乙酰唑胺负荷CT灌注成像对脑胶质瘤肿瘤血管生成的评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分乙酰唑胺负荷CT灌注成像与CO2负荷CT灌注成像在大鼠C6胶质瘤应用中的比较研究
     目的:研究用计算机体层摄影术(Computed tomography, CT)的灌注成像评价C6胶质瘤在乙酰唑胺和10%CO2与90%空气混合气分别作为负荷刺激因素下的血供变化情况。分析乙酰唑胺负荷CT灌注成像的可行性以及CT灌注参数负荷前后灌注参数变化率与血管内皮生长因子(Vascular endothelial growth factor, VEGF)和FⅧ-微血管密度(Microvessel density, MVD)之间的相关性。
     材料与方法:雄性SD大鼠32只,年龄3个月,体重250-300g,其中20只大鼠种植C6胶质瘤,12只大鼠作为正常对照组。10只原位种植C6胶质瘤大鼠和6只正常大鼠分别行静息CT灌注检查和静脉注射乙酰唑胺15分钟后CT灌注检查。另外10只原位种植C6胶质瘤大鼠和6只正常大鼠分别行静息CT灌注检查和吸入10%CO215分钟后行256层CT灌注检查。灌注成像实验组以胶质瘤区域(对照组以右侧尾状核层面)为中心扫描。原始图像采用Philips CT自带脑灌注软件处理后产生灌注曲线及伪彩图像,两次扫描前均测定大鼠的血液CO2分压、酸碱度(Potential of hydrogen, pH)等血气分析指标。检查结束后24小时内,处死大鼠并取脑固定,在尾状核中心层面全脑切片,观察肿瘤大体形态学表现后用石蜡包埋,在C6细胞种植部位(对照组在右侧尾状核层面)切片,染色,显微镜下进行组织病理学观察,并进行免疫组化检查VEGF和FⅧ-MVD。采用SPSS17.0统计学分析软件(SPSS Inc., Chicago, IL,美国)。应用ANOVA检验比较不同实验组之间的脑血容量(Cerebral blood volume,CBV)、脑血流量(Cerebral blood flow, CBF)、通透性和平均通过时间(Mean transit time, MTT)的变化差异有无统计学意义。在多重比较过程中,Bonferroni矫正后,P<0.01有统计学意义。比较乙酰唑胺负荷和CO2负荷前后灌注参数变化率用独立样本t检验。灌注参数CBV, CBF和通透性等与VEGF及FⅧ-MVD之间的相关性用Pearson相关分析,计算相关系数。P<0.05有统计学意义。
     结果:C6大鼠均病理证实为胶质瘤。肿瘤边缘CBF, CBV和通透性较肿瘤实质部分高(p<0.01)。胶质瘤肿瘤实质部分较正常对照组CBF,CBV和通透性高(P<0.01)。12只正常大鼠(6只大鼠乙酰唑胺负荷,6只大鼠CO:负荷)负荷后CBF及CBV均上升(P<0.01)。在对照组中,CBF变化百分率乙酰唑胺负荷为117.42%,而10%CO2负荷为65.86%,二者差异有统计学意义(P<0.01)。CBV变化百分率乙酰唑胺负荷为107.51%,而10%CO2负荷为92.95%,二者差异无统计学意义(P=0.02)。大鼠C6胶质瘤实质部分,CBF变化百分率两种负荷之间的差异有统计学意义,乙酰唑胺负荷为72.73%,而10%CO2负荷为28.47%(P<0.01)。CBV变化百分率乙酰唑胺负荷为37.85%,而10%CO2负荷为24.69%。C6胶质瘤大鼠对侧正常脑组织与正常大鼠脑组织的CBF, CBV和通透性参数的变化百分率差异无统计学意义。瘤周水肿组织和对照组灌注参数变化百分率差异无统计学意义。肿瘤实质部分和肿瘤边缘之间灌注参数变化百分率差异无统计学意义。VEGF和FⅧ-MVD与CBV变化百分率间存在明显相关性(P<0.01)。CBF变化百分率与VEGF相关性较强。
     结论:乙酰唑胺负荷CT灌注成像可以和CO2负荷CT灌注成像一样较好地评价C6胶质瘤负荷刺激因素下的血供变化情况。CBV变化百分率可以一定程度上反映VEGF和FⅧ-MVD, CBF变化百分率可以一定程度上反映VEGF。
     第二部分乙酰唑胺负荷CT灌注成像对大鼠C6胶质瘤血管生成的评价
     目的:研究不同种植天数C6胶质瘤乙酰唑胺(Acetazolamide,ACZ)负荷CT灌注参数变化率差异以及灌注参数变化率与CD105-MVD, VEGF,血管成熟指数(Vascular maturity index, VMI)和Ki67的相关性,探讨CT灌注参数及其变化率在评价C6胶质瘤血管生成中的病理基础和价值。
     材料与方法:雄性SD (Sprgue Dawley)大鼠32只,年龄3个月,体重250-300g。将大鼠采用数字表法随机分为4组,8只为正常对照组,8只为种植C6胶质瘤10天组,8只为种植C6胶质瘤14天组,8只为种植C6胶质瘤18天组。肿瘤组大鼠通过立体定向仪于鼠脑右侧尾状核区种植C6胶质瘤细胞复制大鼠脑胶质瘤模型。对照组同部分注射等量生理盐水。大鼠C6胶质瘤10天组,14天组,18天组分别于肿瘤种植10天,14天,18天行ACZ负荷CT灌注检查。大鼠平放于CT检查床,四肢固定,阴茎背静脉留置静脉留置针,高压注射器注射对比剂。原位种植C6胶质瘤大鼠和正常大鼠分别行静息CT灌注检查,间隔1小时后行ACZ负荷CT灌注检查(静脉注射ACZ,15分钟后)。灌注成像以尾状核层面为中心。采用Philips CT自带脑灌注软件处理后产生灌注曲线及伪彩图像,两次扫描前均测定大鼠的动脉血二氧化碳分压(Carbon dioxide partial pressure,PaCO2)、 pH值指标。检查结束后24小时内,处死大鼠并取脑固定,在肿瘤中心层面切片,进行脑组织苏木素伊红(Hematoxylin and eosin,HE)染色及免疫组化检查CD105-MVD、FⅧ-MVD、α-平滑肌肌动蛋白(Alpha-smooth muscle actin, α-SMA)-MVD, VEGF和Ki67。VMI=(a-SMA-MVD/FⅧ-MVD)应用SPSS17.0进行统计分析。采用配对样本t检验,比较对照组和胶质瘤组大鼠ACZ负荷前后的CT灌注参数差异是否有统计学意义。应用ANOVA检验比较不同实验组之间的灌注参数变化百分率差异有无统计学意义。在多重比较过程中,Bonferroni矫正后,P<0.01有统计学意义。灌注参数与CD105-MVD, VEGF, VMI(?)(?)Ki67之间的相关性用Pearson相关分析。P<0.05为有统计学意义。
     结果:四组大鼠在ACZ负荷后15分钟动脉血PaCO2升高,血浆pH值降低(P<0.01)。CBF和CBV在负荷前后的差异均有统计学意义。CBF变化百分率对照组与胶质瘤14天,18天差异有统计学意义。CBV变化百分率对照组与胶质瘤10天、14天、18天差异有统计学意义。CD105-MVD胶质瘤为10.64±6.13,正常组织为0.84±0.28,二者有统计学意义。Pearson相关分析显示,CBV变化百分率,CBF变化百分率,通透性,CBV, CBF与免疫组化的CD105-MVD, VEGF, VMI(?)(?)Ki67之间存在明显相关性。即CD105-MVD, VEGF, VMI和Ki67可以通过CBF变化百分率,CBV变化百分率,通透性以及CBF, CBV反映出来。
     结论:不同种植天数C6胶质瘤ACZ负荷实验CT灌注成像灌注参数变化率不完全-致。CT灌注成像结合ACZ负荷实验得到的血流量变化率、血容量变化率、CBF、CBV以及通透性等参数可以一定程度上反映胶质瘤肿瘤血管生成情况。
     第三部分CT灌注成像对人脑胶质瘤患者肿瘤血管生成的评价
     目的:拟对256层CT灌注成像评价人脑胶质瘤肿瘤血管生成进行研究,探讨人脑胶质瘤患者256层CT灌注成像的可行性及灌注参数对评价肿瘤血管生成的价值,以期为临床评价胶质瘤患者血管生成及预后提供一种新的安全、有效的评价手段。
