脑肿瘤的功能性磁共振成像研究及其临床价值
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑肿瘤发病率高,且因发病部位的特殊性而使其致残、致死率高。最大程度切除病灶与最大限度保护神经功能是神经外科临床工作追求的目标。如何准确判定肿瘤边界、精确判定病灶边缘的皮层功能区和皮层下纤维传导束是神经影像学面临的主要任务。
     功能性MRI新技术(包括PWI、DWI、DTI、BOLD-fMRI、MRS等)的出现促进神经影像学由单纯以解剖为基础的学科向一门融合血流动力学、细胞代谢、细胞外间隙动力学等各种生理学改变与形态异常的学科演变,已经逐渐成为诊断疾病、指导手术、观察疗效、评估预后的新手段。PWI、BOLD-fMRI与DTI等在神经解剖及神经功能之间架起了一座桥梁,可为神经外科临床工作提供有别于常规影像的信息,本文着重探讨PWI、BOLD-fMRI与DTI三者在脑肿瘤中的应用。
     第一部分
     目的:拟利用星形细胞瘤向周围侵袭时伴有瘤周组织血管生成的特点,结合瘤周组织病理对照,运用PWI探讨肿瘤侵袭性和肿瘤真正的边界
     方法:星形细胞瘤患者共45例,术前进行PWI检查,分别计算出肿瘤实质最大rCBV比值、近瘤周区域最大rCBV值、远瘤周区域最大rCBV比值。术中分别取肿瘤实质和瘤周组织作病理标本,作HE染色及CD-34免疫组化染色,分别计算肿瘤实质和瘤周组织的MVD,判定肿瘤的侵袭性。探讨星形细胞瘤肿瘤实质最大rCBV比值与MVD的关系,侵袭组、非侵袭组星形细胞瘤之间瘤周MVD的差别即近瘤周区域最大rCBV比值差别。
     结果:星形细胞瘤肿瘤实质最大rCBV比值与MVD呈明显正相关(γ=0.714,P=0.001),侵袭组与非侵袭组肿瘤实质之间最大rCBV比值具有显著性差异(P=0.001);侵袭组与非侵袭组近瘤周区域之间最大rCBV比值具有显著性差异(P=0.007),两组间瘤周组织MVD值的差异也具有统计学意义(P=0.014)。侵袭组星形细胞瘤近瘤周区域与远瘤周区域之间最大rCBV比值具有显著性差异(P=0.004)。
     结论:PWI可用于活体上评价星形细胞瘤的血管生成程度。侵袭组与非侵袭组星形细胞瘤之间瘤周组织MVD的差异是PWI评价星形细胞瘤侵袭性的病理学基础。近瘤周区域最大rCBV比值可用于评价肿瘤的侵袭性,有助于星形细胞瘤界限的精确界定。
     第二部分
     目的:运用BOLD-fMRI技术探讨脑皮层运动功能区附近肿瘤对功能区的影响及BOLD-fMRI指导手术治疗的效果和对手术风险评估的价值,以期加强对皮层运动功能区的保护。
     方法:57例位于或邻近手运动皮层功能区的脑肿瘤患者,作为功能组。术前均采用阻滞法(Block)模式行手运动BOLD-fMRI检查,在Matlab平台下使用SPM2脑功能图像专业分析软件进行预处理和统计分析,获得功能区激活图,将激活图与解剖图融合成BOLD-fMRI图。计算患侧皮层运动功能区(M1)与病灶的距离、患侧与健侧M1区激活像素数及其患侧像素变化率(D),并以BOLD-fMRI指导术前规划和手术方法。另选择同期45例位于或邻近中央沟区脑肿瘤患者作为对照组,术前仅行常规MRI。比较功能组和对照组病灶切除率的差别、肌力变化的差别。
     结果:脑肿瘤患侧的M1区形态变化较大,M1区与病灶的平均距离为12.5±5.6 mm。根据患侧M1区与病灶的距离将功能组57例患者分成四小组:轴外远距离组(6例)、轴外近距离组(10例)、轴内远距离组(19例)、轴内近距离组(22例)。轴内远距离组患侧功能区激活像素数(Vi)与健侧功能区激活像素数(Vc)的差别有显著统计学意义(P=0.003),轴内近距离组Ⅵ与Vc的差别也有统计学意义(P=0.026)。轴外组患侧M1激活区D值与轴内组的差别有统计学意义,轴内远距离组与轴内近距离组患侧M1激活区D值的差别也有统计学意义(P=0.039)。功能组与对照组肿瘤切除率存在差别(P=0.046)。功能组与对照组术后肌力改变情况无明显差别(P=0.395),但功能组各小组术后肌力变化情况有差别,其中10例术后出现肌力下降的患者中8例属于轴内近距离组。
     结论:脑皮层运动区附近肿瘤对M1区的影响主要取决于病灶与M1区的距离及病灶位于轴内还是轴外。运动功能BOLD-fMRI可帮助最大程度地切除脑皮层运动区附近肿瘤,并尽可能保护皮层运动功能区,提高了手术精度和准度。BOLD-fMRI可应用于术前评估运动功能障碍出现的风险。
     第三部分
     目的:探讨了正常人脑白质DTI特点,并初步探讨DTI和DTT在脑肿瘤的应用价值,以期提高对肿瘤附近重要白质纤维传导束的保护。
     方法:正常组为健康志愿者30名,病例组为32例脑肿瘤患者,均行DTI检查,计算正常组脑内不同组织的FA值和脑肿瘤患者肿瘤实质区、瘤周白质区和对侧镜像部位FA值。以每个像素的局部扩散张量数值为基础,采用连续示踪纤维分配技术行扩散张量纤维束成像(DTT),评价肿瘤对纤维传导束的影响方式。参照DTT图确定患者手术方案。
     结果:不同部位正常脑组织的FA值具有一定的差别,DTT图可清楚显示脑白质纤维束。轴内组肿瘤的肿瘤实质、瘤周白质、对侧镜像白质区域三者间FA值的差别均有统计学意义,FA值依次增大(P<0.01);轴外组肿瘤瘤周白质与对侧镜像白质区域FA值的差别无统计学意义。DTT图可清楚地显示肿瘤与瘤周重要纤维束的关系,肿瘤未累及邻近重要纤维束14例;肿瘤推移而不侵犯邻近重要纤维束11例;肿瘤已侵犯、破坏邻近重要纤维束7例。26例患者全切除,仅4例患者出现新的神经功能障碍或原有症状加重。
     结论:DTI可以显示正常脑组织的FA值和脑白质纤维束的形态结构,有助于判别脑肿瘤对周围脑白质纤维束的影响。DTI对脑肿瘤手术方案设计以及瘤周白质纤维束的保护具有重要意义。
Brain rumors are of high morbidity. Furthermore, because of the specially involved region, they are characterized by high mutilation and fatality rate. The target that neurosurgeons have pursued up to now is to resect the tumor to the greatest degree and to protect nerve function utmostly. At the same time, how to delineate the tumor margin accurately and describe cortical function area or white matter fiber tracts adjacent to tumors precisely is the major mission that neuroradiologists have faced.
