脑胶质瘤T_1WI DCE-PWI与病理分级及VEGF表达的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨磁共振T_1WI DCE-PWI技术在预测脑胶质瘤术前病理分级方面的诊断价值及与血管内皮生长因子表达的相关性。
     方法:对22例脑胶质瘤患者,2例正常人进行研究。胶质瘤患者年龄13-74岁,平均30.0岁,其中男14例,女8例。按2000年WHO标准对胶质瘤进行病理分级,其中工级3例,Ⅱ级7例,Ⅲ级7例,Ⅳ级5例,幕下1例,幕上21例。先行常规MR检查,再行DCE-PWI扫描,最后行常规增强扫描。DCE-PWI使用标准头部线圈,Turbo-FLASH序列采集图像(TR/TE 199/1.05ms;TI 100ms;层厚6mm;层距1.2mm;翻转角20~0;矩阵128×96;视野260×210)。选取病灶最大层面为中间层面,时间分辨率为4秒,共扫描90个时相,成像时间为360秒。对比剂为钆喷替酸葡甲胺(Gd-DTPA)注射液,剂量为0.4ml/kg,由高压注射泵经肘前静脉注药,速率为4 ml/s。注药时机选择为扫描过程中第6个时相,对比剂团注结束后再注入同等容积生理盐水冲洗导管。采用Tofts-kermode两腔室模型分析数据,用NORDICIC软件对原始灌注成像数据进行后处理,构建K~(trans)、K_(ep)、Ve值的参数图,参照T1增强图像,将感兴趣区设置在肿瘤K~(trans)值最大的部位,计算出三者的平均值。患者均在检查后2周内手术,术后获取肿瘤标本使用二步法行VEGF免疫组化检查。一例高级别胶质瘤标本行电镜检查。
     结果:脑胶质瘤各渗透参数结果示正常脑组织K~(trans)值低于胶质瘤患者,大约为Ⅰ级胶质瘤的1/10。Ⅲ-Ⅳ胶质瘤的K~(trans),K_(ep)及V_e值明显高于Ⅰ-Ⅱ级,高级别胶质瘤K~(trans)及K_(ep)值较低级别胶质瘤增加约4倍。K~(trans)在Ⅱ与Ⅲ间有差异,在级别Ⅰ与Ⅱ,Ⅲ与Ⅳ间无差异。K~(trans),Kep及Ve与肿瘤级别相关性采用spearman秩相关分析,K~(trans)值的相关系数r=0.770(p<0.001)最大,表明K~(trans)值与肿瘤级别存在正相关,且关系最密切。区别低级别和高级别肿瘤的K~(trans)的最佳临界点(阈值)=0.85,特异度=0.90,灵敏度=0.92。VEGF表达与K~(trans)值spearman秩相关分析,r=0.551(p=0.008)。VEGF免疫组化示Ⅰ,Ⅱ级以阴性表达为主,Ⅲ级阳性表达率为85.72%,Ⅳ级阳性表达率为100%。经秩和检验,χ~2值为12.647,经spearman秩相关分析,r=0.706(p<0.001)。电镜示高级别胶质瘤内皮细胞间隙增宽,基底膜有断裂。
     结论:T_1WI DCE-PWI是一种无创的定量分析脑胶质瘤微血管渗透情况的良好方法,特别是渗透参数K~(trans)值与胶质瘤的病理分级密切相关,可定量评价脑胶质瘤微血管的生成情况,为胶质瘤的恶性程度分级提供新的参考指标,鉴别高、低级别胶质瘤的阂值为0.85(特异度=0.90,灵敏度=0.92)。K~(trans)值与VEGF表达存在正相关性。
Purpose To investigate the diagnostic value of magnetic resonance T1-weighted DCE-PWI in predicting the pathological grade of glioma in the preoperative setting, and its relationship with tumor grade and vascular endothelial growth factor expression.
