操作冲击电压下纳米改性变压器油中空间电荷分布特性和流注放电研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力变压器作为电力系统中能量转换和传输的核心设备,其安全稳定运行关系着人们正常的生活和国家的经济命脉,由操作冲击导致的内绝缘放电将带来严重的后果。变压器油是一种绝缘性能优良的液体电介质,并已在电力变压器中广泛应用,随着我国特高压电网的快速发展,电力系统电压等级不断增加,为了节省生产成本的和空间资源,变压器本身逐渐紧凑化,这进一步增加了变压器绝缘的设计与制造难度;同时,变压器油中不可避免地存在空间电荷,空间电荷的出现不一定引起击穿,但能够通过畸变场强,影响变压器油的击穿强度。因此,需要从变压器油本身出发,提高其绝缘性能,这对提升变压器的绝缘水平和保障电力系统的安全运行具有重要的工程和理论研究价值。
     本文开展了变压器和纳米改性变压器油中电场和空间电荷分布的测量工作,对纳米改性变压器油的操作冲击击穿特性进行了试验研究、仿真模拟与理论分析。主要研究内容和相应的结论有:
     ①以高Kerr常数碳酸丙烯酯液体为载体,分析了其中空间电荷分布的Kerr电光测量系统、测量原理,探索了液体中电场-光强图的成像规律,研制的Kerr电光测量系统为变压器油中电场和空间电荷分布的测量奠定了基础。为了提高电光测量的精度,对光路进行了优化以消除电场等倾线的干扰,得到了一种规范的空间电荷分布的测量系统及其反算方法。并最终利用该系统测量并得到了操作冲击电压下碳酸丙烯酯液体中空间电荷的注入水平及其分布的动态过程,其中CCD(Charge Coupled Device,电荷耦合元件)图像的灰度化处理和频域滤波等技术提高了液体中空间电荷的计算精度。对碳酸丙烯酯液体中空间电荷注入与输运过程进行了仿真,与试验测量结果对比后发现双电层理论和电化学反应过程分别能够很好地解释液体中空间电荷的注入与产生机理。
     ②基于高Kerr常数碳酸丙烯酯液体中空间电荷的测量方法和数据处理方法,利用阵列型光探测量了低Kerr常数纯变压器油和纳米改性变压器油在操作冲击电压作用下的电场和空间电荷分布。试验发现平板不锈钢电极系统下的纳米改性变压器油的耐受电压比纯变压器油的高8.3%,利用阵列型光探测量结果解释了纳米变压器油的耐受电压提高的原因,即不锈钢平板电极间纳米改性变压器油中的双电极同性电荷注入现象更加明显,电极附近的电荷注入水平更高(纯变压器油和纳米改性变压器油空间电荷水平分别为0.010C/m3和0.036C/m3),空间电荷的屏蔽作用更好,从而使纳米改性变压器油具有更高的耐压特性。
     ③研究了纳米改性变压器油中纳米粒子的自然稳定机制和被充电后的纳米粒子在电场作用下的迁移过程,对纳米粒子进行了表面改性试验、油中纳米粒子的分散性测试,结果表明,自然状态下经表面改性后的纳米粒子能够稳定的分散在变压器油中,直流电场下纳米粒子容易吸附到正电极,交流和操作冲击电压下的纳米改性变压器油中的纳米粒子也是稳定的。对介电型(Al2O3)、半导体型(TiO2)和导电型纳米粒子(Fe3O4)改性的变压器油在操作冲击电压作用下的击穿特性进行了测试,并与传统变压器油的击穿特性进行对比,结果表明,Al2O3、TiO2、Fe3O4纳米改性变压器油的正极性操作冲击击穿电压较纯油分别提高了35.9%、33.3%、44.3%,而负极性操作冲击下变压器的击穿电压分别只提高了11.5%、10.2%、8.12%,提高幅度较小。
     ④从导电型纳米粒子与介电型纳米粒子在外加电场下的界面电荷特性入手,分析了它们对电子载流子的捕捉作用,得到了不同介电特性纳米粒子对流注发展过程影响的普适性规律,即不论是导电型纳米粒子还是介电型的纳米粒子,在电场作用下,其界面分别形成的感应电荷和极化电荷,都会产生电荷势垒,吸附变压器油击穿过程中流注中的电子,从而降低流注发展速率,提高了变压器油的击穿电压水平。纳米粒子对电子吸附的饱和电量与其电导率和介电常数有关,每个Al2O3、TiO2、Fe3O4纳米粒子分别能吸附的电子数为7.9e、11e、11.4e。
     ⑤基于对变压器油中电荷载体的注入、产生、消失、复合、迁移等过程的理论分析和参数的确定,建立了变压器油中流注放电发展的场致分子电离模型,基于该模型得到的流注尺寸和流注发展速率与试验结果吻合,同时得到了流注通道内的电场、空间电荷、电位、温度分布等参数。纳米改性变压器油中纳米粒子对流注中电子的捕捉作用降低了流注发展速率和限制了流注尺寸,且流注头部的正离子、负离子、电子及空间电荷密度都有所提高,而流注通道中只有电子密度相对纯油中流注通道是降低的,原因是纳米粒子对电子的捕获作用降低了流注头部的电子数密度,为了维持流注的进一步发展,流注头部更多的中性分子会被电离。
     上述研究工作,为新型变压器油的研制提供了试验支持和理论依据,有利于大型电力变压器的内绝缘优化设计。
Transformer is the core apparatus of power conversion and transmission inelectrical power system, the operation stability of which concerns the common people’slife and the lifeline of national economic. As the impulse overvoltage brings baddamages to internal insulation, transformer oil is widely used in electric powertransformer as liquid dielectric for its excellent insulating properties. With the fastdevelopment of EHV (extra high voltage) power grid, the voltage rate of electrc powersystem is increasing and the miniaturization of transformer which is to save the cost andspace resource intensifies the difficulty of its designing and manufacturing. Meanwhile,even though may not lead to breakdown, the inevitably existing space chargedistribution distorts the local electric field, therefore, decreases the breakdown strength.Therefore, to enhance the insulation strength of transformer oil, measures should betaken from the perspective of transformer oil itself. It has significance of engineeringand theory to enhance the insulating property and guarantee the operation safty ofpower system.