     With the development of functional MRI, such as perfusion weighted imaging(PWI)、diffusion weighted imaging(DWI)、diffusion tensor imaging (DTI)、blood oxygenation level dependent functional MRI (BOLD-fMRI) and magnetic resonance spectroscopy(MRS), neuroimaging of brain tumors has evolved from a purely anatomy-based discipline to one that incorporates morphologic abnormality with physiologic alterations in extracellular compartment kinetics, cellular metabolism, and hemodynamics. Functional MRI has become a new tool of diagnosis, guiding surgery, monitoring therapy response, and predicting prognosis of patients with brain tumor. In this paper, We have investigated the application of PWI, BOLD-fMRI and DTI in brain tumor.
     The first part
     Objective: To investigate astrocytoma invasion and to delineate the tumor margin more precisely through PWI, with combination of pathophysiological characteristic in peritumoral area.
     Methods: 45 patients with histologically verified astrocytoma and classified gradeⅠ、Ⅱ、Ⅲ、Ⅳwere examined through PWI preoperatively followed by conventional MRI. The PWI original data were reestablished to get a color map of rCBV. The maximum rCBV ratio in tumor solid portion、immediate peritumoral area and distant peritumoral area were calculated for each lesion in rCBV map by using contralateral normal white matter as reference. The pathology specimens were obtained in tumor solid portion and peritumoral area. The immunohistochemical technique was used to detect microvascular density (MVD) of tumor solid portion and peritumoral area with CD34 related antigen monoclonal antibody. The HE staining of peritumoral area was used to assess tumor invasion. The correlation tests were used to determine the strength of the relationship between The maximum rCBV ratio and MVD in the solid portion. The difference of MVD in peritumoral area and the maximum rCBV ratio in immediate peritumoral area was detected between invasional and non- invasional astrocytoma.
     Results: The maximum rCBV ratio in the solid portion correlated well with MVD in the solid portion among astrocytomas (γ=0.714, P=0.001). Significant difference of the maximum rCBV ratio in the solid portion was found between invasional and non- invasional astrocytoma (P=0.001). There were significant difference of the maximum rCBV ratio in immediate peritumoral area (P=0.007) and MVD in peritumoral area (P=0.014) between invasional and non-invasional astrocytoma. In invasional astrocytoma, significant difference of the maximum rCBV ratio was found between in immediate peritumoral area and in distant peritumoral area (P=0.004).
     Conclusion: PWI is feasible for evaluation of astrocytomas angiogenesis. The assessment of astrocytomas invasion through PWI is based on the pathophysiological fact that there was significant difference of MVD in peritumoral area between invasional and non-invasional astrocytoma. The maximum rCBV ratio in immediate peritumoral area can be applied to evaluate astrocytomas invasion, and be helpful to delineate the tumor margin more precisely.
     The second part
     Objective: To explore affection of tumors near the central sulcus on motor cortex through BOLD-fMRI, and to evaluate the operation effect with guidance of BOLD-fMRI. We also want to determine whether BOLD-fMRI can be applied preoperatively to assess the risk of a new motor deficit after surgery.
     Methods: 57 patients with tumor adjacent to the central sulcus were enrolled in the study as fMRI group. Preoperative BOLD-fMRI technique in each patient were performed. An activation scan was achieved by using a motor task paradigm, which consisted of finger-to-thumb touching in a repeating pattern. All the scanning data were transformed to a Matlab platform, and BOLD-fMRI map were synthesized with SPM2 software. The distance from the tumor to primary motor cortex (M1) were measured. The M1 volume from the ipsilateral, contralateral and the percentage difference in the M1 volumes between the both lateral hemispheres were calculated. With guidance of BOLD-fMRI map, all patients from fMRI group were operated. As control group, 45 patients with tumor in the same position were made a routine MRI examination without BOLD-fMRI before surgery.
     Results: Morphologic changes of M1 area from ipsilateral were observed. The average distance from the tumor to M1 area was 12.5±5.6 mm. Patients from fMRI group were divided into four groups based on tumor type and distance from M1 area: (1) extra-axial, far, (6 cases); (2) extra-axial, near, (10 cases); (3) intra-axial, far (19 cases); and (4) intra-axial, near (22 cases). In group 3, The difference between M1 volume from the ipsilateral (Vi) and the one from contralateral(Vc) was significant statistically(P=0.003). In group 4, The difference between Vi and Vc was significant statistically too(P=0.026). There were significant difference of percentage difference in the M1 volumes (D) between intraaxial and extra-axia group. The difference of D value between group 3 and group 4 was significant statistically(P=0.039). There was significant difference of tumor resection ratio between fMRI group and control group(P=0.046), however, there was no difference of postoperatively changes of muscle power between both groups. In fMRI group, there were difference of postoperatively changes of muscle power among four groups, and 80% (8/10) patients suffering from postoperative motor deficits belonged to group 4.