     Method 22 patients with glioma and 2 normal persons were investigated. Patients were aged 13-74 years, average 30.0 years, 14 cases were male and 8 were females. According to WHO criteria in 2000 for postoperative pathological classification of gliomas, three cases were of gradeⅠ, 7 cases gradeⅡ, 7 cases gradeⅢ, 5 cases gradeⅣ. One of the lesions was infratentorial while the others were supratentorial. Conventional MR examination was first carried out in all patients, followed by DCE-PWI scan, and then routine enhancement scan. DCE-PWI scanning was done using a standard head coil with Turbo-FLASH sequence with the following parameters: TR / TE 199/1.05ms; TI 100ms; slice thickness 6mm; slice distance 1.2mm; flip angle 20~0; matrix 128×96; FOV 260×210. The intermediate level was selected as the largest level of glioma, and the time resolution was 4 seconds, a total of 90 time phases were scanned with an imaging time of 360 seconds. Gd-DTPA was injected from an antecubital vein with a dose of 0.4 ml/kg, using a high-pressure injection pump, at a rate of 4 ml/s. Contrast was injected during the sixth phase followed by administration of the same volume of normal saline to flush the catheter. Data was analyzed using Tofts and Kermode two-compartment pharmacokinetic model and the NORDICIC software to build K~(trans)、K_(ep) and V_e maps. Then, with T1 enhanced images as reference, the areas of greatest value of K~(trans) in the tumor were chosen as regions of interest to calculate the average of the three parameters. Patients were operated within two weeks of the exam. VEGF immunohistochemical analysis was carried out after obtaining tumor samples using two-step method. One case of high-grade glioma was examined under electron microscope.
     Result The results showed that the permeability parameter K~(trans) values of normal brain tissue was lower than glioma patients, about one tenth that of gradeⅠgliomas. K~(trans), K_(ep) and V_e of gradeⅢ-Ⅳgliomas were significantly higher than those of gradeⅠ-Ⅱ. K~(trans) and Kep of high-grade gliomas were increased four times more than in low-grade ones. K~(trans) values were different between gradesⅡandⅢ, but there was no difference between gradesⅠandⅡ, and between gradesⅢandⅣ. Correlation of K~(trans), K_(ep) and Ve with tumor grade was analyzed using spearman rank correlation. Correlation coefficient of K~(trans) was greater (r=0.770, p<0.001) showing K~(trans) values was positively correlated with tumor grade with a close relationship. In differentiating between low-grade and high-grade tumors the most appropriate K~(trans) critical point ( threshold value) was 0.85 with specificity = 0.90 and sensitivity = 0.92. Using spearman rank correlation analysis of VEGF expression and K~(trans) values, r = 0.551 (p = 0.008). Immunohistochemical analysis showed that VEGF expression in gradesⅠandⅡwere mainly negative, in gradeⅢthere was a positive rate of 85.72%, in gradeⅣpositive rate was 100%. Rank sum test gaveχ~2 of 12.647 (p = 0.005). With spearman rank correlation analysis, r = 0.706 (p <0.001). Electronmicroscopy showed that in high grade glioma there was an increase in theextracellular space of endothelial cells, with a disrupted basementmembrane.
     Conclusion T_1WI DCE-PWI is a good non-invasive quantitativemethod of analysis of microvascular permeability of glioma, especially the permeability parameter K~(trans) value being closely related to the pathological grade of glioma. It can be used for the quantitative evaluation of microangiogenesis in glioma and provide a new reference for the degree of glioma malignancy. The threshold value for the differentiation between high- and low-grade glioma was 0.85 (specificity = 0.90, sensitivity = 0.92). There was a positive correlation between VEGF expression and K~(trans) value.