     In this thesis, the electric field and space charge distributions are measured intransformer oil and oil based nanofluids, and the experiments, simulation and theoreticalanalysis of impulse withstand characteristics of transformer oil based nanofluid isundertaken. The main contents and corresponding conclusions are as follows.
     ①By using the base-liquid (propylene carbonate) with high Kerr constant, theKerr measurements system and its principle are analyzed and the electro-optic mappingrule is obtained. The Kerr system provides a solid basis on electric field and spacecharge measurements in transformer oil. The optical path is optimized to eliminate theisoclinic lines and to improve the measurement precision. The standard anticalculationmethod of space charge distribution is obatained, and by using which the space chargedynamics in propylene carbonate is calculated. The grayscale processing and thespectral filtering techniques for CCD images highly improve the precision. The chargeinjection and transport process in propylene carbonate is simulated. The doubleelectrical layer and the electro-chemical reaction can explain the space charge injectionand the charge production in bulk liquid, respectively, by comparing the the simulatingand experimental results.
     ②Based on the space charge measurement method and the data processing in propylene carbonate, the electric field distribution and space charge injection level intransformer oil and oil based nanofluid with low Kerr constant are obtained underimpulse voltage by using the array photo-electrical detector. It was found that thewithstand voltage of NFs is8.3%higher than that of pure oil under parallel electrodesystem, which was proved by space charge measurements using array photo-electricaldetector. The bipolar charge injection in NF is much higher than that in oil, i.e., themaximum space charge densities in transformer oil and oil based nanofluid are0.010C/m3and0.036C/m3, respectively. Therefore, the conclusion that the bipolar chargeinjection with higher level can increases the withstand voltage of transformer oil isconfirmed.
     ③The natural stability mechanisms of nanoparticle in transformer oil basednanofluid and the mobility of nanoparticle after being charged under electric field areinvestigated. The surface modification of nanoparticle and the dispersion test are carriedout. It was found that the nanoparticles are evenly distributed in the carrier oil undernatural circumtance. The nanoparticles under DC field are absorbed by positiveelectrode, while they are very stable under AC voltage and impulse voltage. Thewithstand voltages of transformer oil-based nanofluids modified by dielectric Al2O3,semiconductive TiO2and conductive Fe3O4under impulse voltage are investigated andcompared with that of pure transformer oil. The results show that withstand voltages oftransformer oil-based nanofluids modified by dielectric Al2O3, semiconductive TiO2andconductive Fe3O4under impulse voltage are35.9%,33.3%and44.3%higher than thatof pure transformer oil, while the enhancements of negative withstand voltage are notobvious and are only11.5%,10.2%and8.12%higher than that of transformer oil.