     材料和方法:2010年1月一2012年2月对55例病例行脑256层CT灌注扫描,其中正常对照组15例,胶质瘤病例组40例。应用256层CT对受检者进行CT灌注成像检查。利用Mi STAR后处理软件,在病灶最大层面选取感兴趣区(Region of interest, ROI),获得感兴趣区的CBF, CBV, MTT和表面通透性等参数。采用SPSS17.0软件,应用ANOVA检验比较对照组、低级别胶质瘤组和高级别胶质瘤组灌注参数的差异有无统计学意义。在多重比较过程中,Bonferroni矫正后,P<0.01有统计学意义。应用配对样本t检验比较胶质瘤肿瘤实质和肿瘤边缘灌注参数之间的差异有无统计学意义。灌注参数CBF, CBV, MTT和表面通透性与病理指标CDl05-MVD,缺氧诱导因子-1α(Hypoxia-inducible factor-1alpha, HIF-la), VMI, CD34-MVD, a-SMA-MVD之间的相关性用Pearson相关分析,P<0.05有统计学意义。
     结果:40例胶质瘤患者均经病理证实为脑胶质瘤,其中低级别胶质瘤15例,高级别胶质瘤25例。高级别胶质瘤组的CBF, CBV和表面通透性高于低级别胶质瘤组,低级别胶质瘤组的CBF, CBV和表面通透性高于对照组(P<0.01)。表面通透性为2.88ml/min/100g时,敏感度为96%,特异度为93%;CBV为3.91ml/100g时,敏感度为92%,特异度为93%;CBF为38.90ml/100g/min时,敏感度为92%,特异度为86%。高级别胶质瘤肿瘤边缘CBV, CBF和表面通透性参数高于肿瘤实质部分(P<0.01),高级别胶质瘤肿瘤边缘和实质MTT差异无统计学意义(P=0.14)。CBF, CBV和表面通透性与免疫组化指标CD105-MVD, HIF-1α, VMI, CD34-MVD以及a-SMA-MVD有明显相关性(p<0.05)
     结论:人脑256-CT灌注成像灌注参数CBV, CBF和表面通透性可以一定程度上反映胶质瘤的肿瘤血管生成情况。
Part Ⅰ. Comparison between Acetazolamide Challenge and10%Carbon Dioxide using Perfusion CT in Rat C6Glioma
     PURPOSE:Perfusion computed tomography (PCT) was used to investigate cerebral and C6glioma perfusion changes induced by acetazolamide (ACZ) and a mixture of10%carbon dioxide and90%air challenges. Correlations were investigated between PCT with ACZ and the results of Vascular endothelial growth factor (VEGF) and FⅧ-microvessel density (MVD).
     MATERIALS AND METHODS:Dynamic PCT was performed on32male Sprague-Dawley rats (age3month, weight250-300g. selected randomly) including20rats with rat C6glioma and12rats served as controls. Ten rats with orthotopically implanted C6gliomas and6normal rats underwent PCT at rest and15minutes after1mg/kg intravenous ACZ. Another ten rats with C6gliomas and six normal rats underwent PCT at rest and15minutes after inhalation of a mixture of10%carbon dioxide and90%air which lasted for15minutes. The interval between PCT with challenge and at rest was at least1hour. All examinations were performed with a256-slice scanner. PCT was performed at glioma area and the right caudate nucleus in controls. The raw data were processed using Philips CT brain perfusion software which could provide time-density curve (TDC) curves and colour maps. Carbon dioxide partial pressure (PaCO2) and potential of hydrogen (pH) were recorded. At the end of the experiment, each animal was sacrificed in24hours. Their brains were resected and fixed, which were cut at the level of the right caudate nucleus. A coronal5μm thick slice of brain tissue from each rat was cut and stained according to the standard hematoxylin and eosin (HE) staining protocol. The samples were examined using immunohistochemical staining for VEGF and FⅧ-MVD. The statistical analysis was performed using the SPSS17.0package (SPSS Inc., Chicago, IL. USA). ANOVA test was used to compare the difference among different groups, after confirmation of normal distribution of the data. In the multiple comparison procedure. P<0.01was considered significant after Bonferroni correction. Independent-samples t tests were used to compare the difference between perfusion parameters changes with ACZ challenge and perfusion parameters changes with10%carbon dioxide. Pearson correlation coefficients were used to investigate relationships between cerebral blood flow (CBF) percentage changes, cerebral blood volume (CBV) percentage changes, permeability and the results of VEGF and FⅧ-MVD. P less than0.05was considered significant.