引文
[1]. Weihua Liao, Yunhai Liu, Xiaoyi Wang, Xinya Jiang, Beisha Tang, Jiasheng Fang, Changqing Chen, Zhongliang Hu. Differentiation of primary central nervous system lymphoma and high-grade glioma with dynamic susceptibility contrast-enhanced perfusion magnetic resonance imaging. Acta Radiologica, 2009, 50(2): 217-225
    [2]. 陈鑫,张永利,唐震等.MR弥散、灌注、波谱成像在单发脑转移瘤与恶性胶质瘤鉴别诊断中的价值[J].实用放射学杂志,2008,24(11):1450-1466
    [3]. 刘鹏飞,那婧,王晓睿等.MR灌注成像在评估脑胶质瘤放疗效果中的应用[J].中国临床神经外科杂志,2007,12(12):712-715
    [4]. 武洪林,钱农,陈君坤等.胶质瘤MR灌注成像与分子病理学的对照研究[J].临床放射学杂志,2006,25(2):112-116
    [5]. 郑斐群,余永强,钱银锋等.MR灌注成像在评价脑内胶质瘤残留或复发方面的价值[J].临床放射学杂志,2006,25(6):493-496
    [6]. 耿承军,陈君坤,卢光明等.脑肿瘤动态增强MRI与血管生成的对照研究[J].中国医学影像技术,2004,20(9):1350-1354
    [7]. 杜渭清,邓敬兰,宦怡等.脑胶质瘤磁共振灌注成像与病理对照研究[J].实用放射学杂志,2004,20(5):391-393
    [8]. Folkman J . Tumor angiogenesis : therapeutic implications [J] . N Engl J Med ,1971 ,285 (21) :1182-1186.
    [9]. 夏爽,郭文梅,祁吉等.脑胶质瘤的血管生成与MR灌注成像技术的相关研究[J].Foreign Medical Sciences Clinical Radiological Fascicle.2003 May;26(3):169-173
    [10]. Cao Y, Shen Z, Chenevert TL, et al. Estimate of vascular permeability and cerebral blood volume using Gd-DTPA contrast enhancement and dynamic T2~*-weighted MRI [J]. J Magn Reson Imaging. 2006 Aug, 24(2):288-96
    [11]. Hakyemez B, Erdogan C, Ercan I, et al. High-grade and low-grade gliomas: differentiation by using perfusion MR imaging [J]. Clin Radiol. 2005 Apr; 60(4):493-502.
    [12]. S. Cha, L. Yang et al. Comparison of Microvascular Permeability Measurements, K~(trans), Determined with Conventional Steady-State T1-Weighted and First-Pass T2*-Weighted MR Imaging Methods in Gliomas and Meningiomas [J]. AJNR Am. J. Neuroradiol. February 2006, 27:409-417.
    [13]. James M. Provenzale, Srinivasan Mukundan, Mark Dewhirst, et al. The Role of Blood-Brain Barrier Permeability in Brain Tumor Imaging and Therapeutics [J]. AJR. 2005; 185:763-767.
    [14]. Covarrubias D.J., Rosen B.R., Lev M.H., et al. Dynamic magnetic resonance perfusion imaging of brain tumors [J]. The Oncologist. 2004;9:528- 537.
    [15]. Donahue K.M., Krouwer H.G.J., Rand S.D., et al. Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients [J]. MRM. 2000;43:845- 853.
    [16]. Schmainda K.M., Rand S.D., Joseph A.M., et al. Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis [J]. AJNR Am. J. Neuroradiol. 2004;25:1524- 1532.
    [17]. Wong J.C., Provenzale J.M., Petrella J.R.,et al. Perfusion MR imaging of brain neoplasms [J]. AJR. 2000;174:1147- 1157.
    [18]. Winkler, F. et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1 and matrixmetalloproteinases. Cancer Cell 2004, 6, 553-563.
    [19]. Guo, P. et al. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am. J. Pathol. 2003 ,162, 1083-1093.
    [20]. Leach MO, Brindle KM, Evelhoch JL, et al. The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 2005;92:1599—1610.
    [21]. Harvey CJ , Blomley MJ , Dawson P ,et al. Functional CT imaging of the acute hyperemic response to radiation therapy of the prostate gland : earlyexperience. J comput Assisst Tomogr , 2001 , 25 :43
    [22]. Jain R, Ellika SK, Scarpace L, et al. Quantitative Estimation of Permeability Surface-Area Product in Astroglial Brain Tumors Using Perfusion CT and Correlation with Histopathologic Grade [J]. AJNR Am J Neuroradiol. 2008; Jan 17, Epub ahead of print.