     Conclusion: The affection to motor cortex for vicinal brain tumors depends mainly on the distance between lesion and ipsilateral M1 and whether the lesion is located intra-axis or extra-axis. BOLD-fMRI can be helpful to resect lesions near motor cortex to greatest degree, and to preserve motor function area utmostly, which increases the precision and accuracy of surgery. The application of BOLD fMRI in pre-operation plays an guiding role in making surgery plans. BOLD-fMRI can be applied preoperatively to assess the risk of a new motor deficit after surgery.
     The third part
     Objective: To explore the DTI features of normal white matter, and to value application of DTI and DTT in brain tumor for the sake of protection of involving white matter tracts .
     Methods: A total of 30 healthy adults and 32 patients with brain tumor were examined by DTI. All data were transformed to Leonardo workstation, and processed with DTI software. The fractional anisotropy (FA) value of different brain tissues of healthy adults was measured, and the FA value of tumor solid area、peritumoral and opposite mirror area were calculated. Based on diffuiosn value of each pixel, the three-dimensional diffusion tensor tractography (DTT) map could be obtained to observe tumor's influence to white matter fiber tract. Operation project was determined with reference to DTT map.
     Results: The FA value of different normal brain tissue was diverse. The white matter fiber tract could be observed clearly on three-dimensional DTT map. The difference of FA value among tumor solid area、peritumoral and opposite mirror area in intra-axial tumor was significant statistically(P <0. 01). There was no difference of FA value between peritumoral and opposite mirror area in extra-axial tumor. The tumor's influence to near white matter fiber tract could be observed on DTT map. In 32 patients with brain tumor, DTT map clearly demonstrated 14 white matter fiber tracts near tumor were not involved by tumor, 11 were close to tumor and displaced, 7 were invaded and disrupted by tumor. Gross total resection was achieved in 26 patients, while neurological deterioration was seen in only 4 patients.
     Conclusion: The FA map of DTI offered the optimal visualization of white matter fiber tracts. DTI were valuable in presenting the topographical character of involved white matter tracts and relationship with the margins of neighboring rumors. DTI should be of great value in the surgical planning as well as protection of involving white matter tracts .
引文
[1]张忠,江涛综述,王忠诚审校.功能区胶质瘤的手术治疗进展.中国微侵袭神经外科杂志,2006,11(2):88-90
    [2]Miller JC,Pien HH,Sahani D,et al.Imaing angiogenesis:applications and potential for drag development.J Nat Cancer Inst,2005,97(3):172-187
    [3]Wilkinson ID,Romanowski CAJ,Jellinek DA,et al.Motor functional MRI for pre-operative and intraoperative neurosurgical guidance British Journal of Radiology,2003,76,98-103
    [4]张皓,沈天真,陈星荣.MR灌注成像在鉴别单发脑转移瘤与高级别胶质瘤中的价值.中华放射学杂志,2006,40(4):393-396
    [5]Fan GG,Deng QL,Wu ZH,et al.Usefulness of diffusion /perfusion-weighted MRI in patients with non-enhancing supratentorial brain gliomas:a valuable tool to predict tumour grading? Br.J.Radiol,2006,79(944):652 -658
    [6]Lamszus K,Schimidt NO,Jinl,et al.Scatter factor promtes motility of human glioma and neuromicrovascular endothelial cell.Int J Cancer 1998,75:19-28
    [7]Moseley ME,Yetkin FZ,Haughton VM,et al.Functional magnetic resonance imaging of human brain function.Surg Neurol,1996,45(4):385-391
    [8]Fehr T,Code C,Herrmann M,et al.Auditory task presentation reveals predominantly right hemispheric fMRI activation patterns during mental calculation,2008,431(1):39-44
    [9]Pillai JJ,Williams HT,Faro S,et al.Functional imaging in temporal lobe epilepsy.Semin Ultrasound CT MR,2007,28(6):437-450
    [10]Herdener M,Esposito F,Di Salle F,et al.BOLD correlates of edge detection in human auditory cortex.Neuroimage,2007,36(1):194-201
    [11]吴劲松,周良辅,高歌军,等.融合功能磁共振影像的神经导航在脑皮质运动区肿瘤术中的应用.中华医学杂志,2004,84(8):632-636
    [12]Shimony IS,Mckinstry.Quantitative diffusion-tensor anisotropy brain MR imaging:normative human date and anatomic analysis.Radiology,1999,212:770
    [13]郭雪梅.扩散张量磁共振成像基本原理及应用.实用放射学杂志,2003, 19:840-843
    [14]Wu JS,Zhou LF,Tang WJ,et al.Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation:a prospective,controlled study in patients with gliomas involving pyramidal tracts.Neurosurgery,2007,61(5):935-948
    [15]Cha S.Update on brain tumor imaging:from anatomy to physiology.AJNR,2006,27(3):475-487
    [16]Price SJ,Jena R,Bumet NG,et al.Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging:an image-guided biopsy study.AJNR,2006,27(9):1969-1974
    [17]Manari C,Musolino A,Duprt CD,et al.Correlation between stereo -EEG,CT-scan and stereotactic biopsy data in epileptic patients with low-grade gliomas.Appl Neurophysiol,1985,48(1-6):448-453
    [18]Tanninen O,Aronen HJ,Ruhala M,et al.MRI enhancement and microvascular density in gliomas correlation with tumor cell proliferation.Invest Radiology,1999,34:427-434
    [19]姜新雅,仇斌,王维,等.人脑星形细胞瘤磁共振灌注成像与MMP-9表达的相关性研究.中国医学影像技术,2006,22(2):219-221
    [20]Pirzkall A,Li X,Oh J,et al.3D MRSI for resected high-grade gliomas before RT:tumor extent according to metabolic activity in relation to MRI.Int J Radiat Oncol Biol Phys,2004,59(1):126-137
    [21]Pauleit D,Langen KJ,Floeth F,et al.Can the apparent diffusion coefficient be used as a noninvasive parameter to distinguish tumor tissue from peritumoral tissue in cerebral gliomas? J Magn Reson Imaging,2004,20(6):758-764
    [22]Forsyth PA,Wong H,Laing TD,et al.Gelatinase-A(MMP-2)Gelatinase-B (MMP-9)and membrane type matrix metalloproteinase-1(MT1-MMP)are involved in different aspects of the pathophysiology of malignant gliomas.Br J Cancer,1999,79(11-12):1828-1535
    [23]Law M,Young R,Babb J,et al.Comparing Perfusion Metrics Obtained from a Single Compartment Versus Pharmacokinetic Modeling Methods Using Dynamic Susceptibility Contrast-Enhanced Perfusion MR Imaging with Glioma Grade.AJNR,2006,27(10):1975-1982.
