opt. Eng., 2003, Vol. 42, 2496-2501
    [14]. J. C. Jackson, D. Phelan, A. P. Morrison, R. M. Redfern, and A. Mathewson. Toward integrated single-photon-counting microarrays. Opt. Eng., 2003, Vol. 42,112-118
    [15]. G. Ulu. Influence of hot-carrier luminescence from avalanche photodiodes on time-correlated photon detection. Opt. Let., 2000, Vol. 25, No. 10,758-760
    [16]. J. Bude. Hot-carrier luminescence in Si. Phy. Rev. B, 1992, Vol. 45, No. 11, 5848-5855
    [17]. Single photon counting module-SPCM-AQR series. PerkinElmer, http://optoelectronics.perkinelmer.com/content/Datasheets/SPCM-AQR.pdf.
    
    [18]. F. Zappa, A. L. Lacaita, S. D. Cova, and P. Lovati, Solid-state single-photon detectors. Opt. Eng, 1996, Vol. 35, 938-945
    [19]. D. Dravins, D. Faria, and B. Nilsson. Avalanche Diodes as Photon-Counting Detectors in Astronomical Photometry. SPIE, 2000, Vol. 4008, 298-307
    [20]. C. Kurrtsiefer, P. Zarda, S. Mayer, and H. Weinfurter. The breakdown flash of silicon avalanche photodiodes - backdoor for eavesdropper attacks. Journal of Modern Optics, 2001, Vol. 48, No. 13, 2039-2047
    [21]. F. Treussart, R. Alleaume, V. L. Floc'h, L. T. Xiao, J. M. Courty, and J. F. Roch, Direct Measurement of the Photon Statistics of a Triggered Single Photon Source. Phy. Rev. Lett., 2002, Vol. 89, No. 9, 093601
    [22]. L. T. Xiao, Y. T. Zhao, T. Huang, J. M. Zhao, W. B. Yin and S. T. Jia, Effect of Background Noise on the Photon Statistics of Triggered Single Molecules. Chinese Physics Letter, 2004, Vol. 21, No. 3,489
    [23]. L. T. Xiao, Y. Q. Jiang, Y. T. Zhao, W. B. Yin, J. M. Zhao and S. T. Jia, Photon statistics measurement by use of single photon detection. Chinese science bulletin, 2004, Vol. 49, No. 9, 875
    [24]. Tao Huang, Junhu Shao, Xiaobo Wang, Liantuan Xiao, Suotang Jia. Photon emission characteristics of avalanche photodiodes. Optical Engineering, 2005, Vol.44, No.7, 074001
    [25]. Sergio Cova, A. Lacaita and G Ripamonti, Trapping phenomena in avalanche photodiodes on nanosecond scale. IEEE Electron Device Letters, 1991, Vol. 12, No. 12,685-687
    [26]. A. Spinelli, L. M. Davis and H. Dautet, Active quenched single-photon avalanche diode for high repetition rate time-gated photon counting, Rev. Sci. Instrum., 1996, Vol. 67, No. 1, 55-61
    [27]. A. C. Giudice, M. Ghioni, S. Cova and F. Zappa. A process and deep level evaluation tool: afterpulsing in avalanche junctions. IEEE: Solid-State Device Research Conference, ESSDERC 2003, Proceedings of 33th European, 2003, 86
    [28]. Ming Zhao, Lei Jin, Bo Chen, Yao Ding, Hui Ma and Dieyan Chen. Afterpulsing and its correction in fluorescence correlation spectroscopy experiments. Applied Optics, 2003, Vol. 42, No. 19, 4031-4036
    [29]. L. Campbell, Afterpulse measurement and correction, Rev. Sci. Instrum., 1992, Vol. 63, No. 12, 5794-5798
    [30]. Ekkehard Overbeck and Christian Sinn, Silicon avalanche photodiodes as detectors for photon correlation experiments, Rev. Sci. Instrum., 1998, Vol. 69, No. 10,3515-3523
    [31]. P. B. Coates, A theory of afterpulse formation in photomultipliers and the prepulse height distribution. J. Phys. D: Appl. Phys., 1973, Vol. 6,1862-1869
    [32]. A. Spinellia L. M. Davis and H. Dautet, Actively quenched single-photon avalanche diode for high repetition rate time-gated photon counting. Rev. Sci. Instrum., 1996, Vol. 67, No. 1, 55-61[1]. S. Weiss. Fluorescence spectroscopy of single biomolecules. Science, 1999, Vol. 283, 1676
    [2]. X. S. Xie, Trautman, Jay K. Single-Molecule Optical Studies at Room Temperature. Ann. Rev. Phys. Chem., 1998, Vol. 49, 441-480
    [3]. M. V. Mostovoy and J. Knoester. Statistics of Optical Spectra from Single-Ring Aggregates and Its Application to LH2. J. Phys. Chem. B, 2000, Vol. 104, 12355