    [23]. Tufail F. Patankar, Hamied A. Haroon, et al. Is Volume Transfer Coefficient (K~(trans)) Related to Histologic Grade in Human Gliomas [J]. AJNR Am J Neuroradiol. 2005 December; 26:2455-2465.
    [24]. James M. Provenzale, Srinivasan Mukundan, Daniel P. Barboriak,et al. Diffusion-weighted and Perfusion MR Imaging for Brain Tumor Characterization and Assessment of Treatment Response [J]. Radiology. 2006; 239(3):632-649.
    [25]. Heidi C. Roberts, Timothy P. L. Roberts, Robert C. Brasch, et al. Quantitative Measurement of Microvascular Permeability in Human Brain Tumors Achieved Using Dynamic Contrast-enhanced MR Imaging: Correlation with Histologic Grade [J]. AJNR Am J Neuroradiol. 2000; 21:891-899.
    [26]. Liu Glenn, Hope S. Rugo, Wilding George, et al. Dynamic Contrast-Enhanced Magnetic Resonance Imaging As a Pharmacodynamic Measure of Response After Acute Dosing of AG-013736, an Oral Angiogenesis Inhibitor, in Patients With Advanced Solid Tumors: Results From a Phase I Study. Journal of Clinical Oncology [J]. 2005 August 20; 23(24): 5464-5473.
    [27]. William S. Kerwin, Kevin D. O'Brien, Marina S. Ferguson, et al. Inflammation in Carotid Atherosclerotic Plaque: A Dynamic Contrast-enhanced MR Imaging Study [J]. Radiology. 2006 November; 241(2):459-468.
    [28]. A Jackson, GC Jayson, KL Li, et al. Reproducibility of quantitative dynamic contrast-enhanced MRI in newly presenting glioma [J]. The British Journal of Radiology. 2003 March; 76:153-162.
    [29]. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data [J]. J. Cereb Blood Flow Metab. 1983; 3(1):1-7.
    [30]. Tofts PS, Kermode AG., et al. Measurement of the blood-brain barrier permeability and leakage space using dynamical MR imaging. 1 . Fundamental concepts [J]. Magn Reson in Med. 1991; 17:357-367.
    [31]. St. Lawrence KS, Lee TY, et al. An adiabatic approximation to the tissue homogeneity model for water exchange in the brain. Theoretical derivation [J]. J Cereb Blood Flow, Metab. 1998; 18:1365-1377
    [32]. Hou Ping, De EJB, Kramer LA., et al. Dynamic contrast-enhanced MRI study of male pelvic perfusion at 3T preliminary clinical report [J]. Journal of Magnetic Resonance Imaging, 2007, 25: 160-169.
    [33]. Tofts PS, Berkowitz B, Schnall MD. Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model [J]. MRM, 1995,33:564-568.
    [34]. Provenzale JM, Wang GR, Brenner T, et al. Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 2002;178:711-1
    [35]. S.J. Mills, T.A. Patankar, H.A. Haroon et al. Do Cerebral Blood Volume and Contrast Transfer Coefficient Predict Prognosis in Human Glioma? [J]. AJNR Am J Neuroradiol. April 2006, 27:853-858
    [36]. Roberts HC, Roberts TP, Bollen AW et al. Correlation of microvascular permeability derived from dynamic contrast-enhanced MR imaging with histologic grade and tumor labeling index: a study in human brain tumors. Acad Radiol. 2001 May;8(5):375-6.
    [37]. Law M, Yang S, Babb JS, et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 2004;25:746-55
    [38]. Rydland J, BjOrnoerud A, Haugen O, et al. New intravascular contrast agent applied to dynamic contrast enhanced MR imaging of human Breast cancer. Acta Radiologica,2003; 44 :275 -283
    [39]. M. Law, R. Young et al. Comparing Perfusion Metrics Obtained from a Single Compartment Versus Pharmacokinetic Modeling Methods Using Dynamic Susceptibility Contrast-Enhanced Perfusion MR Imaging with Glioma Grade [J]. AJNR Am J Neuroradiol, October 2006,27:1975-1982
    [40]. Law M, Meltzer DE et al. Conventional MR imaging with simultaneous measurements of cerebral blood volume and vascular permeability in ganglioglioma. Magn Reson Imaging. 2004 Jun;22(5):599-606
    [41]. Haroon HA, Patankar TF, Zhu XP, et al. Comparison of cerebral blood volume maps generated from T2~* and T1 weighted MRI data in intra-axial cerebral tumours [J]. The British Journal of Radiology, 2007, 80(951): 161-168.