    [24]Wolf RL,Wang J,Wang S,et al.Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 Tesla.J Magn Reson Imaging,2005,22(4):475-482
    [25]Weidner N,Semple JP,Welch WR,et al.Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma.N Engl J Med,1991,324:1-8
    [26]夏爽,祁吉,倪红艳,等.脑星形细胞瘤的MR灌注成像研究.放射学实践,2004,19(10):701-705
    [27]Sugahara T,Korogi Y,Kochi M,et al.Correlation of MR imaging determined cerebral blood volume maps with histological and angiographic determination of vascularity of gliomas.AJR,1998,171:1479-1486
    [28]Petrella JR,Provenale JM.MR perfusion imaging of the brain:techniques and applications.AJR,2000,175:207-219
    [29]郑斐群,余永强,柏亚,等.脑胶质瘤血流容积与肿瘤微血管密度的相关性研究.临床放射学杂志,2003,22(11):905-908
    [30]蒋传路,江涛,李永利.胶质瘤的侵袭性生长与手术策略.中华神经外科杂志,2004,20(6):510-512
    [31]Kleihues P,Cavenee WK.Tumors pathology and genetics,tumors of the nervous system.Lyon International Agency for Research on Cancer (IARC)Press,2000,6-7
    [32]Sandstrom M,Johansson M,Sandstrom J,et al.Expression of the proteolytic factors,tPA and PAIl and VEGF during malignant glioma progression,Int J Dev Neuroxci,1999,17(5-6):473
    [33]Seandel M,Noack Kunnmann K,Zhu D,et al.Growth factor-induced angiogenesis in vivo requires specific cleavage of fibrillar type I collagen.Blood,2001,97(8):2323-2332
    [34]LarnszusK,SchimidtNO,Jinl,et al.Scatter factor promtes motility of human glioma and neuromicrovascular endothelial cell.Int J Cancer 1998,75:19-28
    [35]Nail B,Murat K,Anar F,et al.Assessment of Diagnostic Accuracy of Perfusion MR Imaging in Primary and Metastatic Solitary Malignant Brain Tumors.AJNR,2005,26(10):2187-2199
    [36]LawM,Sarah Oh,et al.Low Grade Gliomas:dynamic susceptibility weighted contrast enhanced perfusion MR imaging-prediction of patient clinical response.Radiology,2006,238(2):658-667
    [37]LawM,Cha S,Knopp EA,et al.High-grade diomas and solitary metastases:differentiation by uSing perfusion alld p1Dton spectroscopic MR imaging.Radiology,2002,222:715-721
    [38]Di Costanzo A,Scarabino T,Trojisi,et al.Multiparametdc 3T MR approaCh tO the assessment of cerebral ghomas:tumor extent and malignancy.Neuroradiology 2006,48(9):622-631
    [1]吴劲松,周良辅,高歌军,等.融合功能磁共振影像的神经导航在脑皮质运动区肿瘤术中的应用.中华医学杂志,2004,84(8):632-636
    [2]Duffau H,Capelle L,Denvil D,et al.Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions:functional results in a consecutive series of 103patients.J Neurosurg,2003,98(4):764-778
    [3]Duffau H,Velut S,Mitchell MC,et al.Intra-operative mapping of the subcortical visual pathways using direct electrical stimulations.Acta Neurochir(Wien),2004,146(3):265-269
    [4]Papanicolaou AC,Simos PG;Castillo EM,et al.Magnetocephalography:a noninvasive alternative to the Wada procedure.J Neurosurg,2004,100(5):867-876
    [5]Antti K,Erika K,Hannu J.Aronen,et al.Sensorimotor Cortex Localization:Comparison of Magnetoencephalography,Functional MR Imaging,and Intraoperative Cortical Mapping.Radiology 2006,241:213-222
    [6]Sobottka SB,Bredow J,Beuthien B,et al.Comparison of functional brain PET images and intraoperative brain-mapping data using image-guided surgery.Comput Aided Surg,2002,7(6):317-325
    [7]Ogawa S,Lee TM,Kay AR,et al.Brain magnetic resonance imaging with contrast dependent on blood oxygenation.Proc Natl Acad Sci USA.1990,87:9868-9872
    [8]Moller M,Freund M,Greiner C,et al.Real time fMRI:a tool for the routine presurgical localisation of the motor cortex.Eur Radiol,2005,15(2):292-295
    [9]Wilkinson ID,Romanowski CAJ,Jellinek DA,et al.Motor functional MRI for pre-operative and intraoperative neurosurgical guidance.British Journal of Radiology,2003,76,98-103
    [10]黄穗乔,梁碧玲,谢榜昆,等.功能磁共振成像在神经外科应用的初步经验.癌症,2006,25(3):343-347
    [11]Ke WX,Li JX.Continuous representation of human portrait and scene in the human cortex by fMRI.Chin J Med Imaging Technol,2004,20,212-125
    [12]Liu WC,Susan C.Feldman MS.The effect of tumour type and distance on activation in the motor cortex.Neuroradiology,2005,47:813-819
    [13]Brell M,Ibanez J,Caral L,et al.Factors influencing surgical complications of intra-axial brain tumours.Acta Neurochir(Wien),2000,142:739-750
    [14]Moseley ME,Yetkin FZ,Haughton VM.Functional magnetic resonance imaging of human brain function.Surg Neurol,1996,45(4):385-39
    [15]Roberts TP,Ferrari P,Perry D,et al.Presurgical mapping with magnetic source imaging:comparisons with intraoperative findings.Brain Tumor Pathol,2000;17(2):57-64.