    [4]. S. E. Dempster, Seogjoo Jang, and Robert J. Silbey. Single molecule spectroscopy of disordered circular aggregates: A perturbation analysis. J. Chem. Phys., 2001, Vol. 114, 10015
    [5]. Yang, Haw, Xie. X. Sunney. Statistical Approaches for Probing Single-Molecule Dynamics Photon-by-Photon. Chem. Phys., 2002, Vol. 284, 423
    [6]. Nicolas Gisin, Grgoire Ribordy, Wolfgang Tittel, and Hugo Zbinden. Quantum cryptography. Rev. Mod Phys., 2002, Vol. 74B, 145
    [7]. Wu Shu-Dong, Zhan Zhi-Ming and Jin Li-Xia. Photon statistics of the micromaser with a Kerr medium. Chin.Phys., 2002, Vol. 11, 1272
    [8]. W. E. Moerner, and L.Kador. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett., 1989, Vol. 62, No. 21, 2535-2538[9]. Michel Orrit. Single-molecule spectroscopy: The road ahead. J. of Chem. Phys., 2002, Vol. 117, No. 24, 10938-10946
    [10]. B. Lounis, W.E. Moerner. Single photons on demand from a single molecule at room temperature. 2000, Nature, Vol. 407, No. 6803, 491-493
    [11]. L. Fleury, J. -M. Segura, et al., Nonclassical photon statistics in single-molecule fluorescence at room temperature, Phys. Rev. Lett., 2000, Vol. 84, No. 6, 1148-1151
    [12]. F. Treussart, R. Alleaume, L. T. Xiao, J.-M. Courty, and J.-F. Rock Direct measurement of the photo statistics of a triggered single photon source, Phys. Rev. Lett., 2002, Vol. 89, No. 9, 093601
    [13]. Kurtsiefer C, Mayer S, et al., Stable Solid-State Source of Single Photons, Phys. Rev. Lett., 2000, Vol. 85, No. 2, 290-293
    [14]. F. De Martini, G. Di Giuseppe, and M. Marrocco, Single-Mode Generation of Quantum Photon States by Excited Single Molecules in a Microcavity Trap, Phys. Rev. Lett., 1996, Vol. 76, 900
    [15]. Atkins P W, and Friedman R S. Molecular Quantum Mechanics, Oxford, Oxford University Press, 1997
    [16]. Treussart F, Clouqueur A, Grossman C and Roch J F Photon antibunching in the fluorescence of a single dye molecule embedded in a thin polymer film, Opt. Lett., 2001, Vol. 26, No. 19, 1504-1506
    [17]. P. Grangier A. Aspect et al, Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. Europhys. Lett., 1986, Vol. 1,173
    [18]. Michel Orrit. Photon statistics in single molecule experiment, single molecule, 2002, Vol. 3, 255
    [19]. Short R, and Mandel L. Observation of sub-poissonian Photon Statistics. Phys. Rev. Lett., 1983, Vol. 51, No. 5,384-387
    [20]. J. A. Veerman, M. F. Garcia, L. Kuipers, and N. F. Van Hulst. Time-Varying Triplet State Lifetimes of Single Molecules. Phys. Rev. Lett. 1999, Vol. 83, No. 11, 2155-2158
    [21]. Rosa Brouri, Alexios Beveratos, Jean-Philippe Poizat, and Philippe Grangier.??Single-photon generation by pulsed excitation of a single dipole. Phys. Rev. A, 2000, Vol. 62, No. 6, 063817
    
    [22]. Xiao Liantuan, Zhao Yanting et al. Effect of background noise on the photon statistics of triggered single molecules, 2004 Chin. Phys. Lett. Vol. 21, No. 3, 489-492
    [23]. Zhang Z. M., Li X. F. and Zhou S. K. Acta Phys. Sin., Overseas Ed., 1999, Vol. 8, 571
    [24]. Christian Brunei, Brahim Lounis, Philippe Tamarat, and Michel Orrit. Triggered source of single photons based on controlled single molecule fluorescence. Phys. Rev. Lett., 1999, Vol. 83, No. 14, 2722-2725
    [25]. R.Alleaume, F.Treussart, J-M Courty and J-F Roch, Photon statistics characterization of a single-photon source. New J. Phys., 2004, Vol. 6, 85
    [26]. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble. Measurement of Conditional Phase Shifts for Quantum Logic, Phys. Rev. Lett., 1995, Vol. 75, No. 25, 4710-4713.
    [27]. D. Fattal, E. Diamanti, K. Inoue, Y. Yamamoto. Quantum Teleportation with a Quantum Dot Single Photon Source, Phys. Rev. Lett., 2004, Vol. 92, No. 3, 037904.