     ④From the perspective of interface charge characteristics of conductive anddielectric nanoparticles under applied electric field, their electron-capturing process areanalyzed and the universal rule of nanoparticle’s effect on streamer discharge isobtained, i.e., surface inductive and polar charges on nanoparticles with largeconductivity and dielectricity will emerge under external electric field and generateelectron potential traps which capture electrons passing by in the streamer channel. Theprocess restrains the development of streamer discharge and enhances the insulationproperties of transformer oil. The effect of nanoparticle on trapping electrons is relatedto its conductivity and dielectricity. Each Al2O3naoparticle, TiO2naoparticle, and Fe3O4naoparticle can trap7.9e,11e and11.4e, respectively.
     ⑤Based on the analysis and definination of space charge injection, production, vanishment, recombination and mobility, the electric field dependent molecularionization model of streamer discharge in transformer oil is constructed. The simulatedstreamer radius and streamer velocity are in accordance with experimental counterparts.The electric field, space charge, potential and temperature distribution along thestreamer channel are obtained from the model. The electron capturing nanoparticlescontributed to the decreasing streamer velocity and the shrunk dimension in nanofluids.The charge densities of positive ion, negative ion and electrons are higher at streamerhead compared to those in pure oil, while only the electron density in the streamerchannel is lower than that in pure oil. The reason is that the electrons are badly reducedby nanoparticles and more neutral molecules in transformer oil are ionized in order tokeep the streamer developing.
     The research work carried out in this paper provides the experimental andtheoretical supports for the research and development of new transformer oil, which isalso beneficial for the internal insulation design for large power transformers.
引文
[1]刘振亚,张启平.国家电网发展模式研究[J].中国电机工程学报,2013,33(7):1-10.
    [2]张翠霞,杜澍春,葛栋.1000kV特高压变电站防雷保护和设备绝缘水平[J].中国电力,2006,39(10):21-23.
    [3] Ree E.Parrish.Lightning-caused distribution transformer outages on a Florida distributionsystem[J].IEEE Transactions on Power Delivery,1991,6:880-887.
    [4] V.Sokolov,V.Bulgakova and Z.Berler.Assessment of power transformer insulationcondition[C].Electrical Insulation Conference and Electrical Manufacturing&Coil WindingConference,Millbrae,CA,2001,pp:605-613.
    [5]刘振亚.特高压电网[M].北京:中国经济出版社,2005,167-168.
    [6]周远翔,田冀焕,王云杉,等.变压器油纸绝缘系统中的空间电荷现象[J].高电压技术,2011,(3):520-527.
    [7] Zhang X,Zahn M.Kerr electro-optic field mapping study of the effect of charge injection onthe impulse breakdown strength of transformer oil[J].Applied Physics Letters,2013,103(16):162906-162906-5.
    [8] A.Ustundag.Kerr Electro-Optic Tomography for Determination of Nonuniform ElectricField Distributions in Dielectrics[D].Ph.D.dissertation,Massachusetts Institute ofTechnology,Cambridge,MA,USA,2000.
    [9]王梦云,薛辰东.1995-1999年全国变压器类设备事故统计与分析[J].电力设备,2001,2(1):14-22.
    [10] E.C.Cassidy,R.E.Hebner,M.Zahn and R.J.Sojka.Kerr-effect Studies of an InsulatingLiquid under Varied High-Voltage Conditions[J].IEEE Transactions on Dielectrics andElectrical Insulation,1974,9(2):43-56.
    [11] K.Tanaka,T.Takada.Measurement of the2-dimensional electric field vector in dielectricliquids[J].IEEE Transactions on Dielectrics and Electrical Insulation,1994,1(4):747-753.
    [12] F.O’Sullivan,J.G.Hwang,M.Zahn,O.Hjortstam,L.Pettersson,R.Liu and PBiller.A Model for the Initiation and Propagation of Positive Streamers in TransformerOil[C].IEEE International Symposium on Electrical Insulation ISEI08,Vancouver,BC,Canada,2008:210-214.
    [13] A.Beroual,M.Zahn,A.Badent,K.Kist,A.J.Schwabe,H.Yamashita,K.Yamazawa,M.Danikas,W.G.Chadband,Y.Torshin.Propagation and Structure of Streamers inLiquid Dielectrics[J].IEEE Electrical Insulation Magazine,1998,2(14):6-17.
    [14] A.Helgeson and M.Zahn.Kerr electro-optic measurements of space charge effects in highvoltage pulsed propylene carbonate using parallel-plate electrodes [J].2002:298-301.