    [42]. Bertossi M , Virgintino D , Maiorano E , et al. Ultrastructural and morphometric investigation of human brain capillaries in normal and peri-tumoral tissues [J]. J Ultrastruct Pathol, 1997 , 21 : 412-491
    [43]. 梁朝辉,焦保华,王建祯等.人脑星形细胞瘤血脑屏障超微结构改变与GFAP表达的关系[J].中国实用神经疾病杂志,2008,11(11):50-51
    [44]. Vajkoczy P, Menger MD,et al. Vascular microenvironment in gliomas. J Neuroonco, 2000, 50:99-108
    [45]. Machein MR, Plate KH. Role of VEGF in developmental angiogenesis and in tumor angiogenesis in the brain. Cancer Treat Res 2004;117:191-218.
    [46]. Manley PW, et al. Advances in the structural biology, design and clinical development of VEGF-R kinase inhibitors for the treatment of angiogenesis. Biochim Biophys Acta 2004; 1697:17-27.
    [47]. Bian XW, Du LL, Shi JQ, et al. Correlation of bFGF, FGFR-1 and VEGF expression with vascularity and malignancy of human astrocytomas. Anal Quant Cytol Histol 2000;22:267-74
    [48]. Chaudhry IH, O'Donovan DG, Brenchley PE, et al. Vascular endothelial growth factor expression correlates with tumour grade and vascularity in gliomas. Histopathology 2001;39:409-15
    [49]. 张静,何宁,朱春萍等.脑胶质瘤VEGF表达与动态增强MRI灌注成像的相关性研究[J].中国临床医学影像杂志,2005,16(10):547-580.
    [50]. 叶秀峰,钟雪云,米粲等.VEGF2C及其受体VEGFR23在不同级别脑星形细胞瘤中的表达[J].诊断病理学杂志,2005,12(5):365-367.
    [51].张建华,漆剑频,黄文华等.脑胶质瘤CT灌注成像与VEGF表达的对照研究[J].中国医学影像技术,2007,23(7):982-985.
    [52]. Gossmann A, Helbich TH, Kuriyama N, et al . Dynamic contrast enhanced magnetic resonance imaging as a surrogate marker of tumor respons e to antiangiogenic therapy in a xenograft model of glioblas-toma multiforme. J Magn Reson Imaging, 2002, 15(3): 233 - 240 .
    [53]. George ML, DzikJurasz AS, Padhani AR, et al. Noninvasive methods of as sessing angiogenesi s and their value in predicting response to treatment in colorectal cancer. Br J Surg, 2001, 88(12): 1628 -1636.
    [1]. Folkman J.Tumor angiogenesis:theraputic implication. N Engl Med 1971: 255:1182-1196。
    [2]. Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science, 1989, 246( 4935): 1306 - 1309.
    [3]. Pham CD, Roberts TP, Van Bruggen N, et al. Magneti c resonance imaging detects suppression of tumor vas cular permeability after administration of antibody to vas cular endothelial growth factor. Cancer Invest, 1998, 16( 4) : 225 - 230.
    [4]. Millauer B, Susanne WV, Schnurch H, et al . High affinity VEGF binding and developmental expres sion suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell, 1993, 72 : 835 - 846.
    [5]. Scott P, Gleadle JM, Bicknell R, et al. Role of the pypoxia s ensingsystem, acidity and reproductive hormones in the valiability of vascular endothelial growth factor induction in human breast carcinoma cell lines. Int J Cancer, 1998, 75(5): 706-712.
    [6]. Kieser A, Weich HA, Brander G, et al. Mutant p53 potentiates protein kinase C induction of vascular endothelial growth factor expression. Oncogene, 1994, 9( 3): 964 - 969.