    [28]. Jorg Enderlein, Peter M. Goodwin, and Alan Van Orden et al. A maximum likelihood estimator to distinguish single molecules by their fluorescence delays. Chem. Phys. Lett., 1997, Vol. 270, 464-470
    [29]. Jorg Enderlein and Mkarkus Sauer. Optimal algorithm for single-molecule identification with time-correlated single-photon counting, J. Phys. Chem. A, 2001, Vol. 105,48-53
    
    [30]. Michael Prummer, Christion G. Jubner, Beate Sick et al. Single-molecule identification by spectrally and time-resolved fluorescence detection. 2000 Anal Chem., Vol. 72, 443-447
    
    [31]. Charles H. Bennett, Gilles Brassard, Claude Crepeau, Richard Jozsa, Asher Peres, William K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 1993, Vol. 70, No. 13, 1895-1899
    [32]. C. Santori, M. Pelton, G. Solomon, Y. Dale, Yoshihisa Yamamoto, Triggered Single Photons from a Quantum Dot, Phys. Rev. Lett., 2001, Vol. 86, No. 8, 1502-1505
    [33]. H.J. Kimble, M. Dagenais, L. Mandel. Photon Antibunching in Resonance Fluorescence, Phys. Rev. Lett., 1977, Vol. 39, No. 11,691-695
    [34]. R.H. Brown, R. Q. Twiss, Nature, 1956, Vol. 178, No. 27, 1447.
    [35]. J.Bernard, L.Fleury, H.Talon, and M.Orrit. Photon bunching in the fluorescence from single molecules: A probe for intersystem crossing. J. Chem.Phys., 1993, Vol. 98, 850
    [36]. Alexios Beveratos, Rosa Brouri, Thierry Gacoin, Andre Villing, Jean-Philippe Poizat and Philippe Grangier. Single Photon Quantum Cryptography. Phys. Rev. Lett., 2002, Vol. 89, No. 18,187901
    [37]. Rogier Verberk, Michel Orrit. Photon statistics in the fluorescence of single molecules and nanocrystals: Correlation functions versus distributions of on- and off-times. J. of chem.Phys, 2003, Vol. 119, 2214
    [38]. G. NOGUES, A. RAUSCHENBEUTEL, S. OSNAGHI, M. BRUNE, J. M. RAIMOND and S. HAROCHE. Seeing a single photon without destroying it, Nature, 1999, Vol. 400, 239-242
    [39]. Th. Basche and W. E. Moerner. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid, Phys. Rev. Lett., 1992, Vol. 69, No. 10, 1516-1519
    [40].王晓波,黄涛,邵军虎,降雨强,肖连团,贾锁堂.利用光子统计几率测量单分子光子源的信号背景比.物理学报,2005.Vol.54,No.2,617-621
    [41].肖连团,降雨强,赵延霆,尹王保,赵建明,贾锁堂.单光子探测用于光子统计测量的研究,科学通报,2004.Vol.49,No.8,727-730
    [42]. "Single photon counting module SPCM-AQR series" from PerkinElmer, http://optoelectronics.perkinelmer.com/content/Datasheets/SPCM-AQR.pdf.
    [43]. M. Orrit and J. Bernard, Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett., 1990, Vol. 65, No. 21, 2716-2719
    [44].杨金龙,李震宇,候建国,朱清时.单分子科学进展.物理,2000,Vol.29,579[45], Axel Kuhn, Markus Hennrich and Gerhard Rempe. Deterministic Single-Photon Source for Distributed Quantum Networking. Phys. Rev. Lett., 2002, Vol. 89, No. 6,067901
    
    [1]. R. Alleaume, F. Treussart, G. Messin, Y. Dumeige, J-F. Roch, A. Beveratos, R. Brouri-Tualle, J-P. Poizat, and P. Grangier. Experimental open-air quantum key distribution with a single-photon source. New J. Phys., 2004, Vol. 6 92.
    [2]. Alexios Beveratos, Rosa Brouri, Thierry Gacoin, Andre Villing, Jean-Philippe Poizat, and Philippe Grangier. Single photon quantum cryptography. Phys. Rev. Lett, 2002, Vol. 89, No. 10, 187901.
    [3]. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, Measurement of Conditional Phase Shifts for Quantum Logic, Phys. Rev. Lett., 1995, Vol. 75, No. 25, 4710-4713.