    [15] Segal V,Hjortsberg A,Rabinovich A,et al. AC(60Hz)and impulse breakdown strength ofa colloidal fluid based on transformer oil and magnetite nanoparticles[C].IEEE InternationalSymposium on Electrical Insulation.Arlington,VA,USA:IEEE,1998:619-622.
    [16] Yuefan Du,Yuzhen Lv,Chengrong Li,Mutian Chen,Jianquan Zhou et al.Effect of electronshallow trap on breakdown performance of transformer oil-based nanofluids[J].Journal ofApplied Physics,2011,110(10):1-4.
    [17]孟中岩,姚熹.电介质物理基础[M].北京:国防工业出版社,1980.
    [18]周泽存.高电压技术[M].北京:水利电力出版社,1988.
    [19]邹平.植物绝缘油的油纸浸渍与水解动力学特性及纳米改性方法研究[D].重庆大学,2011.
    [20][英]E.库弗尔,M阿卜杜勒,缪始森,孙嘉平译.高电压工程[M].北京:水利电力出版社,1984.
    [21] E.O.Forster.Critical Assessment of the Electrical Breakdown Process in DielectricFluids[J].IEEE Transactions on Dielectrics and Electrical Insulation,1985,(5):891-896.
    [22] D.Linhjell,et al.Streamer Propagation under Impulse Voltage in Long Point-plane OilGaps[J].IEEE Transactions on Dielectrics and Electrical Insulation,1994,1(3):447-458.
    [23] P.Rain,O.Lesaint.Prebreakdown Phenomena in Mineral Oil under Step and AC Voltagein Large-gap Divergent Fields[J]. IEEE Transactions on Dielectrics and ElectricalInsulation,1994,1(4):692-701.
    [24] O.Lesaint,P.Gournay.Initiation and Propagation Thresholds of Positive Prebreak-downPhenomena in Hydrocarbon Liquids[J].IEEE Transactions on Dielectrics and ElectricalInsulation,1994,1(4):702-708.
    [25] G.Massala,O.Lesaint.Positive Streamer Propagation in Large Oil Gaps:ElectricalProperties of Streamers[J].IEEE Transactions on Dielectrics and Electrical Insulation,1998,5(3):371-381.
    [26] H.Akiyama.Streamer Discharges in Liquids and their Applications[J].IEEE Transactionson Dielectrics and Electrical Insulation,2000,7(5):646-653.
    [27] T.V.Top,G.Massala,O.Lesaint.Streamer Propagation in Mineral Oil in Semi-UniformGeometry[J].IEEE Transactions on Dielectrics and Electrical Insulation,2002,9(1):76-83.
    [28] A. Beroual, M. Zahn, et al. Propagation and Structure of Streamers in LiquidDielectrics[J].IEEE Transactions on Dielectrics and Electrical Insulation,1998,14(2):6-17.
    [29]周天春.伽马射线和紫外线老化条件下聚乙烯的空间电荷特性和陷阱特征[D].重庆大学,2012.
    [30] Alj A.,Denat A.,Gosse J.P.,et al.Creation of charge carriers in nonpolar liquids[J].IEEETransactions on Electrical Insulation,1985(2):221-231.
    [31] Grahame D C.The electrical double layer and the theory of electrocapillarity[J].ChemicalReviews,1947,41(3):441-501.
    [32] Poortinga A T,Bos R,Norde W,et al.Electric double layer interactions in bacterial adhesionto surfaces[J].Surface Science Reports,2002,47(1):1-32.
    [33] Grahame D C,Soderberg B A.Ionic components of charge in the electrical doublelayer[J].The Journal of Chemical Physics,2004,22(3):449-460.
    [34] Bolt G H.Analysis of the validity of the Gouy-Chapman theory of the electric doublelayer[J].Journal of Colloid Science,1955,10(2):206-218.
    [35] Oldham K B.A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid)interface[J].Journal of Electroanalytical Chemistry,2008,613(2):131-138.
    [36] O.W.Richardson.The emission of electricity from hot bodies[M].Longmans:Green andCompany,1921.
    [37] Lopez Villanueva J A,Jimenez Tejada J A,Cartujo P,et al.Analysis of the effects ofconstant‐current Fowler–Nordheim‐tunneling injection with charge trapping inside thepotential barrier[J].Journal of applied physics,1991,70(7):3712-3720.
    [38] Kao Kwan C.New theory of electrical discharge and breakdown in low mobility condensedinsulators[J].Journal of Applied Physics,1984,55(3):752-755.