    [16]吴劲松,周良辅,陈伟,等.功能磁共振成像定位皮质运动区与术中电刺激运动诱发电位的前瞻对照研究.中华外科杂志,2005,43(17):1141-1145
    [17]王美豪,祝一虹,李建策,等.运动相关大脑皮层的功能磁共振成像.放射学实践,2005,20(1):15-17
    [18]Krings T,Topper R,Willmes K,et al.Activation in primary and secondary motor areas in patients with CNS neoplasms and weakness.Neurology,2002,58(3):381-390
    [19]ChristineC.Lee,HeidiA.Ward,FrankW.etal.Assessment of Functional MR imaging in neurosurgical planning.AJNR,2004,20(2):1511
    [20]Hou BL,Bradbury M,Peck KK,et.al.Effect of brain tumor neovasculature defined by rCBV on BOLD fMRI activation volume in the primary motor cortex.Neuroimage.2006,32(2):489-97.
    [21]Morioke T,YamamotoT,Katsuta T,etal.Presurgical three-dimensional magnetic source imaging of the somatosensory cortex in a patient with periRolandic lesion.Technical note.Neurosurgery,1994,34(1):930-934
    [22]Bogomdny DL,Petrovich NM,Hou BL,et al.fMRI in the brain tumor patients.Top Magn Reson Imaging,2004,15(5):325-335
    [23]Majos A,Tybor K,Stefanczyk L,et al.Corticalmapping by fMRI in patients with brain tumors.Eur Radiol,2005,15(6):1148-1158
    [24]李子孝,戴建平,李少武,等.3T高场强功能MRI在脑功能区胶质瘤皮质电刺激手术中的应用.中华放射学杂志,2006,40(10):1031-1034
    [25]RohlfingT,WestJB,Beier J,etal.Registration of functionaland an tomical MRI:accuracy assessmentand application in navigated neurosugica.Comput Aided Surg,2000,5(4):414
    [26]Mikuni N,Ikeda A,Yoneko H,et al.Surgical resection ofan epileptogenic cortical dysplasia in deep foot sensorimotor area.Epilepsy& Behavior,2005, 7(3):559
    [27]Sunaert S,Yousry TA.Clinical applications of functional magnetic resonance imaging.Neuroimaging Clin N Am,2001,1 1(2):221-235
    [28]Krishnan R,Raabe A,Hattingen E,et al.Functional Magnetic Resonance Imaging-integrated Neuronavigation:Correlation between Lesion-to-Motor Cortex Distance and Outcome.Neurosurgery,2004,55(4):904-915
    [29]Murata Y,Sakatani K,Katayama Y,et al.Decreases of blood oxygenation level--dependent signal in the activated motor cortex during functional recovery after resection of a glioma.AJNR,2004,25(7):1242-1246
    [1]Nimsky C,GanslandtO,Fahlbusch R,et al.Implementation of fiber tract navigation.Neurosurgery,2006,58(4 Suppl 2):292-303
    [2]Bammer R,Acar B,Moseley ME,et al.In vivo MR tmctography using diffusion imaging.Eur J Radiol,2003,45(3):223-234.
    [3]Thomalla G,Glauche V,Weiller C,et al.Time course of wallerian degeneration after ischaemic stroke revealed by diffusion tensor imaging.J Neurol Neurosurg Psychiatry,2005,76(2):266-268.
    [4]Huisman TA,Schwamm LH,Schaefer PW,et al.Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury.Am J Neuroradiol,2004,25(3):370-376.
    [5]Fellgiebel A,Wille P,Muller MJ,et al.Ultrastructural hippocampal and white matter alterations in mild cognitive impairment:a diffusion tensor imaging study.Dement Geriatr Cogn Disord,2004,18(1):101-108.
    [6]Chenevert TL,Brunberg JA,Pipe JG,et al.Anisotropic diffusion within human white matter:demonstration with NMR techniques in vivo.Radiology,1990,177(2):401-405.
    [7]Habas C.Basic principles of diffusion tensor MR tractography.Radiology,2004,85(3):281-286.
    [8]Guzman R,Barth A,Lovblad KO,et al.Use of diffusion-weighted magnetic resonance imaging in differentiating purulent brain processes from cystic brain tumors.J Neurosurg,2002,97:1101-1107
    [9]Mori S,Frederiksen K,Van PC,et al.Brain white matter anatomy of tumor patients evaluated with diffusion tensor imaging.Ann Neurol,2002,51(3):377-380.
    [10]Schonberg T,Pianka P,Hendler T,et al.Characterization of displaced white matter by brain tumors using combined DTI and fMRI.Neuroimage,2006,30(4):1100-1111
    [11]Tummala RP,Chu R M,Liu H.Application of diffusion tensor imaging to magnetic-resonance-guided brain tumor resection.Pediatr Neurosurg,2003,39(1):39-43
    [12]Coenen VA,K_rings T,Mayfrank L,et al.Three-dimensional visualization of the pyramidal tract in a neuronavigation system during brain tumor surgery:first experiences and technical note.Neurosurgery,2001,49(1):86-93
    [13]W ieshmann UC,Symms MR,Parker GJM,et al.diffusion tensor imaging demonstrates deviation of fibres in normal appearing white matter adjacent to a brain tumor.J Neurol Neurosurg Psychiatry,2000,68:501-503
    [14]杨雷,张懋植,张伟,等.弥散张量白质纤维束成像在脑肿瘤微创手术中的应用.中华医学杂志,2006,86(19):1301-1304
    [15]李子孝,戴建平,江涛,等.弥散张量纤维束示踪成像在涉及锥体束脑肿瘤中的应用.中国医学影像技术,2005,21(12):1802-1805
    [16]Nimsky C,Ganslandt O,Hastreiter P,et al.Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery.Neurosurgery,2005,56:130-137
    [17]Parmar H,Sitoh YY,Yeo TT.Combined magnetic resonance tractography and functional magnetic resonance imaging in evaluationof of brain tumors involving the motor system.J Compu Assist Tomogr 2004;28:551-556
    [18]陈增爱,冯晓源,耿道颖,等.磁共振弥散张量成像及脑功能成像在涉及运动通路脑肿瘤中的初步联合应用.中国医学计算机成像杂志,2004,10(6):404-408
    [19]李子孝,戴建平,江涛,等.功能和纤维成像在脑功能区胶质瘤中的应用.中华外科杂志,2006,44(18):1275-1279
    [20]Newton JM,Ward NS,Parker GJ,et al.Non-invasive mapping of corticofugal fibres from multiple motor areas-relevance to stroke recovery.Brain,2006,129(Pt 7):1844-1858.
