红豆杉紫杉烷13a-羟基化酶基因的克隆及表达调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫杉醇(Taxol)是从紫杉树皮中分离提取到的天然抗肿瘤物质,是迄今为止最具抗癌活性的天然化合物之一,紫杉酚能够抑制细胞在G2-M期增殖,阻断有丝分裂,从而有效抑制癌细胞增生。然而紫杉醇在植物体内含量相当低,加之其生长缓慢,这对紫杉醇的进一步开发利用造成了很大的困难。紫杉烷13α–羟基化酶(Taxane 13α-hydroxylase)属于依赖细胞色素P450的单加氧酶,为紫杉醇合成途径的关键羟化酶,是紫杉醇及其半合成前体生物合成调控的十分重要的靶标。本研究克隆得到我国东北红豆杉(Taxus cuspidata)紫杉烷13α-羟基化酶基因,构建了其植物表达载体并转化烟草。在此基础上克隆了几个可能与紫杉烷13α-羟基化酶基因相作用的microRNA(miRNA)基因,构建其植物表达载体并进行了其中miRNA基因与紫杉烷13α-羟基化酶基因共转化试验。主要研究内容和研究结果如下:
     (1)本研究克隆得到东北红豆杉13OH的基因全长,将它与报道的13OH基因进行同源性比较后发现9个碱基有差异,同源性为99.38%。
     (2)根据不同的报告基因要求,成功构建了13OH基因在Pcambia1305.1和pcambia1304及pEGAD上的三种植物表达载体,分别含有GUS基因、GUS和mGFP5、EGFP作为报告基因。
     (3)将构建在Pcambia1305.1的13OH基因成功转化到烟草中,获得可在烟草中表达13α-羟基化酶基因的转基因烟草植株。
     (4)从水稻及拟南芥中克隆出miR160e、miR164e、miR165a、miR166m、miR169d小调节子前体,测序结果表明除164e有一个碱基差异166m有两个碱基差异外,其余同源性为100%。
     (5)分别构建了miR160e、miR164e、miR165a、miR166m、miR169d在Pcambia1305.1上和miR165a、miR169d在pEGAD上的七种植物表达载体,便于不同的筛选。
     (6)瞬时转化GUS染色结果显示miR169d对13OH基因的表达有很强的抑制作用。
     (7)荧光定量PCR结果显示miR165a可能对13OH基因有小幅度的影响。
The nature product Taxol, produced by Taxus species, is a highly effective anticancer drug;Taxol inhibits cell proliferation at the G2-M phase, thereby it can block mitosis effectively. FDA has approved Taxol in the treatment of refractory ovarian and breast cancer in 1992. Despite its outstanding curative effect,the content of Taxol is at quite low level. For example, the commercial isolation of 1 kg Taxol required about 6.7 t of T.brevifolia bark, equivalent to that of 2,000-3,000 trees. To resolve this contradiction, scholars at home and abroad have made efforts such as artificial cultivation, total syntheses and semisynthesis, cell culture etc. However low yields and high costs preclude them from industrialization produce .For the foreseeable future, the metabolic regulation of the Taxol biosynthetic pathway may provide a feasible solution to the sustainable yield problem.
     A central feature in the biosynthesis of Taxol is oxygenation at multiple positions of taxane core structure, reactions that are considered to be mediated by cytochrome P450-dependent monooxygenases. 13α-hydroxylase is an important P450-dependent monooxygenases in the synthesis of Taxol. Here we cloned its full-length gene and constructed expression vectors.
     The main results are summarized as follows:
     (1) Full-length sequence coding for Taxane 13α-hydroxylase(13OH) was cloned from Taxus cuspidata cDNA library.The DNA was verified by sequencing after it was inserted into pGM-T easy vector. Compared with the nucleotide sequence in the Genbank, the cloned DNA in our paper showed 99.38% identity with the reported taxane 13α–hydroxylase of Taxus cuspidata.
     (2) The 13OH gene was cloned in to Pcambia1305.1, pcambia1304 and pEGAD to construct three different plant expression vectors with GUS gene, GUS gene and mgfp5, EGFP gene as their report gene respectively.