    [39] Chang J S,Kelly A J,Crowley J M.Handbook of electrostatic processes[M].CRC Press,1995.
    [40]屠德民,刘文斌,庄国平,阚林.空间电荷自身反电场的介质击穿理论及电荷发射屏的研究[J].西安交通大学学报,1987,21(4):1-12.
    [41] L.Onsager.Deviations from Ohm's Law in Weak Electrolytes[J].J.Chem.Phys.,1934,2:599-615.
    [42] J.C.Devins,S.J.Rzad and R.J.Schwabe.Prebreakdown Phenomena in Liquids:Electronic Processes[J].J.Phys.D:Appl.Phy.,Vol.9.L87,1976.
    [43] Shrimpton J.Charge Injection Systems:Physical Principles,Experimental and TheoreticalWork[M].Springer Verlag,2009.
    [44] Schneider J M,Watson P K.Electrohydrodynamic Stability of Space‐Charge‐LimitedCurrents in Dielectric Liquids.I.Theoretical Study[J].Physics of Fluids,1970,13:1948
    [45] Watson P K,Schneider J M,Till H R.Electrohydrodynamic Stability of Space‐Charge‐Limited Currents in Dielectric Liquids.II.Experimental Study[J].Physics of Fluids,1970,13:1948.
    [46] Scott J C,Malliaras G G.Charge injection and recombination at the metal-organicinterface[J].Chemical physics letters.1999,299(2):115-119.
    [47] Denat A,Gosse B,Gosse J P.Ion injections in hydrocarbons[J].Journal of Electrostatics,1979,7:205-225.
    [48]王云杉,周远翔,李光范,等.油纸绝缘介质的空间电荷积聚与消散特性[J].高电压技术.2008(5):873-877.
    [49] V.Segal,A.Hjortsberg,A.Rabinovich,D.Nattrass and K.Raj.AC (60Hz) and ImpulseBreakdown Strength of a Colloidal Fluid Based on Transformer Oil and MagnetiteNanoparticles[C]. IEEE International Symposium on Electrical Insulation ISEI98,Arlington,VA,USA,1998,619-622.
    [50] S H Lee,F.O’Sullivan,I H Park,M.Zahn,L.Pettersson,R.Liu,O.Hjortstam,A.Jaksts,T.Auletta,and U.Gafvert.Finite Element Analysis of Charge Injection andTransport in a Dielectric Liquid[C].Annual Report for the Conference on ElectricalInsulation and Dielectric Phenomena,2006:129-132.
    [51] J.G.Hwang,F.O’Sullivan,M.Zahn,O.Hjortstam,L.A.A.Pettersson,andR.Liu.Modeling of Streamer Propagatiion in Transformer Oil-Based Nanofluids[C].AnnualReport for the Conference on Electrical Insulation and Dielectric Phenomena,2008:361-366.
    [52] Zahn M,Ohki Y,Rhoads K,et al.Electro-Optic Charge Injection and TransportMeasurements in Highly Purified Water and Water/Ethylene Glycol Mixtures[J].IEEETransactions on Dielectrics and Electrical Insulation,1985(2):199-211.
    [53]唐超.油纸绝缘介质的直流空间电荷特性研究[D].重庆大学,2010.
    [54] Faruque H S,Lacabanne C.Study of multiple relaxations in PEBAX,polyether block amide(PA122135block PTMG2032), copolymer using the thermally stimulated currentmethod[J].Polymer,1986,27(4):527-531.
    [55] Li Ying,Takada T.Progress in space charge measurement of solid insulating materials inJapan[J].IEEE Electr.Insul.Mag.,1994,10(5):16-28.
    [56]李长胜,崔翔.光学电场传感器研究综述[J].电气应用.2008(16):8-13.
    [57] Croitoru Z.Space charges in dielectrics[J].Progress in dielectrics,1965,6:103-146.
    [58] Zahn M.Optical,electrical,and electro-mechanical measurement methodologies of electricfield,charge,and polarization in dielectrics[C].Annual Report Conference on ElectricalInsulation and Dielectric Phenomena,1998,1:1-14.
    [59] Zahn M,Hikita M,Wright K A,et al.Kerr Electro-Optic Field Mapping Measurements inElectron Beam Irradiated Polymethylmethacrylate[J]. IEEE Transactions on ElectricalInsulation,1987,EI-22(2):181-185.
    [60]谢恒,彭宗仁.应用电光技术研究空间电荷的动态过程[J].西安交通大学学报,1995,29(3):46-51.