    [21]吴明祥,徐坚民,张景忠,等.功能磁共振成像与扩散张量成像融合技术初探.中国医学影像技术,2007,23(5):777-780
    [22]Cha S.Update on brain tumor imaging:from anatomy to physiology.AJNR,2006,27(3):475-487
    [1]Kleihues P,Burger PC,Scheithauer BW.The new WHO classification of brain tumors.Brain Pathol,1993,3:255-268
    [2]沈天真,陈星荣.神经放射医师应熟悉的WHO脑肿瘤分类.中国计算机成像杂志,1997,3:145-149
    [3]Provias JP,Becker LE.Cellular and molecular pathology of medulloblastoma.J neurooncol,1996,29:35-42
    [4]Porke LB,Trojanowski JQ,Lee VMY.Primitive neuroectodermal tumors of the central nervous system.Brain pathol 1997,7:465-784
    [5]Becker LE.Pathology of pediatric brain tumors.Neuroimaging Clin N Am 1999,9:671-690
    [6]沈天真,张玉林,陈星荣.世界卫生组织脑肿瘤分类的进展.中国计算机成像杂志,2000,6:219-231
    [7]Tervonen O,Forbes G,Scheithauer BW,et al.Diffuse "fibillary"astrocytomas:Correlation of MRI features with histopothologic parameters and tumor grade.Neuroradiology,1992,34:173-178
    [8]Yanaka K,Kamezaki T,Kobayashi E,et al.MR imaging of diffuse glioma. AJNR, 1992,13:349-351
    [9] Felsberg GJ, Silver SA, Brown MT, et al. Radiologic-pathologic correlation: gliomatosiscerebri. AJNR 1994,15:1745-1753
    [10] Burger PC, Vogel FS, Green SB, et al. Glioblastoma multiforme and anaplastic astrocytoma: pathologic criteria and prognostic implications. Cancer, 1985, 56:1106-1111
    [11] Daumas-Duport C, Scheithauer B, O'Fallon J, et al. Grading of astrocytomas: a simple and reproducible method. Cancer,1988, 62:2152-2165
    [12] Kelly PJ, Daumas-Duport C, Scheithau BE, et al. Stereotactic histologic correlations of computed tomography and magnetic resonance imaging defined abnormalities in patients with neoplasms. Mayo Clin proc, 1987, 62:450-459
    [13] Burger P.Malignant astrocytic neoplasms: classification, anatomy, and response totherapy, Semin Oncol, 1986,13:16-20
    [14] Zagzag D, Friedlander DR, Dosik J, et al. Tenascin-C expression in angiogenic vessels of human astrocytomas and by human endothelial cells in vitro. Cancer Res, 1996, 56:182-189
    [15] Alsop DC, Detre JA. Multisection cerebral blood flow MR imaging with continuous arterial spinla beling.Radiology, 1998,20 8:4 10-416
    [16] Chawla S, Wang S, Wolf RL, et al. Arterial spin-labeling and MR spectroscopy in the differentiation of gliomas. AJNR, 2007, 28(9): 1683 -1689
    [17] Aronen HJ, Gazit IE, Louis DN,et al.Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology, 1994,191:41-51
    [18] EdelmanR R,Mattle HP.Atkinson DJ,et al.Cerebral blood flow:assessment with dynamic contrast-enhanced T2*-weighted MR imaging at 1.5T. Radiology, 1990,176:211-220
    [19] Knopp EA,Cha S , Johnson G, et al.Glial neoplasms:dynamic contrast-enhanced T2*-weighted MR inaging. Radiology, 1999,211: 791-798
    [20] Edelman RR,Wielopotski P, Schmitt F. Echo planar MR imaging. Radilolgy, 1994,192:60 0-612
    [21] Brening R, Kwong KK, Vevea MJ, et al. Echo—Planar MR determination of relative cerebral blood volume in human tumors:T_1,versusT_2 Weighting. AJNR 1996,17:831-840
    [22] Luypaert R, Boujraf S, .Sourbron S, et al.Diffusion and perfusion MRI: basic physics. Eur.Radiol, 2001, 38:19-27
    [23] Jensen JH, Chandra R. MR imaging of microvasculature. Magn reson Med, 2000, 44 :224-230
    [24] Law M, Cha S, Knopp EA, et al. High-grade gliomas and solitary metastases:diferentiation by using perfusion and proton spectroscopic MR imaging. Radiology, 2002, 222(3):715-721
    [25] Chaskis C, Stadnik T, Michotte A, et al. Prognostic value of perfusion-weighted imaging in brain glioma: a prospective study. Acta Neurochir (Wien). 2006,148(3):277-85
    [26] Fan G, Zang P, Jing F, et al. Usefulness of diffusion/perfusion-weighted MRI in rat gliomas: correlation with histopathology. Acad Radiol. 2005, 12(5): 640-51.