    [7]. Rak J , Mitsuhashi Y, Bayko L, et al . Mutant ras oncogenes upregulat e VEGF /VPF expression implications for induction and inhibition of tumor Angiogenesis. Cancer Res , 1995 , 55 (20): 4575 -4580.
    [8]. Kohn S, Nagy JA, Dvorak HF, et al . Pathways of macromolecular tracter transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels. Lab Invest, 1992, 67:596 - 607.
    [9]. Gossmann A, Helbich TH, Kuriyama N, et al . Dynamic contrast -enhanced magnetic resonance imaging as a surrogate marker of tumor respons e to antiangiogenic therapy in a xenograft model of glioblastoma multiforme. J Magn Reson Imaging, 2002, 15( 3) : 233 - 240 .
    [10]. George ML, DzikJurasz AS, Padhani AR, et al. Noninvasive methods of as sessing angiogenesi s and their value in predicting response to treatment in colorectal cancer. Br J Surg, 2001, 88( 12): 1628 -1636.
    [11]. Brasch R, Pham C, Shames D, et al. Assessing tumor angiogenesis using macromolecular MR imaging contrast media . J Magn Reson Imaging, 1997 , 7(1): 68 - 74.
    [12]. 梁朝辉,焦保华,王建祯等.人脑星形细胞瘤血脑屏障超微结构改变与GFAP表达的关系[J].中国实用神经疾病杂志,2008,11(11):50-51
    [13]. Vajkoczy P, Menger MD. Vascular microenvironment in gliomas. J Neurooncol2000, 50:99-108
    [14]. Weber MA, Lichy MP, Thilmann C, et al. Monitoring of irradiated brain metastases using MR perfusion imaging and 1HMR spectroscopy [J]. Radiology,2003,43(5):388-395
    [15]. Brasch RC, Li KC, Husband JE et al. In vivo monitoring of tumor angiogenesis with MR Imaging. Acad Radiol, 2000, 7 (10): 812-823
    [16]. Neeman M, Dafni H, Bukhari O, et al. In vivo BLOD contrast MRI mapping of subcutaneous vascular function and maturation: Validation by intravital microscopy [J]. Magn Reson Med, 2001, 45 (5): 887-898
    [17]. Abramovitch R,Dafni H,Smouha E,et al. Functional magnetic resonance (fMR) imaging of a rat brain tumor model : Implications for evalution of tumor microvasculature and therapeutic response [J].MgnReson Imaging, 1999.17(4):537-548
    [18]. Stadnik TW,Chaskis C ,Michotte,A ,et al.Diffusion-weight MR imaging of introcerebral massesximparison with conventional MR imaging and histologic findings.AJNR,2001,22 (5):969-976.
    [19]. Lam WW, Poon WS,Metrewelic C.Diffusion MR imaging inglioma:does it have any role in the pre-operation determination of grading of glioma?Clin Radio 1,2002,57(3):219-225.
    [20]. Knopp EA, Cha S, Johnson G, et al. Glial neoplasms: dynamic contrast-enhanced T2~*-weighted MR imaging. Radiology1999; 211:791 -798
    [21]. Law M , Cha S, Knopp EA,High-grade gliomas and solitary metastases:diferentiation By using perfusion and proton spectroscopic MR imaging. Radiology, 2002; 222(3):715-21.
    [22]. Lupo JM, Cha S, Chang SM, Nelson SJ. Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: characterization of spatial heterogeneity. AJNR Am J Neuroradiol 2005; 26:1446-54.
    [23]. Tzika AA, Zarifi MK, Goumnerova L, et al. Neuroimaging in pediatric brain tumors:Gd-DTPA-enhanced , hemodynamic,and diffusion MR imaging compared with MR spectroscopic imaging.AJNR Am J Neuroradiol.2002; 23(2):322-33.
    [24]. Usefulness of diffusion/perfusion-weighted MRI in patients with non-enhancing supratentorial brain gliomas: a valuable tool to predict tumour grading? Br. J. Radiol., August 1, 2006; 79(944): 652 -658.