    [61] Peng Z,Xie H,Zhang C.A new kerr electro-optic system for the measurements ofelectricfield and space charge distribution[C]. Proceedings of the4th InternationalConference on Properties and Applications of Dielectric Materials,IEEE,1994,2:674-677.
    [62] X Ma,Z Peng,et al.A new CCD3000electro-optic measurement system based on Kerrelectric-optic effect[C].Proceedings of the7th International Conference on Properties andApplications of Dielectric Materials,2003,2:559-562.
    [63]马晓薇,彭宗仁.基于克尔电光效应的新型CCD光电测试系统[J].高电压技术.2004(1):19-20.
    [64] Cassidy E C,Hebner R E,Zahn M,et al.Kerr-effect Studies of an Insulating Liquid underVaried High-Voltage Conditions[J].IEEE Transactions on Electrical Insulation,1974,EI-9(2):43-56.
    [65] Helgeson A,Zahn M.Kerr electro-optic measurements of space charge effects in HV pulsedpropylene carbonate[J].IEEE Transactions on Dielectrics and Electrical Insulation,2002,9(5):838-844.
    [66] Hikita M,Matsuoka M,Kato K,et al.Kerr electro-optic field mapping in transformeroil/PET filmcomposite insulation system for DC voltage application[C].Proceedings of the4th International Conference on Properties and Applications of Dielectric Materials,IEEE,1994,1:71-74.
    [67] Wakamatsu M,Kato K,Inoue N,et al.DC field measurement in Oil/Pressboard compositeinsulation system by electro-optic Kerr effect[J].IEEE Transactions on Dielectrics andElectrical Insulation,2003,10(6):942-947.
    [68]吴昊,齐波,李成榕,等.基于Kerr效应法的油纸复合绝缘交直流复合电场测量[J].电工技术学报,2013,28(4):28-34.
    [69]吴昊,齐波,李成榕,等.减少Kerr效应法在油纸绝缘结构中直流电场测量误差的方法[J].高电压技术,2013,39(005):1149-1155.
    [70]李艳娇,赵凯,罗志峰,等.纳米流体的研究进展[J].材料导报,2008,22(11):87-92.
    [71] H.T.Zhu,Y.S.Lin,Y.S.Yin.A novel one-step chemical method for preparationofcopper nanofluids[J].Journal of Colloid and Interface Science,2004,277(1):100-103
    [72]沈谅平.纳米改性变压器油的制备及其特性研究[D].华中科技大学,2012.
    [73]凌智勇,张体峰,丁建宁,等.Cu-水纳米流体的稳定性及其粘度的实验研究[J].功能材料,2011,42:481-483.
    [74] M.Jahanshahi,S.F.Hosseinizadeh,M.Alipanah,et al.Numerical simulation of freeconvection based on experimental measured conductivity in a square cavity usingWater/SiO2nanofluid[J].International Communications in Heat and Mass Transfer,2010,37(6):687-694.
    [75]刘雪东,卓震.机械化学法粉体表面改性技术的发展与应用[J].江苏石油化工学院学报,2002,14(4):32-35.
    [76]庞晋山,张海燕,吴其光,等.化学处理法制备碳包铜导热纳米流体及其性能表征[J].材料工程,2011,3:28-35
    [77]王全杰,朱飞,王改芝,等.超声波对纳米二氧化钛粉体分散性的影响[J].皮革科学与工程,2007,17(2):31-33.
    [78]安康,孙德军,薛天峰.纳米SiO2悬浮液体系中的流变、沉降与分维研究[J].功能材料,2003,34(6):721-722.
    [79]王群.粉体颗粒分布常用检测方法[J].陶瓷,2011,6:38-39.
    [80]祁明缢.选矿粒径检测技术及其新进展[J].武汉科技大学学报,1987,32(3):48-54.
    [81]李志慧,付乌有,许静,等.单分散性Fe3O4纳米颗粒的制备及其表征[J].人工晶体学报,2008,37(4):977-980.
    [82]李东东,李金凯,赵蔚琳.SiO2-水纳米流体稳定性及热导性能[J].济南大学学报,2010,24(3):247-250.
    [83]林海斌,张国贤,谢飞.分散剂PEG600对A12O3纳米流体分散性的影响[J].材料科学与工程学报,2010,28(3):366-369.
    [84]杜岳凡,吕玉珍,李成榕,等.半导体纳米粒子改性变压器油的绝缘性能及机制研究[J].中国电机工程学报,2012,32(10):177-182.