     (3) The binary vector with 13OH in pCAMBIA1305.1 was transformed into Agrobacterium tumefaciens GV3101 by electroporation. Plants were regenerated from the infected leaf dics under the selection of hygromycin. PCR ananlysis with 13OH-specific primer and assay of the fusion GUS reporter gene showed that the 13OH gene was successfully intergrated into and expressed in the leaf cells of transgenic tobacco plants.
     (4) The precurcor of miR160e, miR164e, miR165a, miR166m, miR169d were cloned from the genomic DNA of Arabidopsis thaliana and Oryza sativa, Compared with the nucleotide sequence in the Genbank, the cloned DNA in our paper showed 100%, 99.24%, 100%, 99%, 100% identities respectively.
     (5) Plant expression vectors for seven miRNA genes were constructed to test the function of the regulators.
     (6) Analysis of transient transgenic Taxus shots showed that the expression of 13α-hydroxylase could be suppressed by the technology of miRNA .Compared with miR164e and miR165a ,miR169d was more efficient in silencing target gene due to its high specificity.
     (7) The result of real-time PCR showed that miR165a has a little function on the expression of 13α–hydroxylase.
引文
[1] Wani M.C., Taylor H.L., Wall M.E., et al. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am. Chem. Soc., 1971, 93:2325-2327
    [2] Craag G. M., Scheparat S.A., Suffness M., et al.The taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents. J Nat. Prod., 1993, 56:1657-1668
    [3] Nicolaou K.C, Yang Z., Liu J.J., et al.Total synthesis of taxol. Nature, 1994, 367:630-634
    [4] Baloglu E., Kingston D.G. A new semisynthesis of paclitaxel from baccatin III. J Nat. Prod., 1999, 62:1068-1071
    [5] Stierle A., Strobel G., Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew.Science, 1993, 260:214-216
    [6] Fett-Neto A.G., DiCosmo F., Reynolds W.F., et al. Cell culture of Taxus as a source of the antineoplastic drug taxol and related taxanes. Biotechnology, 1992, 10:1572-1575
    [7] Ukimune Y.,Tabata H., Higashi Y., et al. Methyl jasmonate-induced over production of paclitaxel and baccatin III in Taxus cell suspension cultures.Nature Biotechology,1996, 14:1129-1132
    [8] Mirjalili N., Linden J.C. Methyl jasmonate induced production of taxol suspension cultures of Taxus cuspidata: Ethylene interaction and induction models.Biotechnol. Prog., 1996, 12:110-118
    [9] Pestchanker L.J., Roberts S.C., Shuler M.L. Kinetics of taxol production and nutrient use in suspension cultures of Taxus cuspidata in shake flasks and a Wilson-type bioreactor. Enzyme Microb. Technol., 1996, 19(4):256-260
    [10]甘烦远,郑光植,彭丽萍等.云南红豆杉细胞发酵培养的研究.天然产物研究与开发,1997,9(3):97-100
    [11]邱德有,李如玉,韩一凡等.东北红豆杉细胞克隆技术的研究.中国中药杂志,1998,23:265-267
    [12] Wu Z., Yuan Y., Ma Z., et al. Kinetics of two-liquid-phase Taxus cuspidata cell culture for production of Taxol. Biochem.Eng. J., 2000, 5:137-142
    [13] Pan Z., Wang H., Zhong J. Scale-up study on suspension cultures of Taxus chinensis cells for production of taxane diterpene. Enzyme Microb. Technol., 2000, 27:714-723
    [14] Wang C., Wu J., Mei X. Enhancement of Taxol production and excretion in Taxus chinensis cell culture by fungal elicitation and medium renewal. Appl. Microbiol. Biotechnol., 2001, 55:404-410
    [15] Yu L.J., Lan W.Z., Qin W.M., et al. Effect of salicylic acid on fungal elicitor-induced membrane-lipid peroxidation and taxol production in cell suspension cultures of Taxus chinensis. Process Biochem, 2001, 37:477-482
    [16] Zhang C.H., Wu J.Y., He G.Y. Effects of inoculum size and age on biomass growth and paclitaxel production of elicitor-treated Taxus yunnanensis cell cultures. Appl.Microbiol.Biotechnol., 2002, 60:396-402.