     RESULTS:In the end of this experiment, those C6rats were dissected and proven to be gliomas. The tumor periphery had higher CBF, CBV, and permeability values than tumor central parenchyma (P<0.01). Tumor central parenchyma had higher CBF, CBV, and permeability values than controls (P<0.01). Twelve normal rats (6rats with ACZ stimuli,6rats with10%carbon dioxide stimuli) had increased CBF and CBV values after challenge (P<0.01). In controls, CBF percentage change apparently differed using ACZ stimuli (117.42%) compared to10%carbon dioxide (65.86%)(P<0.01). As for CBV percentage change, there was no significant difference between ACZ stimuli (107.51%) and10%carbon dioxide (92.95%)(P=0.02). In parenchyma of rat C6glioma, CBF percentage change was different using ACZ stimuli (72.73%) compared to10%carbon dioxide (28.47%)(P<0.01). CBV percentage change was37.85%with ACZ and24.69%with10%carbon dioxide. There was no significant difference in CBF, CBV and permeability percentage change between contralateral normal tissue and controls, beween peritumoral edema tissue and controls, and between tumor central parenchyma and the periphery. Significant correlations were observed between VEGF and FⅧ-MVD and blood volume percentage change (P<0.01). Blood flow percentage change correlated well with VEGF.
     CONCLUSION:PCT with ACZ is suitable for evaluation of blood vessels in C6gliomas instead of inhalation of10%carbon dioxide without the side effects induced by10%carbon dioxide. CBV percentage is correlated change with the FⅧ-MVD and VEGF in gliomas. CBF percentage change is correlated with the VEGF in gliomas.
     Part II. Cerebral Perfusion CT with Acetazolamide Challenge in C6Gliomas
     PURPOSE:PCT with ACZ challenge was used to investigate perfusion changes of C6gliomas at10days,14days and18days. Correlations were investigated between PCT with ACZ and the results of CD105-MVD, VEGF, vascular maturity index (VMI) and Ki67.
     MATERIALS AND METHODS:Dynamic PCT was performed on32male Sprague-Dawley rats (age3month, weight250-300g, selected randomly) including8rats with rat C6glioma10days,8rats with rat C6glioma14days,8rats with rat C6glioma18days and8rats served as controls. Intravenous catheter for contrast medium administration pre-and post-challenge was put in the vena dorsalis penis of rats.24rats with orthotopically implanted C6gliomas and6normal rats underwent PCT at rest and15minutes after1mg/kg intravenous ACZ. The interval between PCT with challenge and at rest was at least1hour. All examinations were performed with a256-sIice scanner. PCT was performed at glioma area and the right caudate nucleus in controls. The raw data were processed using Philips CT brain perfusion software which could provide TDC curves and colour maps. PaCO2and pH were recorded. At the end of the experiment, each animal was sacrificed in24hours. Their brains were resected and fixed, which were cut at the level of the right caudate nucleus. A coronal5um thick slice of brain tissue from each rat was cut and stained according to the standard HE staining protocol. The samples were examined using immunohistochemical staining for CD105-MVD, FⅧ-MVD, VEGF, alpha-smooth muscle actin (a-SMA)-MVD and Ki67. VMI was calculated as follows:VMI (%)=α-SMA-MVD/FⅧ-MVD X100%. The statistical analysis was performed using the SPSS17.0package. Paired-samples t tests were used to compare the difference between perfusion parameters pre-and post-ACZ challenge. ANOVA test was used to compare the difference among different groups, after confirmation of normal distribution of the data. In the multiple comparison procedure, P<0.01was considered significant after Bonferroni correction. Pearson correlation coefficients were used to investigate relationships between CBF percentage changes, CBV percentage changes, permeability, CBF, CBV and the results of CD105-MVD, VEGF, VMI and Ki67. P less than0.05was considered significant.
     RESULTS:Gliomas of4groups were all proved to have elevated PaCO2and decreased pH after ACZ challenge (P<0.01). Significant CBF. CBV difference was observed before and after ACZ challenge. Rat glioma in14days and18days group had higher CBF than controls (P<0.01). Rat glioma inl0days,14days and18days group had higher CBV than controls (P<0.01). CD105-MVD of Rat C6glioma is10.64±6.13. CD105-MVD of controls was0.84±0.28. Significant correlations were observed between CD105-MVD. VEGF, VMI, Ki67and CBV percentage change, CBF percentage change, permeability. CBV and CBF (P<0.01).
     CONCLUSION:There was difference between10days,14days.18days gliomas and controls. PCT with ACZ challenge could provide useful parameters, such as CBF percentage change, CBV percentage change, permeability, CBF. and CBV, which could correlate with glioma angiogenesis.
     Part Ⅲ. Evaluation of human glioma angiogenesis using Perfusion CT
     PURPOSE:To evaluate the feasibility of human glioma perfusion CT and analyse the relationship between perfusion parameters and human glioma angiogenesis.
     MATERIALS AND METHODS:From January2010to February2012,55subjects underwent perfusion256-CT imaging. Among them, the histopathological results of40patients were gliomas. Perfusion CT imaging was performed in15healthy volunteers served as controls. The raw data were processed using CT perfusion software. Perfusion parameters including CBF, CBV, MTT and permeability surface-area product. The statistical analysis was performed using the SPSS17.0package. ANOVA test was used to compare the difference among controls, low grade glioma group and high grade glioma. In the multiple comparison procedure. P<0.01was considered significant after Bonferroni correction. Paired-samples t tests were used to compare the difference between perfusion parameters of peripheral and solid tissue. Pearson correlation coefficients were used to investigate relationships between CBF. CBV. permeability surface-area product and the results of CD105-MVD, Hypoxia-inducible factor-1alpha (HIF-1α), VMI. CD34-MVD and a-SMA-MVD. P less than0.05was considered significant.