    [85]杜岳凡.TiO2纳米粒子对变压器油绝缘和电荷输运特性的影响[D].华北电力大学,2013.
    [86] F.M.O’Sullivan.A model for the initiation and propagation of electrical streamers intransformer oil and transformer oil based nanofuids[D].Ph.D.dissertation,MassachusettsInstitute of Technology,Cambridge,MA,USA,2007.
    [87] J.George Hwang,M.Zahn,Francis M.O’Sullivan.Effects of nanoparticle charging onstreamer development in transformer oil-based nanofluids [J].Journal of Applied Physics,2010,107(1):1-17.
    [88] Ping Zou,Jian Li,Cai-Xin Sun,Zhao-Tao Zhang,Rui-Jin Liao.Dielectric properties andelectrodynamic process of natural ester-based insulating nanofluid[J].Modern PhysicsLetters B,2011,25(25):2021-2031.
    [89]张召涛.植物绝缘油中特征气体及油纸吸湿特性与纳米粒子分散稳定性研究[D].重庆大学,2012.
    [90]周远翔,王云杉,田冀焕,沙彦超,姜鑫鑫,高胜友,孙清华,聂琼.纳米改性变压器油的破坏特性[J].高电压技术,2010,36(5):1155-1159.
    [91] Takada T.,Hayase Y.,Tanaka Y.Space charge trapping in electrical potential well causedby permanent and induced dipoles[C].Annual Report-Conference on Electrical Insulationand Dielectric Phenomena,IEEE,2007:417-420.
    [92] Takada T,Hayase Y and Tanaka Y.Space charge trapping in electrical potential well causedby permanent and induced dipoles for LDPE/MgO nanocomposite[J].IEEE Transactions onDielectrics and Electrical Insulation,2008,15:152-60.
    [93]廖磊.基于克尔效应的冲击电压下液体电介质电场和空间电荷测量[D].重庆大学,2012.
    [94] J.G.Hwang,M.Zahn,L.A.Pettersson,O.Hjortstam,and R.Liu.Modeling streamersin transformer oil:The transitional fast3rd mode streamer[C].IEEE9th InternationalConference on the Properties and Applications of Dielectric Materials,2009,573-578.
    [95] J.C.Devins,S.J.Rzad,and R.J.Schwabe.Breakdown and prebreakdown phenomenain liquids[J].Journal of Applied Physics,1981,52:4531-4545.
    [96] Niemeyer L,Pietronero L,Wiesmann H J.Fractal dimension of dielectric breakdown[J].PhyReview Letters,1984,52(12):1033-1036.
    [97]任顺平.分形学描述平面气体放电的改进方法[J].电网技术,1999,5:2-4.
    [98] M.Kim,R.E.Hebner,and G.Hallock,Modeling the growth of streamers during liquidbreakdown[J].IEEE Transactions on Dielectrics and Electrical Insulation,2008,15:547-553.
    [99]姚启钧.光学教程[M].高等教育出版社,2008.
    [100] Zahn M,Takada T,Voldman S.Kerr electro-optic field mapping measurements in waterusing parallel cylindrical electrodes[J].Journal of applied physics.1983,54(9):4749-4761.
    [101]杨庆,廖磊,施健,等.基于Kerr电光效应的冲击电压下液体电介质空间电荷高速CCD测量[J].高电压技术,2012,38(3):10994-11003.
    [102]施健,杨庆,司马文霞,等.冲击电压下平板电极间空间电荷效应的Kerr电光测量技术
    [C].济南,2011年高压学术年会,2011.
    [103] Jian Shi,Qing Yang,Wenxia Sima,Lei Liao,Sisi Huang.Space Charge DynamicsInvestigation Based on Kerr Electro-Optical Measurements and Gray Scale Processing ofCCD Images [J].IEEE Transactions on Dielectrics and Electrical Insulation,2013,20(2):601-611.
    [104] Shamgar Gurevich and Ronny Hadani.On the diagonalization of the discrete Fouriertransform[J].Applied and Computational Harmonic Analysis,2009,27(1):87–99.
    [105] L.Onsager.Deviations from Ohm’s Law in Weak Electrolytes[J].J.Chem.Phys.,1934,2:599-615.
    [106] N.Lebedev,I.Skalskaya.Force acting on a conducting sphere in the field of a parallel platecondenser[J].Sov.Phys.Tech.Phys.,Engl.Transl,1962,7:268-270.
    [107] Felici N J. DC conduction in liquid dielectrics (Part II): electrohydrodynamicphenomena[J].Direct Current,1972,2(4):147-165.