    [25]. Assessment of Diagnostic Accuracy of Perfusion MR Imaging in Primary and Metastatic Solitary Malignant Brain Tumors AJNR Am. J. Neuroradiol., October 1,2005; 26(9): 2187-2199. .
    [26]. Essig M, Hartmann M, Lodemann KP, et al. Comparison of contrast behavior of gadobenate-dimeglumine and Gd-DTPA ini ntra-axial brain tumors.A double blind randomized intraindividualc ross-overs tudy.Radiologe , 2001 ; 41(12):1063-71.
    [27]. Pathak AP, Schmainda KM, Ward BD, et al. MR-derived cerebral blood volume maps: issuesr egardingh istologicalv alidation and a -ssessment of tumor angiogenesis.Magn Reson Med.2001; 46(4); 735-47.
    [28]. Jackson A, Kassner A, Annesley-Wiliams D, et al. Abnormalities in the recirculation phase of c ontrast agent bolus passage in cerebral gliomas:companson with relative blood volume and tumor grade. AJNR Am J Neuroradiol.2002; 23(1); 7-14.
    [29]. Fuss M,Wenz F,Essig M, et al . Tumor angiogensis of low-grade astrocytoma etoglucid measured by dynamic susceptibilityc ontrast-enhanced MRI(DSCMRI)is predictive of local tumor control after radiation therapy. Int J Radiat Oncol Biol Phys,2001,51(2) ; 478-482.
    [30]. James M. Provenzale, Srinivasan Mukundan, Mark Dewhirst. The Role of Blood-Brain Barrier Permeability in Brain Tumor Imaging and Therapeutics [J]. AJR. 2005; 185:763-767.
    [31]. Jain R, Ellika SK, Scarpace L, et al. Quantitative Estimation of Permeability Surface-Area Product in Astroglial Brain Tumors Using Perfusion CT and Correlation with Histopathologic Grade [J]. AJNR Am J Neuroradiol. 2008; Jan 17, Epub ahead of print.
    [32]. Covarrubias D.J., Rosen B.R., Lev M.H.. Dynamic magnetic resonance perfusion imaging of brain tumors [J]. The Oncologist. 2004;9:528- 537.
    [33]. Tufail F. Patankar, Hamied A. Haroon, Samantha J. Mills, et al. Is Volume Transfer Coefficient (K~(trans)) Related to Histologic Grade in Human Gliomas [J]. AJNR Am J Neuroradiol. 2005 December; 26:2455-2465.
    [34]. James M. Provenzale, Srinivasan Mukundan, Daniel P. Barboriak. Diffusion-weighted and Perfusion MR Imaging for Brain Tumor Characterization and Assessment of Treatment Response [J]. Radiology. 2006; 239(3):632-649.
    [35]. Heidi C. Roberts, Timothy P. L. Roberts, Robert C. Brasch, et al. Quantitative Measurement of Microvascular Permeability in Human Brain Tumors Achieved Using Dynamic Contrast-enhanced MR Imaging: Correlation with Histologic Grade [J]. AJNR Am J Neuroradiol. 2000; 21:891-899.
    [36]. Liu Glenn, Hope S. Rugo, Wilding George, et al. Dynamic Contrast-Enhanced Magnetic Resonance Imaging As a Pharmacodynamic Measure of Response After Acute Dosing of AG-013736, an Oral Angiogenesis Inhibitor, in Patients With Advanced Solid Tumors: Results From a Phase I Study. Journal of Clinical Oncology [J]. 2005 August 20; 23(24): 5464-5473.
    [37]. William S. Kerwin, Kevin D. O'Brien, Marina S. Ferguson, et al. Inflammation in Carotid Atherosclerotic Plaque: A Dynamic Contrast-enhanced MR Imaging Study [J]. Radiology. 2006 November; 241(2):459-468.
    [38]. A Jackson, GC Jayson, KL Li, et al. Reproducibility of quantitative dynamic contrast-enhanced MRI in newly presenting glioma [J]. The British Journal of Radiology. 2003 March; 76:153-162.
    [39]. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data [J]. J. Cereb Blood Flow Metab. 1983; 3(1):1-7.
    [40]. Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamical MR imaging. 1 . Fundamental concepts [J]. Magn Reson in Med. 1991; 17:357-367.