     RESULTS:Twenty-five patients were proved to be high grade gliomas, and fifteen patients were proved to be low grade gliomas. Significant CBF, CBV difference was observed between high grade gliomas and low grade gliomas (P<0.01). Cutoff value of permeability surface-area product was2.88ml/min/100g, the sensitivity and specificity of which were96%and93%. Cutoff value of CBV was3.91ml/100g. the sensitivity and specificity of which were92%and93%. Cutoff value of CBF was38.90ml/100g/min. the sensitivity and specificity of which were92%and86%. Significant CBF, CBV difference was observed between low grade gliomas and controls (P<0.01). The periphery had higher CBF, CBV and permeability surface-area product than the solid tissue in high grade gliomas (P<0.01). There was no significant difference in MTT (P=0.14). Significant correlations were observed between CD105-MVD, HIF-la, VMI, CD34-MVD. a-SMA-MVD and CBV, CBF, permeability surface-area product (P<0.01).
     CONCLUSION:PCT could provide useful parameters, such as CBF, CBV and permeability surface-area product, which could correlate with glioma angiogenesis.
引文
[1]Stockhausen MT, Kristoffersen K, Poulsen HS. Notch signaling and brain tumors. Adv Exp Med Biol [J],2012,727):289-304.
    [2]陆娜,冯晓源,何慧瑾.脑肿瘤的MR诊断进展.磁共振成像[J],2011,2(1):71-74.
    [3]Schwarzenberg J, Czernin J, Cloughesy TF, et al.3'-deoxy-3'-18F-fluorothymidine PET and MRI for early survival predictions in patients with recurrent malignant glioma treated with bevacizumab. J Nucl Med [J],2012,53(1):29-36.
    [4]Haining Z, Kawai N, Miyake K, et al. Relation of LAT1/4F2hc expression with pathological grade, proliferation and angiogenesis in human gliomas. BMC Clin Pathol[J],2012,12(1):4-14.
    [5]Quick A, Patel D, Hadziahmetovic M, et al. Current therapeutic paradigms in glioblastoma. Rev Recent Clin Trials [J],2010,5(1):14-27.
    [6]Fei S, Qi X. Kedong S, et al. The antitumor effect of mesenchymal stem cells transduced with a lentiviral vector expressing cytosine deaminase in a rat glioma model. J Cancer Res Clin Oncol [J],2012,138(2):347-357.
    [7]Yang LJ, Lin ZX, Kang DZ, et al. Effects of endostatin on C6 glioma-induced edema. Chin Med J (Engl) [J],2011,124(24):4211-4216.
    [8]Zhang YH. Yue ZJ, Zhang H, et al. Temozolomide/PLGA microparticles plus vatalanib inhibits tumor growth and angiogenesis in an orthotopic glioma model. Eur J Pharm Biopharm [J],2010,76(3):371-375.
    [9]Sica G, Lama G. Anile C, et al. Assessment of angiogenesis by CD 105 and nestin expression in peritumor tissue of glioblastoma. Int J Oncol [J],2011,38(1):41-49.
    [10]张家文,姚振威,刘含秋,等.CT灌注评价高碳酸血症模型下正常大鼠脑组织血流动力学变化.中国实验动物学报[J],2010,18(5):361-366.
    [11]邱龙华,冯晓源.肿瘤血管生成中VEGF/VEGFRs的分子影像进展.中国医学计算机成像杂志[J],2010,16(1):61-65.
    [12]李净,喻光.人脑胶质瘤中HIF-1α、Kj-67的表达及其临床意义.中国医药导报[J],2011,8(16):21-22.
    [13]刘建民,孙鸿,黄良文,等.HIF-1和VEGF蛋白在胶质瘤中的表达及意义.四川 医学[J],2011,32(8):1170-1172.
    [14]喻光,葛晓峰,宋宇哲,等.HIF-1α在脑胶质细胞瘤的表达极其与术后放疗疗效的关系.齐齐哈尔医学院学报[J],2010(20):3199-3201.
    [15]晏怡,邓朝霞,唐文渊,等.颅内肿瘤HIF-1/VEGF表达与脑浸润影像定量的相关性研究.中国神经精神疾病杂志[J],2009(12):742-744.
    [16]Kang KH. Kim HS, Kim SY. Quantitative cerebrovascular reserve measured by acetazolamide-challenged dynamic CT perfusion in ischemic adult Moyamoya disease:initial experience with angiographic correlation. AJNR Am J Neuroradiol [J],2008,29(8):1487-1493.
    [17]Smith LM, Elkins JS, Dillon WP, et al. Perfusion-CT assessment of the cerebrovascular reserve:a revisit to the acetazolamide challenges. J Neuroradiol [J], 2008,35(3):157-164.
    [18]Kawamura Y, Ashizaki M, Saida S, et al. Usefulness of rate of increase in SPECT counts in one-day method of N-isopropyl-4-iodoamphetamine [123Ⅰ] SPECT studies at rest and after acetazolamide challenge using a method for estimating time-dependent distribution at rest. Ann Nucl Med [J],2008,22(5):457-463.
    [19]Klink T, Nagel H, Schwartz B, et al.256-MSCT Image Acquisition with Sequential Axial Scans:Evaluation of Image Quality and Resolution in a Phantom Study. Rofo [J].2012,184(3):248-255.
    [20]Hopyan J, Ciarallo A. Dowlatshahi D, et al. Certainty of stroke diagnosis: incremental benefit with CT perfusion over noncontrast CT and CT angiography. Radiology [J],2010,255(1):142-153.
    [21]陆娜,廖治河,强金伟,等.急性胰腺炎CT灌注成像.中国临床医学影像杂志[J],2008,19(10):715-717.
    [22]陆娜,任莹,郭启勇,等.不同灌注软件对正常人肾脏灌注的比较研究.中国临床医学影像杂志[J],2007,18(3):174-177.
    [23]Goh V, Halligan S, Bartram CI. Quantitative tumor perfusion assessment with multidetector CT:are measurements from two commercial software packages interchangeable? Radiology [J].2007.242(3):777-782.
    [24]Kitagawa K, George RT, Arbab-Zadeh A. et al. Characterization and correction of beam-hardening artifacts during dynamic volume CT assessment of myocardial perfusion. Radiology [J],2010.256(1):111-118.