    [17]邱德有,胡新玲,徐妙云等.紫杉烷14β一羟基化酶基因片段的克隆及其植物表达载体的构建.分子植物育种,2006,4(2):243-250
    [18] Liao Z, Gong Y, Kai G, et al. An intron-free methyl jasmonate inducible geranylgeranyl diphosphate synthase gene from Taxus media and its functional identification in yeast.Mol.Biol,2005,39(1):14-20
    [19]梁素钰,和丽岗,郑学勤.云南红豆杉紫杉烯合成酶基因克隆、序列分析与植物表达载体的构建.生命科学研究,2005,9(1):24-28
    [20]涂琚,朱平,程克棣.中国红豆杉紫杉烷10β-羟化酶的分子克隆及在酿酒酵母中的表达.华中农业大学学报,2004,23(1):173-174
    [21] Koepp A.E., Hezari M., Zajicek J., et al. Cyclization of geranylgeranyl diphosphate to taxa4(5), 11(12)- diene is the committed step of taxol biosynthesis in Pacific yew. J Biol. Chem., 1995, 270:8686-8690
    [22] Hefner J., Rubenstein S.M., Ketchum R.E.B., et al. Cytochrome P450-catalyzed hydroxylation of taxa- 4(5),11(12)-diene to taxa-4(20),11(12)-dien-5α-ol: the first oxygenation step in taxol biosynthesis. Che- mistry and Biology, 1996, 3:479-489
    [23] Hezari M., Croteau R. Taxol biosynthesis: an update. Planta Media, 1997, 63:291-295
    [24] Fleming P.E., Mocek U., and Floss H.G. Biosynthesis of taxoids. Mode of formation of the taxol side chain, J. Am. Chem. Soc., 1993, 115:805-807
    [25] Hefner J., Ketchum R.E.B., and Croteau R. Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus Canadensis and assessment of the role of this prenyl- transferase in cells induced for Taxol production. Archives of Biochemistry and Biophysics, 1998, 360:62-74
    [26] Wildung M.R. and Croteau R. A cDNA clone for taxadiene synthase, the diterpene cyclase that cataly zes the committed step of taxol biosynthesis. Biol. Chem., 1996, 271:9201-9204
    [27] Walker K., Ketchum R E, Hezari M., et al. Partial purification and characterization of acetyl coenzyme A:taxa-4(20),11(12)-dien-5alpha-ol O-acetyl transferase that catalyzes the first acylation step of taxol biosynthesis. Archives of Biochemistry Biophysics, 1999, 364:273-279
    [28] Walker K., Schoendorf A., Croteau R. Molecular cloning of a taxa-4(20), 11(12)-dien-5alpha-ol-O- acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Archives of Biochem- istry and Biophysics, 2000, 374:371-380
    [29] Schoendorf A., Rithner C.D., Williams R.M., et al. Molecular cloning of a cytochrome P450 taxane 10β-hydroxylase cDNA from Taxus and functional expression in yeast. Proc.Natl .Acad. Sci. USA, 2001, 98:1501-1506
    [30] Jennewein S., Rithner C.D., Williams R.M., et al. Taxol biosynthesis: taxane 13α-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc.Natl .Acad. Sci. USA, 2001, 98:13595-13600
    [31] Walker K., Croteau R.Taxol biosynthesis: molecular cloning of a benzoyl-CoA: taxane 2alpha- O-benzoyl transferase cDNA from taxus and functional expression in Escherichia coli. Proc. Natl. Acad. Sci. USA, 2000, 97:13591-13596
    [32] Walker K., Croteau R. Molecular cloning of a 10-deacetylbaccatin III-10-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Proc.Natl .Acad. Sci. USA, 2000, 97:583-587
    [33] Walker K., Long B., Croteau R. The final acylation step in taxol biosynthesis: cloning of the taxoid C13-side-chain N-benzoyltransferase from Taxus.Proc.Natl.Acad.Sci.USA, 2002, 99:9166-9171