    [4]. Axel Kuhn, Markus Hennrich, and Gerhard Rempe. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett., 2002, Vol. 89, No. 6, 067901
    [5]. J. McKeever, A. Boca, A.D. Boozer, R. Miller, J.R. Buck, A. Kuzmich, and H.J. Kimble. Deterministic generation of single photons from one atom trapped in a cavity. Science, 2004, Vol. 303, No. 5666, 1992-1994
    [6]. Th.Basche, and W.E.Moerner. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett., 1992, Vol. 69, No. 1516
    [7]. Christian Kurtsiefer, Sonja Mayer, Patrick Zarda, and Harald Weinfurter. Stable Solid-State Source of Single Photons. Phys. Rev. Lett., 2000, Vol. 85, No.2, 290-293
    [8]. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu, A Quantum Dot Single-Photon Turnstile Device. Science, 2000, Vol. 290, No. 5500, 2282-2285
    [9]. Charles Santori, Matthew Pelton, Glenn Solomon, Yseulte Dale, and Yoshihisa Yamamoto. Triggered Single Photons from a Quantum Dot. Phys. Rev. Lett., 2001, Vol. 86, No. 8, 1502-1505.
    [10]. B. Lounis, and M. Orrit. Single-photon sources. Rep. Prog. Phys., 2005, Vol. 68 1129-1179.
    [11]. B. Lounis, W.E. Moerner, Single photons on demand from a single molecule at room temperature. Nature, 2000, Vol. 407, No. 6803, 491-493
    [12]. X. Michalet, S. Weiss, Single-molecule spectroscopy and microscopy. Comptes rendus Physique, 2002, Vol. 3, 619-644
    [13]. Treussart F, Clouqueur A, Grossman C and Roch J F Photon antibunching in the fluorescence of a single dye molecule embedded in a thin polymer film, Opt.Lett., 2001, Vol. 26, No. 19, 1504-1506
    [14]. James S. Allen. The detection of single positive ions, electrons and photons by a secondary electron multiplier. Phys. Rev., 1939, Vol. 55, No. 1,966-967
    [15]. S. Fray, F. A. Johnson, R. Jones, T. P. McLean, and E. R. Pike. Photon-counting distributions of modulated laser beams. Phys. Rev., 1967, Vol. 153, No. 2, 357-359
    [16]. R. Alleaume, F. Treussart, J. -M. Courty and J. -F. Roch. Photon statistics characterization of a single-photon source. New J. Phys., 2004, Vol. 6, 85
    [17]. E. Gomez, F. Baumer, A. D. Lange, G. D. Sprouse, and L. A. Orozco, Lifetime measurement of the 6s level of rubidium. Phys. Rev. A, 2005, Vol. 72, No. 1, 012502
    [18]. E. Gomez, L. A. Orozco, A. P. Galvan and G. D. Sprouse. Lifetime measurement of the 8s level in francium. Phys. Rev. A, 2005, Vol. 71, No. 6, 062504
    [19]. E.B. Shera, N.K. Seitzinger, L.M. Davis, R.A. Keller, and S.A. Soper. Detection of single fluorescent molecules. Chem. Phys. Lett., 1990, Vol. 174, No. 6, 553-557
    [20]. J. Philip and K. Carlsson. Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging. J. Opt. Soc. Am. A, 2003, Vol. 20, No. 2, 368-379
    [21]. J. Reid, J. Shewchun, B. K. Garside and E. A. Ballik. High sensitivity pollution detection employing tunable diode lasers. Appl. Opt., 1978, Vol. 17, No. 2, 300-307
    [22]. Louis C. Philippe and Ronald K. Hanson. Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen Flows. Appl. Opt., 1993, Vol. 32, No. 30, 6090-6103
    [23]. A. Lucchesini, S. Gozzini and C. Gabbanini, Water vapor overtones pressure line??broadening and shifting measurements. The European Physical Journal D, 2000, Vol. 8, 223-226
    [24]. Liantuan Xiao, Changyong Li, Qian Li, Suotang Jia, and Guosheng Zhou Low-frequency wavelength modulation spectroscopy with D_2 transition of atomic cesium by use of an external-cavity diode laser. Appl. Opt., 2000, Vol. 39, No. 1049-1052
    [25]. J. Zhao, Y, Zhao, L. Wang, L. Xiao and S. Jia, Experimental investigation of non-linear selective reflection at the interface of Cs atomic vapor and quartz. Appl. Phys. B, 2002, Vol. 75, 553-555
    [26]. W. E. Moerner, and L. Kador. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett., 1989, Vol. 62, No. 21, 2535-2538
    [27]. T. H. Stievater, X. Li, J. R. Guest, D. G. Steel, D. Gammon, D. S. Katzer and D. Park, Wavelength modulation spectroscopy of single quantum dots. Appl. Phys. Lett., 2002, Vol. 80, No. 11, 1876-1878
    [28]. J. Reid and D. Labrie, Second-harmonic detection with tunable diode lasers - Comparison of experiment and theory. Appl. Phys. B, 1981, Vol. 26, No. 3, 203-210
    [29], Joel A. Silver. Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods. Appl. Opt., 1992, Vol. 31, No. 6, 707-717
    [30], David S. Bomse, Alan C. Stanton, and Joel A. Silver. Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser. Appl. Opt., 1992, Vol. 31, No. 6, 718-731

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700