    [25]Balvay D, Tropres I, Billet R, et al. Mapping the zonal organization of tumor perfusion and permeability in a rat glioma model by using dynamic contrast-enhanced synchrotron radiation CT. Radiology [J],2009,250(3):692-702.
    [26]Murayama K. Katada K, Nakane M, et al. Whole-brain perfusion CT performed with a prototype 256-detector row CT system:initial experience. Radiology [J],2009, 250(1):202-211.
    [27]Miles KA. Molecular imaging with dynamic contrast-enhanced computed tomography. Clin Radiol [J],2010,65(7):549-556.
    [28]Kim HS, Kim JH, Kim SH, et al. Posttreatment high-grade glioma:usefulness of peak height position with semiquantitative MR perfusion histogram analysis in an entire contrast-enhanced lesion for predicting volume fraction of recurrence. Radiology [J],2010,256(3):906-915.
    [29]张家文,冯晓源,刘斌,等.64层CT灌注成像血管表面通透性测定对胶质瘤分级的价值.中国医学计算机成像杂志[J],2008,14(1):1-5.
    [30]Chamberlain MC. Emerging clinical principles on the use of bevacizumab for the treatment of malignant gliomas. Cancer [J],2010.116(17):3988-3999.
    [31]Folkman J. Is angiogenesis an organizing principle in biology and medicine? J Pediatr Surg [J],2007.42(1):1-11.
    [32]Kozera GM, Dubaniewicz M, Zdrojewski T, et al. Cerebral vasomotor reactivity and extent of white matter lesions in middle-aged men with arterial hypertension:a pilot study. Am J Hypertens [J],2010,23(11):1198-1203.
    [33]Chen A, Shyr MH, Chen TY, et al. Dynamic CT perfusion imaging with acetazolamide challenge for evaluation of patients with unilateral cerebrovascular steno-occlusive disease. AJNR Am J Neuroradiol [J],2006,27(9):1876-1881.
    [34]Zussman BM. Boghosian G, Gorniak RJ, et al. The Relative Effect of Vendor Variability in CT Perfusion Results:A Method Comparison Study. AJR Am J Roentgenol [J],2011,197(2):468-473.
    [35]Van der Heyden J, Waaijer A, Van Wouter ES, et al. CT measurement of changes in cerebral perfusion in patients with asymptomatic carotid artery stenosis undergoing carotid stenting prior to cardiac surgery:"proof of principle". Eurolntervention [J]. 2011,6(9):1091-1097.
    [36]Lu N. Feng XY. Hao SJ, et al.64-slice CT perfusion imaging of pancreatic adenocarcinoma and mass-forming chronic pancreatitis. Acad Radiol [J],2011, 18(1):81-88.
    [37]Ovali GY. Sakar A, Goktan C, et al. Thorax perfusion CT in non-small cell lung cancer. Comput Med Imaging Graph [J],2007.31(8):686-691.
    [38]Burns JD, Jacob JT, Luetmer PH. et al. CT perfusion evidence of early global cerebral hypoperfusion after aneurysmal subarachnoid hemorrhage with cardiac arrest. Neurocrit Care [J],2010,12(2):261-264.
    [39]Kambadakone AR, Sahani DV. Body perfusion CT:technique, clinical applications, and advances. Radiol Clin North Am [J],2009,47(1):161-178.
    [40]Miao Y, Juhasz C, Wu J, et al. Clinical Correlates of White Matter Blood Flow Perfusion Changes in Sturge-Weber Syndrome:A Dynamic MR Perfusion-Weighted Imaging Study. AJNR Am J Neuroradiol [J],2011,32(7): 1280-1285.
    [41]Asdaghi N, Hameed B, Saini M. et al. Acute Perfusion and Diffusion Abnormalities Predict Early New MRI Lesions 1 Week After Minor Stroke and Transient Ischemic Attack. Stroke [J],2011,42(8):2191-2195.
    [42]Park JC, Kim JE, Kang HS, et al. CT perfusion with angiography as a substitute for both conventional digital subtraction angiography and acetazolamide-challenged SPECT in the follow-up of postbypass patients. Cerebrovasc Dis [J],2010,30(6): 547-555.
    [43]Sasaki M, Kudo K, Ogasawara K, et al. Tracer delay-insensitive algorithm can improve reliability of CT perfusion imaging for cerebrovascular steno-occlusive disease:comparison with quantitative single-photon emission CT. AJNR Am J Neuroradiol [J],2009,30(1):188-193.
    [44]Riordan AJ, Prokop M. Viergever MA, et al. Validation of CT brain perfusion methods using a realistic dynamic head phantom. Med Phys [J],2011.38(6): 3212-3221.
    [45]Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol [J].1954.6(12):731-744.
    [46]Cenic A. Nabavi DG, Craen RA, et al. A CT method to measure hemodynamics in brain tumors:validation and application of cerebral blood flow maps. AJNR Am J Neuroradiol [J],2000,21(3):462-470.
    [47]Axel L. Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology [J],1980,137(3):679-686.
    [48]Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab [J], 1983,3(1):1-7.
    [49]Cianfoni A, Cha S, Bradley WG, et al. Quantitative measurement of blood-brain barrier permeability using perfusion-CT in extra-axial brain tumors. J Neuroradiol [J],2006,33(3):164-168.
    [50]Horn J, Dankbaar JW, Schneider T, et al. Optimal duration of acquisition for dynamic perfusion CT assessment of blood-brain barrier permeability using the Patlak model. AJNR Am J Neuroradiol [J].2009,30(7):1366-1370.
    [51]Andaluz N, Choutka O. Vagal A, et al. Patient selection for revascularization procedures in adult Moyamoya disease based on dynamic perfusion computerized tomography with acetazolamide challenge (PCTA). Neurosurg Rev [J],2010,33(2): 225-233.
    [52]Jin N, Deng J, Chadashvili T. et al. Carbogen gas-challenge BOLD MR imaging in a rat model of diethylnitrosamine-induced liver fibrosis. Radiology [J],2010,254(1): 129-137.
    [53]Vagal AS, Leach JL, Fernandez-Ulloa M, et al. The acetazolamide challenge: techniques and applications in the evaluation of chronic cerebral ischemia. AJNR Am J Neuroradiol [J],2009.30(5):876-884.