    [34] Walker K., Fujisaki S., Long B., et al. Molecular cloning and heterologous expression of the C-13 phenylpropanoid side chain-CoA acyltransferase that functions in Taxol biosynthesis. Proc. Natl. Acad. Sci. USA., 2002, 99:12715-12720
    [35] Jennewein S., Rithner C.D., Williams R.M., et al. Taxoid metabolism: Taxoid 14β-hydroxylase is a cytochrome P450-dependent monooxygenase. Archives of Biochemistry Biophysics, 2003, 413:262-270
    [36]张宏杰,武田美雄,南庆典等.云南红豆杉根中的紫杉烷类化合物.云南植物研究,1993,15:424-426
    [37] Cheng K., Fang W., Yang Y., et al. C-14 Oxygenated Taxanes from Taxus Yunnanensis Cell Cultures. Phytochemistry, 1996, 42:73-75
    [38] Menhard B., Eisenreich W., Hylands P.J., et al. Taxoids from cell cultures of Taxus chinenesis. Phyto- chemistry, 1998, 49:113-125
    [39] Wheeler A.L., Long R.M., Ketchum R.E., et al. Taxol biosynthesis: differential transformations of taxadien-5 alpha-ol and its acetate ester by cytochrome P450 hydroxylases from Taxus suspension cells. Arch. Biochem. Biophys., 2001, 390:265-278
    [40] Ketchum R.E.B., Rithner C.D., Qiu D., et al. Taxus metabolomics: methyl jasmonate preferentially induces taxoids oxygenated at C-13 in Taxus x media cell cultures. Phytochemistry, 2003, 62:901-909
    [41] Jennewein S, Rithner C D, Williams R M,et al.Taxol biosynthesis: taxane 13 alpha-hydroxylase is a cytochrome P450-dependent monooxygenase.Proc Natl Acad Sci U S A, 2001, 98(24):13595-13600
    [42] Zarnore PD,Haley B.The big world of small RNAs[J].Science,2005,309:1519—1524
    [43] Wightman, B., Ha, I., and Ruvkun, G.Post-transcriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell,1993,75:855–862
    [44] Lim L.P., Glasner M.E., Yekta S.,et al.Vertebrate microRNA genes.Science,2003,299: 1540
    [45] Lagos-Quintana M.,Rauhut R.,et al.Identification of tissue-specific microRNAs from mouse. Curr Biol.,2002,12:735-739
    [46] Giraldez A.J., Cinalli R.M., Glasner M.E.,et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science,2005,308:833-838
    [47] Palatnik J.F.,Allen E.,Wu X.,et al.Control of leaf morphogenesis by microRNAs. Nature,2003, 425:257-263
    [48] Victor A,Barrel B,Bartel D P.et a1.A uniform system for microRNA annotation[J].RNA,2003,9(3):277~279。
    [49] RuvkunG.Glimpses of a tiny RNA world[J].Science,2001,294:797~799.
    [50] Reinhart B J , WeinsteinEG , RhoadesMW , Barter D , andBartel D P . MicroRNAs in plants[J].Genes&Der,20O2,16:1616~1626.
    [51] Palatnik J F,Allen E,Wu X,Shommer C,Sehwab R,Carrington J C,Weigel D.Control of leaf morphogenesis by microRNAs[J].Nature,2003,425:257~263.
    [52] Carrington JC,Ambl~O8V.RoleOfmiemRNAsin plant and animal development[J].science,2003,301:336~338.
    [53] CheIl C Z,Li L,Lodish H F,Barter D P.MicroRNAs modulate hematopoietielic lineage differentiation[J].Science,2004,303:83~86.
    [54] Ambros V.MicroRNA pathways in flies and worms:gowth,death,fat,stress,and timing[J],Cell 2003,113:673~676.