    [27] Hakyemez B, Erdogan C, Ercan I, et al. High-grade and low-grade gliomas: differentiation by using perfusion MR imaging. Clin Radiol. 2005, 60(4): 493-502
    [28] Parikh AH, Smith JK, Ewend MG, et al. Correlation of MR perfusion imaging and vessel tortuosity parameters in assessment of intracranial neoplasms. Technol Cancer Res Treat. 2004, 3(6):585-90
    [29] Zaharchuk G. Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. AJNR, 2007, 28(10): 1850-8
    [30] Fuss M, Wenz F, Essig M, et al. Tumor angiogensis of low-grade astrocytomas measured by dynamic susceptibilityc ontrast—enhanced MRI(DSCMRI)is predictive of local tumor control after radiation therapy. Int J Radiat Oncol Biol Phys, 2001, 51(2): 478-482
    [31] Merboldt KD, Hanicke W, Frahm J. Self-diffusion NMR imaging using stimulated echoes. J Mang Reson, 1985, 64 (2): 79-486
    [32] Brian JJ, Aaron SF, Joshua M, et al. Diffusion tensor imaging of cerebral white matter: A pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR, 2004,25:356-369
    [33] Burgel U, Amunts K, Hoemke L, et al. White matter fiber tracts of the human brain:three-dimensional mapping at microscopic resolution,topography and intersubject variability.Neuroimage,2006,15,29(4):1092-105
    [34]Neslihan K,Bengi G,Zeynep F,et al.Diffusion tensor imaging and tractography of median nerve:normative diffusion Values.A JR,2007,189:923-927
    [35]Cercignbnani M,Horsfield MA.The physical basis of diffusion-weighted MRI.J Neurol Sci,2001,186[Suppl 1]:11-14
    [36]Ito R,Mori S,Melhem ER.Diffusin tensor brain imaging and tractography.Neuroimaging Clin North Am,2002,12(1):1-19.
    [37]Melhem ER,Mori S,Mukundan G,et al.Diffusion tensor MR imaging tractography.AJR,2002,178(1):3 -16.
    [38]Le BD,Ma nginJ F,PouponC,et al.Diffusion tensor imaging:concept and applications.JMRI,2001,13(4):5 34-546
    [39]Warren D,Edward k,Ranga R,et al.Diffusion tensor imaging:background,potential and utility in psychiatric research.Biological Psychiatry,2004,55(1):201-207
    [40]Mariana L,David M,Weinstein,et al.Whitem attert ractography using diffusion tensor deflection.Human Brain Maping,2003,18(2):306-312
    [41]Aaron S,Andrew L,Alexander,et al.Diffusion tensor eigenvector directional color imaging patterns in the evaluation of cerebral White matter tracts altered by tumor.JMRI,2004,20(2):555-562.
    [42]Lai PH,Hsu SS,Lo YK,et al.Role of diffusion-weighted imaging and proton MR spectroscopy in distinguishing between pyogenic brain abscess and necrotic brain tumor.Acta Neurol Taiwan,2004,13(3):107-113
    [43]Reddy JS,MishraAM,Behari S,et al.The role of diffusion-weighted imaging in the differential diagnosis of intracranial cystic mass lesions:a report of 147 lesions.Surg Neurol,2006,66(3):246-250
    [44]刘鹏飞,邓贺民,王小睿,等.磁共振DwI对脑脓肿与坏死囊变性胶质瘤的鉴别诊断价值.中国临床神经外科杂志,2006,11(12):711-714
    [45]Nadal DL,Herlidou S,de Marco G,et al.Differential MRI diagnosis between brain abscesses and necrotic or cystic brain tumors using the apparent diffusion coefficient and normalized diffusion-weighted images.Magn Reson Imaging,2003,21(6):645-650
    [46]Krabbe K,Gideon P,Wagn P,et al.MR diffusion intracranial tumors.Neuroradiology,1997,39(7):483-489.
    [47]郭慧,张敬,张云亭.DTI在高级别胶质瘤及转移瘤鉴别诊断中价值初探,肿瘤防治研究.2004,31(10):631-633.
    [48]Tien R,F elsberg G,Fr iedman H,et al.MR imaging of high-grade cerebral gliomas:value of diffusion-weighted echoplanar pulse sequence.A JR,1994,162(3):671-677.
    [49]Castilto M,K eithJ,Kwock L,et al.Apparent diffusion coefficients in evalution of high grade cerebral gliomas.AJNR,2001,22(1):60-64.
    [50]Kono K,Inoue Y,Nakayama K,et al.The role of diffusion weighted imaging in patients with brain tumors.AJNR,2001,22(6):1081-1088
    [51]Rollin N,Guyotat J,Streichenberger N,et al.Clinical relevance of diffusion and perfusion magnetic resonance imaging in assessing intra-axial brain tumors.Neuroradiology.2006,48(3):150-9.
    [52]Beppu T,Inoue T,Shibata Y,et al.Measurement of fractional anisotropy using diffusion tensor MRI in supratentorial astrocytic tumors.Journal of Neuroncology,2003,63(2):109-116.
    [53]Gupta RK,Cloughesy TF,Sinha U,et al.Relationship between choline magnetic resonances pectroscopyapparentd diffusion coefficient and quantitative histopathology in human glioma.Neuroocol,2000,50(3):215-226.
    [54]Stadnik TW,Chaskis C,Michotte A,et al.Diffusion-weight MR imaging of introcerebral masses:cimparison with conventional MR imaging and histologic findings.AJNR,2001,22(5):969-976.
    [55]Lam WW,Poon WS,Metrewelic C.Diffusion MR imaging inglioma:does it have any role in the pre-operation determination of grading of glioma? Clin Radiol,2002,57(3):219-225.
    [56]Filippi C,Edgar M,Ulug A,et al.Appearance of meningiomao on diffusion weightd imaging:correlating diffusion contrasts with histopathologic findings.AJNR,2001,22(1):65-72.
    [57]Brunberg J,Chenevert I,Mckeever P,et al.In vivo MR determination of water diffusion coefficients and diffusion anitrophy:correlation with stmctional alteration in glioma of cerebral hemispheres.AJNR,1995,16(2):361-371
    [58]Jellison BJ,Field AS,Medow J,et al.Diffusion tensorim aging of Cerebral white matter:A pictorial review of physics,fibertract anatomy,and tumor imaging patterns.JNR,2004,25(3):356-69.
    [59]Laundre BJ,Jellison BJ,BadieB,et al.Diffusion tensor-imaging of the corticospinal tract before and after massresection as conelated with clinicalmotor findings.AJNR,2005,26(4):791-6.