    [54]Guan LM. Qi XX. Xia B. et al. Early changes measured by CT perfusion imaging in tumor microcirculation following radiosurgery in rat C6 brain gliomas. J Neurosurg [J],2011,114(6):1672-1680.
    [55]Jain R, Narang J, Gutierrez J. et al. Correlation of Immunohistologic and Perfusion Vascular Parameters with MR Contrast Enhancement Using Image-guided Biopsy Specimens in Gliomas. Acad Radiol [J],2011.18(8):955-962.
    [56]Miles KA. Brain perfusion:computed tomography applications. Neuroradiology [J], 2004,46 Suppl2):s194-s200.
    [57]Miles KA. Tumour angiogenesis and its relation to contrast enhancement on computed tomography:a review. Eur J Radiol [J],1999,30(3):198-205.
    [58]Schramm P. Xyda A. Klotz E. et al. Dynamic CT perfusion imaging of intra-axial brain tumours:differentiation of high-grade gliomas from primary CNS lymphomas. Eur Radiol [J],2010,20(10):2482-2490.
    [59]Tomura N. Sasaki K, Kidani H, et al. Reduced perfusion reserve in Leukoaraiosis demonstrated using acetazolamide challenge 123I-IMP SPECT. J Comput Assist Tomogr [J],2007,31(6):884-887.
    [60]Aamand R, Skewes J, Moller A, et al. Enhancing effects of acetazolamide on neuronal activity correlate with enhanced visual processing ability in humans. Neuropharmacology [J],2011,61(5-6):900-908.
    [61]Tawfik AM, Razek AA, Elsorogy LG, et al. Perfusion CT of Head and Neck Cancer: Effect of Arterial Input Selection. AJR Am J Roentgenol [J],2011,196(6): 1374-1380.
    [62]Nagy VM. Buiga R, Brie I, et al. Expression of VEGF, VEGFR, EGFR, COX-2 and MVD in cervical carcinoma, in relation with the response to radio-chemotherapy. Rom J Morphol Embryol [J],2011,52(1):53-59.
    [63]Kim HJ, Kim TW, Ryu SY, et al. Acetazolamide-challenged perfusion magnetic resonance imaging for assessment of cerebrovascular reserve capacity in patients with symptomatic middle cerebral artery stenosis:comparison with technetium-99m-hexamethylpropyleneamine oxime single-photon emission computed tomography. Clin Imaging [J],2011.35(6):413-420.
    [64]Bikfalvi A, Moenner M, Javerzat S, et al. Inhibition of angiogenesis and the angiogenesis/invasion shift. Biochem Soc Trans [J],2011,39(6):1560-1564.
    [65]Ichihara E, Kiura K, Tanimoto M. Targeting angiogenesis in cancer therapy. Acta Med Okayama [J],2011,65(6):353-362.
    [66]Takano S, Matsumura A. [Anti-angiogenesis treatment for brain tumors:present and future]. No Shinkei Geka [J].2006,34(7):657-678.
    [67]Zhou D. Cheng SQ, Ji HF, et al. Evaluation of protein pigment epithelium-derived factor (PEDF) and microvessel density (MVD) as prognostic indicators in breast cancer. J Cancer Res Clin Oncol [J],2010.136(11):1719-1727.
    [68]Mikalsen LT, Dhakal HP, Bruland OS, et al. Quantification of Angiogenesis in Breast Cancer by Automated Vessel Identification in CD34 Immunohistochemical Sections. Anticancer Res [J],2011,31(12):4053-4060.
    [69]Li Z. Wang J, Gong L, et al. Correlation of Delta-like ligand 4 (DLL4) with VEGF and HIF-lalpha expression in human glioma. Asian Pac J Cancer Prev [J],2011, 12(1):215-218.
    [70]Hong H, Severin GW. Yang Y, et al. Positron emission tomography imaging of CD 105 expression with (89)Zr-Df-TRC105. Eur J Nucl Med Mol Imaging [J].2012, 39(1):138-148.
    [71]Yang Y, Zhang Y, Hong H, et al. In vivo near-infrared fluorescence imaging of CD 105 expression during tumor angiogenesis. Eur J Nucl Med Mol Imaging [J], 2011.38(11):2066-2076.
    [72]Nassiri F, Cusimano MD. Scheithauer BW, et al. Endoglin (CD105):a review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res [J],2011,31(6):2283-2290.
    [73]Leon SP, Folkerth RD, Black PM. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer [J],1996.77(2):362-372.
    [74]Miebach S, Grau S, Hummel V, et al. Isolation and culture of microvascular endothelial cells from gliomas of different WHO grades. J Neurooncol [J],2006. 76(1):39-48.
    [75]Lu N, Di Y, Feng XY, et al. Comparison between Acetazolamide Challenge and 10% Carbon Dioxide Challenge Perfusion CT in Rat C6 Glioma. Acad Radiol [J], 2012,19(2):159-165.
    [76]Verhoye M, van der Sanden BP, Rijken PF, et al. Assessment of the neovascular permeability in glioma xenografts by dynamic T(1) MRI with Gadomer-17. Magn Reson Med [J],2002.47(2):305-313.
    [77]张清波,冯晓源,梁宗辉,等.高CO:分压下大鼠神经胶质瘤肿瘤血管的MR灌注成像特点.中华放射学杂志[J],2008,42(4):321-325.
    [78]Hu LS, Eschbacher JM, Dueck AC, et al. Correlations between perfusion MR imaging cerebral blood volume, microvessel quantification, and clinical outcome using stereotactic analysis in recurrent high-grade glioma. AJNR Am J Neuroradiol [J],2012,33(1):69-76.
    [79]Jain R. Perfusion CT imaging of brain tumors:an overview. AJNR Am J Neuroradiol [J],2011,32(9):1570-1577.
    [80]Assem M, Sibenaller Z. Agarwal S, et al. Enhancing diagnosis, prognosis, and therapeutic outcome prediction of gliomas using genomics. OM1CS [J].2012.16(3): 113-122.
    [81]Sharma P, Patel CD, Karunanithi S. et al. Comparative Accuracy of CT Attenuation-Corrected and Non-Attenuation-Corrected SPECT Myocardial Perfusion Imaging. Clin Nucl Med [J],2012,37(4):332-338.