    [108]涂愈明,王赞基,等.变压器油流带电数学模型的研究及其应用,第一部分:数学模型的推导[J].中国电机工程学报,1998,18(1):34-38.
    [109]王菊芬,蒲家宁,孟浩龙.变压器油道内冲流电流的一种计算方法[J].中国电机工程学报,2006,26(15):105-112.
    [110]黄思思.操作冲击电压作用下液体电介质的电场及空间电荷分布特性研究[D].重庆大学,2013.
    [111] R.E.Rosensweig.Ferrohydrodynamics[M].Cambridge University Press,1985.
    [112] DL418-91绝缘液体雷电冲击击穿电压测定法[S].
    [113] S.Ingebrigtsen,L.E.Lundgaard,and P.O.Astrand,Effects of additives on prebreakdownphenomena in liquid cyclohexane:I.Streamer initiation[J].Journal of Physics D-AppliedPhysics,2007,40(17):5161-5169.
    [114] S.Ingebrigtsen,L.E.Lundgaard,and P.O.Astrand.Effects of additives on prebreakdownphenomena in liquid cyclohexane:II.Streamer propagation[J].Journal of Physics D-AppliedPhysics,2007,40(18):5624-5634.
    [115]杨津基.气体放电[M]科学出版社,1983.
    [116]彭庆军.空气中流注放电等离子体化学模型研究及其影响因素分析[D].重庆大学,2012.
    [117] Pancheshnyi S.,Nudnova M.,Starikovskii A.Development of a cathode-directed streamerdischarge in air at different pressures:Experiment and comparison with direct numericalsimulation.Physical Review E.2005.71(1):16407.
    [118] Y.V.Torshin,Prediction of Breakdown Voltage of Transformer Oil from PredischargePhenomena[J].IEEE Transactions on Dielectrics and Electrical Insulation,2003,10(6):933-941.
    [119] C.Zener.A Theory of the Electrical Breakdown of Solid Dielectrics[J].Proc.Roy,Soc.A,1934,145(855):523-529.
    [120] W.F.Schmidt.Liquid State Electronics of Insulating Liquids[M].CRC Press,1997:121-123.
    [121] J.R.Melcher.Continum Electromechanics[M].The MIT Press,Cambridge,MA.andLondon,1981.
    [122]解树青.对导体球表面感应电荷分布规律的研究[J].重庆邮电学院学报:自然科学版,2002,14(2):88-90.
    [123] LIU Yun.Discussion On the distribution law of the charge on surface of spheroid in the pointcharge field[J].Journal of Guizhou Education Institute,2008,19(6):7-12.
    [124]邹平.植物绝缘油的油纸浸渍与水解动力学特性及纳米改性方法研究[D].重庆大学,2011.
    [125] COMSOL Multiphysics,http://www.comsol.com/,2013.
    [126] A. Denat. High field conduction and prebreakdown phenomena in dielectricliquids[J].IEEE Transactions on Dielectrics and Electrical Insulation,2006,13(3):518-525.
    [127] Y.Nakao,T.Yamazaki,K.Miyagi,Y.Sakai,and H.Tagashira.The effect of molecularstructure on prebreakdown phenomena in dielectric liquids under a nonuniformfield[J].Electrical Engineering in Japan,2002.139(1):1-8.
    [128] Qian J,Joshi R P,Schamiloglu E,et al.Analysis of polarity effects in the electricalbreakdown of liquids[J].Journal of Physics D:Applied Physics,2006,39(2):359.
    [129] Baird J K.Negative ion photodetachment and the electron effective mass in liquids[J].TheJournal of Chemical Physics,1983,79(1):316-320.
    [130] W.G.Chadband.On Variations in the Propagation of Positive Discharges BetweenTransformer Oil and Silicone Fluids[J].J.Phys.D:Appl.Phys.,1980,13:1299-307.
    [131] Lide D R.Physical constants of organic compounds[J].CRC Handbook of Chemistry andPhysics,2005,89:3-1.
    [132] G.Massala,and O.Lesaint.A Comparison of Negative and Positive Streamers in MineralOil at Large Gaps[J].J.Phys.D:Appl.Phys.,2001,34:1525-1532.
    [133] O.Lesaint and T.V.Top.Streamer Initiation in Mineral Oil Part I:Electrode Surface EffectUnder Impulse Voltage[J].IEEE Transactions on Dielectrics and Electrical Insulation,2002,9(1):84-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700