    [60]李贻卓,黄子林,魏大年,等.术前脑肿瘤患者脑白质束M R-DTI的初步研究.南方医科大学学报,2006,26(11):1648-1651
    [61]Sinha S,Bastin ME,Whittle IR,et al.Diffusion tensor MR imaging of high grade cerebral gliomas.AJNR,2002,23(4):520-527.
    [62]Mori S,Frederiksen K,van Zil PC,et al.Brain white matter anatomyof tumor patients evaluated with diffusion tensor imaging.Ann Neurol,2002,51(3):377-380
    [63]Witwer BP,MoftakharR,HasanK M,et al.Diffusion tensor imaging of white matter tracts in patients with cerebral neoplasm.J Neurosurg,2002,97(3):568-575.
    [64]Mamato Y,Mamato H,Nabavia,et al.Intraoperatived diffusion imaging on a 0.5 Tesla interventional scanner.J Magn Reson,2001,13(1):115-119.
    [65]Stefano ND,Balestr P,DottiM T.Severem etabolite abnormalities in the white matter of patients with vacuolating megalencephalic leukoen cephalopathy with subcortical cyst:a proton spectroscopic imaging study.J.Neurol 2001,248:4 03-409
    [66]Kadota T,Horinouchi T,Kuroda C.Development and Aging of the cerebrum assessment with Proton MR spectroscopy.AJNR 2001,22:128-135
    [67]Kappeller P,Mclean MA,Griffin CM.Preliminary evidence for neuronal damage in cortical in grey matter and normal appearing white matter in short duration relapsing-remitting multiple sclerosis:a quantitative MR spectroscopic imaging study.J.Neurol,2001,248:131-138
    [68]Dowling C,Bollen A,Noworolski SM.Preoperative proton MR spectroscopy imaging of brain tumors:correlation with histopathologic analysis of resection specimens.AJNR,2001,22:604-612
    [69]BendszusM,Warmuth-MetzM.MR spectroscopy in gliomatosis cerebri AJNR,2000,21:375-380
    [70]Castillo M.Correlation of myo-inositol levels and gradings of cerebral astrocytomas.AJNR 2000;21:1645-1649
    [71]Domigo Z,Rowe G,Blamine AM.Roleo fI schaemic in the genesis of oedema surrounding meningomas assessed using magnetic resonance imaging and spectroscopy.Br J Neurosurg,1998,12:414-418
    [72]Barbal,Moreno A,Martinez-Perezl.Magneticr esonances pectroscopy of brain hemangiopericytomas:h igh myo-inositol concentrations and discrimination from meningiomas.J Neurosurg,2001,94:55-60
    [73]Burtscher IM,Skagerberg G,Geijer B.Proton MR spectroscopy and preoperative diagnosfica ccuracy:an evaluation of intracranial mass lesions characterized by stereotaticb iopsy findings.AJNR 2000,21:84-93
    [74]SenorR N.Proton MR spectroscopy of craniopharygiomas.Computerized Medical Imaging and Graphics 2001,25:417-422
    [75]WaleckiJ,Sokol",PieniazekP.Role of short TE'H-MR spectrosc in monitoring of post-operationi rradiatedp atients.EJR,1999,30:154-161
    [76]Vincent FH,Rumpel CH,Aw YS.Temporal lobe necrosis following radiation therapy for nasopharyngeal carcinoma:'H MR spectroscopic findings.Int.J.Radiation Oncology Biol.Phys.1999,45:699-705
    [77]Croteau D,ScarpaceL,HearshenD,et al.Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies:semiquantitative and qualitative histopathological analyses of patients with untreated glioma.Neurosurgery,2001,49(4):823-829
    [78]Gajewicz W,Grzelak P,G6rska-Chrzastek M,et al.The usefulness of fused MRI and SPECT images for the voxel positioning in proton magnetic resonance spectroscopy and planning the biopsy of brain tumors:presentation of the method.Neurol Neurochir Pol,2006,40(4):284-90
    [79]Burtscher IM,Skagerberg G,Geijer B,et al.Proton MR spectroscopy of preoperative diagnostic accuracy:an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings.AJNR,2000,21(1):84-93
    [80]许茂盛,潘智勇,曹志坚,等.颅脑肿瘤强化周围区域的多体素氢质子波谱研究.中华放射学杂志,2003,37(12):1105-111
    [81]Quan Hong,Liu Yue,Bao Shanglian,et al.Diagnosis of glioma by multivoxel H-MRSI.Progress in Natureal Science,2004,14(9):770-773
    [82]DiCostanzo A,Trojsi F,Giannatempo GM,et al.Spectroscopic,diffusion and perfusion magnetic resonance imaging at 3.0 Tesla in the delineation of glioblastomas: preliminary results. J Exp Clin Cancer Res, 2006, 25(3): 383-390
    [83] Kwong KK, Belliveau JW, Chester DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensorys timulation. Proceedingsof the National Academy of Sciences USA. 1992. 89 : 5675-5679
    [84] Morioke T, YamamotoT, KatsutaT,etal. Presurgical three-dimensional magnetic source imaging of the somatosensory cortex in a patient with peri-Rolandic lesion. Technical note. Neurosurgery, 1994, 34(1): 930-934
    [85] Rohlfing T, West JB, Beier J, et al. Registration of functionaland anatomical MRI: accuracy assessmentand application in navigated neurosurgical. Comput Aided Surg, 2000, 5(4): 414-421
    [86] Sunaert S, Yousry TA. Clinical applications of functional magnetic resonance imaging. Neuroimaging Clin N Am, 2001(11): 221-228
    [87] Helmut K, Christopher N, martin M, etal. Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalogrphy in presurgical functional imaging: A spatiallanalysis. Neuroimage, 2001,14(3): 1214-1223
    [88] Mikuni N, Ikeda A, Yoneko H, etal. Surgical resection ofan epileptogenic cortical dysplasia in deep foot sensorimotor area. Epilepsy& Behavior, 2005, 7(3): 559-565
    [89] Neugrosch 1C, Denolin V, Schuind F, etal. FunctionalMRI activation of somatosenaory and motor cortices in a hand-grafted patientwith early clinical sensorimotor recovery. Euro Radiology, 2005,15: 1806-1811

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700