    [82]陈星荣,沈天真,汪寅.学习2007年版“WHO中枢神经系统肿瘤的病理分类”.中国医学计算机成像杂志[J],2009,15(3):201-208.
    [83]Hu CH, Fang XM. Hu XY, et al. Analysis of the mismatched manifestation between rCBF and rCBV maps in cerebral astrocytomas. Clin Imaging [J],2009,33(6): 417-423.
    [84]Di Nallo AM. Vidiri A. Marzi S, et al. Quantitative analysis of CT-perfusion parameters in the evaluation of brain gliomas and metastases. J Exp Clin Cancer Res [J],2009,28(1):28-38.
    [85]Xyda A, Haberland U. Klotz E. et al. Brain volume perfusion CT performed with 128-detector row CT system in patients with cerebral gliomas:a feasibility study. Eur Radiol [J].2011,21(9):1811-1819.
    [86]Fainardi E, Di Biase F, Borrelli M, et al. Potential role of CT perfusion parameters in the identification of solitary intra-axial brain tumor grading. Acta Neurochir Suppl [J],2010,106):283-287.
    [87]Beppu T, Sasaki M. Kudo K, et al. Prediction of malignancy grading using computed tomography perfusion imaging in nonenhancing supratentorial gliomas. J Neurooncol [J],2011,103(3):619-627.
    [88]Ellika SK, Jain R, Patel SC. et al. Role of perfusion CT in glioma grading and comparison with conventional MR imaging features. AJNR Am J Neuroradiol [J]. 2007.28(10):1981-1987.
    [89]Narang J. Jain R, Scarpace L, et al. Tumor vascular leakiness and blood volume estimates in oligodendrogliomas using perfusion CT:an analysis of perfusion parameters helping further characterize genetic subtypes as well as differentiate from astroglial tumors. J Neurooncol [J],2011,102(2):287-293.
    [1]周良辅.现代神经外科学[z].上海:复旦大学出版社.,2001:403.
    [2]张福林,汪寅,陈宏,等.5109例中枢神经系统肿瘤WHO新分类统计分析.临床与实验病理学杂志[J],2004,20(6):688-691.
    [3]陆娜,冯晓源,何慧瑾.脑肿瘤的MR诊断进展.磁共振成像[J],2011,2(1)78-81.
    [4]Konukoglu E, Clatz O, Bondiau PY, et al. Extrapolating glioma invasion margin in brain magnetic resonance images:suggesting new irradiation margins. Med Image Anal [J],2010,14(2):111-125.
    [5]Balvay D, Tropres I, Billet R. et al. Mapping the zonal organization of tumor perfusion and permeability in a rat glioma model by using dynamic contrast-enhanced synchrotron radiation CT. Radiology [J].2009,250(3):692-702.
    [6]Folkman J, Merler E, Abernathy C. et al. Isolation of a tumor factor responsible for angiogenesis. J Exp Med [J],1971,133(2):275-288.
    [7]Brem S. Cotran R, Folkman J. Tumor angiogenesis:a quantitative method for histologic grading. J Nat1 Cancer Inst [J],1972,48(2):347-356.
    [8]Nag S. Morphology and molecular properties of cellular components of normal cerebral vessels. Methods Mol Med [J].2003,89):3-36.
    [9]Knopp EA, Cha S, Johnson G, et al. Glial neoplasms:dynamic contrast-enhanced T2*-weighted MR imaging. Radiology [J],1999,211(3):791-798.
    [10]Benjamin LE, Keshet E. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors:induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad Sci U S A [J].1997,94(16):8761-8766.
    [11]邱龙华,冯晓源.肿瘤血管生成中VEGF/VEGFRs的分子影像进展.中国医学计算机成像杂志[J],2010,16(1):61-65.
    [12]Macdonald NJ, Shivers WY, Narum DL, et al. Endostatin binds tropomyosin. A potential modulator of the antitumor activity of endostatin. J Biol Chem [J],2001. 276(27):25190-25196.
    [13]Folkman J. Is angiogenesis an organizing principle in biology and medicine? J Pediatr Surg [J].2007.42(1):1-11.
    [14]Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med [J],1995,1(1):27-31.
    [15]Sridhar SS, Shepherd FA. Targeting angiogenesis:a review of angiogenesis inhibitors in the treatment of lung cancer. Lung Cancer [J].2003,42 Suppl 1): S81-S91.
    [16]雷振,徐娜,伍建林,等.兔VX2乳腺癌CT灌注成像与血管内皮生长因子表达的相关性研究.中华放射学杂志[J],2010,44(5):527-530.
    [17]Skinner SA, Tutton PJ, O'Brien PE. Microvascular architecture of experimental colon tumors in the rat. Cancer Res [J],1990,50(8):2411-2417.
    [18]舒徐,岳志健,周晓平,等.人脑胶质瘤组织CD105的表达及意义.第二军医大学学报[J],2010,31(10):1152-1154.
    [19]Duff SE, Li C, Garland JM, et al. CD105 is important for angiogenesis:evidence and potential applications. FASEB J [J],2003,17(9):984-992.
    [20]Cimpean AM, Raica M, Suciu C. CD105/smooth muscle actin double immunostaining discriminate between immature and mature tumor blood vessels. Rom J Morphol Embryol [J],2007,48(1):41-45.
    [21]Wikstrom P, Lissbrant IF, Stattin P, et al. Endoglin (CD 105) is expressed on immature blood vessels and is a marker for survival in prostate cancer. Prostate [J], 2002,51(4):268-275.
    [22]El-Gohary YM, Silverman JF, Olson PR, et al. Endoglin (CD 105) and vascular endothelial growth factor as prognostic markers in prostatic adenocarcinoma. Am J Clin Pathol [J],2007,127(4):572-579.
    [23]Dales JP, Garcia S, Carpentier S, et al. Prediction of metastasis risk (11 year follow-up) using VEGF-R1, VEGF-R2, Tie-2/Tek and CD 105 expression in breast cancer (n=905). Br J Cancer [J],2004,90(6):1216-1221.
    [24]Takahashi N, Haba A, Matsuno F. et al. Antiangiogenic therapy of established tumors in human skin/severe combined immunodeficiency mouse chimeras by anti-endoglin (CD 105) monoclonal antibodies, and synergy between anti-endoglin antibody and cyclophosphamide. Cancer Res [J],2001.61(21):7846-7854.