    [55] ZengY,Yi R,BryanRC.MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms[J].BioChemistry,2003,100(17):9779~9784.
    [56] Mittal V.Improving the eficiency of RNA interference in mammals [J].Nature Reviews Genetics,2004,5:355~365
    [57] Brennecke J,Hipfner D R,Stark A,Russell R B,Cohen S M Cell,2003,113:25~36.
    [58] Xu P,Vemooy S Y,Guo M,Hay B A. The drosophila microRNA mir-14 supress cell death and is req uired for normal fat metabolism[J] curr bio,2003,113:790~795.
    [59] Grad Y., Aach J., Hayes G.D.,et al. Computational and experimental identification of C. elegans microRNAs. Mol Cell,2003,11:1253-1263
    [60] Jones-Rhoades M.W., Bartel D.P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell,2004,14:787-799
    [61] Li Y., Li W., Jin Y.X. Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa. Acta Biochim Biophys Sin.,2005, 37:75-87
    [62] Wang X.J., Reyes J.L., Chua N.H., et al. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol.,2004,5:R65
    [63] Adai A., Johnson C., Mlotshwa S.,et al. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res.,2005,15:78-91
    [64]胡国武,温廷益,元英进.紫杉醇合成代谢途径中紫杉烯合成酶cDNA的克隆,生物工程学报,2000,16(2):158-160
    [65]胡雅琴,肖娅萍,王孝安等.几种松科植物基因组总DNA的提取.西北植物学报, 2004, 24(3): 523-526
    [66] Jennewein S., Rithner C.D., Williams R.M., et al. Taxol biosynthesis: Taxoid 13 alpha-hydroxylase is a cytochrome P450-dependent monooxygenase. PNAS,2001,98(24):13595-13600
    [67]傅荣昭,孙勇如,贾士荣.植物遗传转化技术手册.中国科学技术出版社,1994,1-121
    [68] Jefferson, R.A., et al., 1987. EMBO 6:3901-3907.
    [69] Rodrigues-Pousada et al. 1993. The Plant Cell 5:897-911.
    [70] lister R T,Ausubel F M,katagtri F.Molecular recognition of Pathogen attack occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genes RPS2 and RPMI.Proceedings National Academy Sciences USA,1996,93:15497-15502.
    [71] Schweizer P,Pokomy J. A transient assay system for the funtional assessment of defense-related genesin wheat Molccular Plant-Microbe Interactions,1999:647-654.
    [72] Shirasu K,Nielsen k. Cell-autonomous eomplemen tation of mlo resistance using a biolistic transient expression system.The Plant Journal,1999.17:293-299.
    [73] Nielsen k Olsen O,Oliver R.A transient expression system to assay putative antifungal genes on powdery mildew infected barley leaves.Physiological and Molecular plant Pathology,1999,54:1—12.
    [74] Schweizer,P,Pokomy J,Schulze-Lefert P,Double-stranded RNA interferes with gene function at the single-cell level in cereals.The Plant Journal,2000,24:895-903.
    [75] Kristensen B k,Rasmussen S K Nielsen K A.Transient expression of a vacuolar peroxidase increases susceptibity of epidermal barley cells to powdery mildew .Molecular Plant Pathology,2001.2:3ll-317.
    [76]王育花,赵森.利用荧光定量PCR法检测转基因水稻外源基因拷贝数的研究.生命科学研究:2007,11(4):301-305.
    [77]韩俊英,曾瑞萍.荧光定量PCR技术及其应用[J] .国外医学:遗传学分册,2000,23(3):177.
    [78] Wall SJ,Faward DR.Quantitative reverse transcription-poly-merase chain reaction(RT PCR):A comparison of prime-dropping,competitive,and real-time RT-PCRs[J].Anal Biochem,2002,300(2):269-273.
    [79] Sehrnittgen TD.Real-time quantitative PCR[J].Methods,2001,25(4):383-385.
    [80] Felkin LE,Taegtmeyer AB,Barton pJ.Real-time quantitative polymerase chain reaction in cardiac transplant research[J].Methods Mol Bid,2006,333:305—330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700