    [25]Yao Y, Kubota T, Takeuchi H. et al. Prognostic significance of microvessel density determined by an anti-CD 105/endoglin monoclonal antibody in astrocytic tumors: comparison with an anti-CD31 monoclonal antibody. Neuropathology [J],2005. 25(3):201-206.
    [26]Behrem S. Zarkovic K. Eskinja N. et al. Endoglin is a better marker than CD31 in evaluation of angiogenesis in glioblastoma. Croat Med J [J].2005,46(3):417-422.
    [27]Baudelet C. Cron GO. Ansiaux R, et al. The role of vessel maturation and vessel functionality in spontaneous fluctuations of T2*-weighted GRE signal within tumors. NMR Biomed [J].2006,19(1):69-76.
    [28]王舒楠,王毅,李雪,等.大鼠C6脑胶质瘤血管生成的多层螺旋CT灌注成像研究.第三军医大学学报[J],2008,30(20):1944-1947.
    [29]张清波,张仪,冯晓源.立体定位放射治疗对大鼠C6胶质瘤抗血管生成的MR灌注研究.实用放射学杂志[J],2010,26(2):262-267.
    [30]Gambhir S, Inao S, Tadokoro M. et al. Comparison of vasodilatory effect of carbon dioxide inhalation and intravenous acetazolamide on brain vasculature using positron emission tomography. Neurol Res [J],1997,19(2):139-144.
    [31]Kudo K, Sasaki M, Yamada K, et al. Differences in CT perfusion maps generated by different commercial software:quantitative analysis by using identical source data of acute stroke patients. Radiology [J].2010,254(1):200-209.
    [32]Hassan AE, Zacharatos H, Rodriguez GJ, et al. A comparison of Computed Tomography perfusion-guided and time-guided endovascular treatments for patients with acute ischemic stroke. Stroke [J],2010.41(8):1673-1678.
    [33]Lu N, Di Y, Feng XY, et al. Comparison between Acetazolamide Challenge and 10% Carbon Dioxide Challenge Perfusion CT in Rat C6 Glioma. Acad Radiol [J], 2012,19(2):159-165.
    [34]Miles KA, Hayball M. Dixon AK. Colour perfusion imaging:a new application of computed tomography. Lancet [J],1991,337(8742):643-645.
    [35]Blomley MJ, Coulden R, Dawson P. et al. Liver perfusion studied with ultrafast CT. J Comput Assist Tomogr [J].1995.19(3):424-433.
    [36]Miles KA. Hayball MP, Dixon AK. Functional images of hepatic perfusion obtained with dynamic CT. Radiology [J].1993.188(2):405-411.
    [37]陆娜,郭启勇,任莹,等.64层CT灌注在胰腺癌诊断中的价值.中国临床医学 影像杂志[J],2007,18(8):554-558.
    [38]陆娜,郭启勇,陈丽英.胰腺CT灌注成像进展.中国临床医学影像杂志[J],2006,17(12):696-697.
    [39]Goh V, Halligan S. Bartram CI. Quantitative tumor perfusion assessment with multidetector CT:are measurements from two commercial software packages interchangeable? Radiology [J],2007.242(3):777-782.
    [40]Hopyan J, Ciarallo A, Dowlatshahi D, et al. Certainty of stroke diagnosis: incremental benefit with CT perfusion over noncontrast CT and CT angiography. Radiology [J],2010,255(1):142-153.
    [41]Kitagawa K, George RT, Arbab-Zadeh A, et al. Characterization and correction of beam-hardening artifacts during dynamic volume CT assessment of myocardial perfusion. Radiology [J],2010,256(1):111-118.
    [42]Balvay D, Tropres I, Billet R, et al. Mapping the zonal organization of tumor perfusion and permeability in a rat glioma model by using dynamic contrast-enhanced synchrotron radiation CT. Radiology [J],2009,250(3):692-702.
    [43]张家文,冯晓源,刘斌,等.64层CT灌注成像血管表面通透性测定对胶质瘤分级的价值.中国医学计算机成像杂志[J],2008,14(1):1-5.
    [44]Murayama K, Katada K, Nakane M, et al. Whole-brain perfusion CT performed with a prototype 256-detector row CT system:initial experience. Radiology [J],2009. 250(1):202-211.
    [45]Miles KA. Molecular imaging with dynamic contrast-enhanced computed tomography. Clin Radiol [J],2010,65(7):549-556.
    [46]Kim HS, Kim JH, Kim SH, et al. Posttreatment high-grade glioma:usefulness of peak height position with semiquantitative MR perfusion histogram analysis in an entire contrast-enhanced lesion for predicting volume fraction of recurrence. Radiology [J],2010,256(3):906-915.
    [47]黄文才,陆建平.单发脑转移瘤与高级别胶质瘤MR灌注加权成像鉴别诊断.中国临床医学影像杂志[J],2010,21(9):609-612.
    [48]Petrella JR. Provenzale JM. MR perfusion imaging of the brain:techniques and applications. AJR Am J Roentgenol [J],2000,175(1):207-219.
    [49]张朝晖,孟悛非,高振华,等.动脉自旋标记灌注成像对软组织VX2肿瘤血管生成的评价.中华放射学杂志[J],2010,44(10):1084-1088.
    [50]Cha S, Knopp EA, Johnson G, et al. Intracranial mass lesions:dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology [J],2002,223(1):11-29.
    [51]Eastwood JD. Provenzale JM. Cerebral blood flow, blood volume, and vascular permeability of cerebral glioma assessed with dynamic CT perfusion imaging. Neuroradiology [J],2003,45(6):373-376.
    [52]Verhoye M, van der Sanden BP, Rijken PF, et al. Assessment of the neovascular permeability in glioma xenografts by dynamic T(1) MRI with Gadomer-17. Magn Reson Med [J],2002,47(2):305-313.
    [53]Lu N, Feng XY, Hao SJ, et al.64-slice CT perfusion imaging of pancreatic adenocarcinoma and mass-forming chronic pancreatitis. Acad Radiol [J],2011, 18(1):81-88.
    [54]Tognolini A, Schor-Bardach R, Pianykh OS, et al. Body tumor CT perfusion protocols:optimization of acquisition scan parameters in a rat tumor model. Radiology [J].2009,251(3):712-720.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700