    [41]. St. Lawrence KS, Lee TY. An adiabatic approximation to the tissue homogeneity model for water exchange in the brain. I. Theoretical derivation [J]. J Cereb Blood Flow, Metab. 1998; 18:1365-1377
    [42]. Hou Ping, De EJB, Kramer LA., et al. Dynamic contrast-enhanced MRI study of male pelvic perfusion at 3T preliminary clinical report [J]. Journal of Magnetic Resonance Imaging, 2007,25: 160-169.
    [43]. Tofts PS, Berkowitz B, Schnall MD. Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model [J]. MRM, 1995,33:564-568.
    [44]. Kerwin WS, O'Brien KD, Ferguson MS, et al. Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study[J]. Radiology, 2006 Nov;241(2):459-68
    [45]. Richard J. Hodgson, Sylvia Connolly, Theresa Barnes et al. Pharmacokinetic modeling of dynamic contrast-enhanced MRI of the hand and wrist in rheumatoid arthritis and the response to anti-tumor necrosis factor-α therapy [J]. Magnetic Resonance in Medicine, Aug 2007, 58 (3): 482 - 489
    [46]. Galbraith SM, Maxwell RJ, Lodge MA, et al. Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol 2003;21:2831-42.
    [47]. Stevenson JP, Rosen M, Sun W, et al. Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow. J Clin Oncol 2003;21:4428-38.
    [48]. Nermin T, Hakkim.K, OzerK O, et al. Dynamic magnetic resonance imaging in determing histopathological prognostic factors of invasive breast cancers [J]. EJR, 2005,53: 199-205
    
    [49]. Marc R E,Henkjan J H, Robert J F, et al. Discriminnation of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR in aging [J]. Radiology, 2003,229: 248-254
    
    [50]. Kenneth C, Werner V S, Frederik D K, et al. Dynamic contrast-enhanced MRI of the pancreas initial results in healthy volunteers and patients with chronic pancreatitis [J]. JMRI ,2004, 20: 990-997
    
    [51]. Nermin T, Hakki M K, Ozerk O, et al. Dynamic contrast-enhanced MRI In the differential diagnosis of soft tissue tumors [J]. EJR ,2005,53:500-505
    
    [52]. Lisa J. Wilmesa, Maria G. Pallavicinib, Lisa M. Fleminga, et al. AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging [J]. Magnetic Resonance Imaging, 2007, 25: 319-327
    
    [53]. Sah P L, Sharma R, Kand pal H, et al. In vivo proton spectroscopy of giant cell tumor of the bone. AJR Am J Roentgenol, 2008,190(2):133-139
    
    [54]. Chang EY, Li X, Jerosch-Herold M, Priest RA, et al. The evaluation of esophageal adenocarcinoma using dynamic contrast-enhanced magnetic resonance imaging. J Gastrointest Surg. 2008 Jan; 12(1): 166-75.
    
    [55]. Winkler, F. et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1 and matrixmetalloproteinases. Cancer Cell 2004, 6, 553-563.
    
    [56]. Guo, P. et al. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am. J. Pathol. 2003 , 162, 1083-1093.
    
    [57]. S. Cha, L. Yang et al. Comparison of Microvascular Permeability Measurements, K~(trans), Determined with Conventional Steady-State T1-Weighted and First-Pass T2*-Weighted MR Imaging Methods in Gliomas and Meningiomas [J]. AJNR Am. J. Neuroradiol. February 2006, 27:409-417,
    [58]. Provenzale JM, Wang GR, Brenner T, et al. Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 2002;178:711-1
    [59]. SJ. Mills, T.A. Patankar, H.A. Haroon et al. Do Cerebral Blood Volume and Contrast Transfer Coefficient Predict Prognosis in Human Glioma? [J]. AJNR Am J Neuroradiol. April 2006, 27:853-858
    [60]. Roberts HC, Roberts TP, Bollen AW et al. Correlation of microvascular permeability derived from dynamic contrast-enhanced MR imaging with histologic grade and tumor labeling index: a study in human brain tumors. Acad Radiol. 2001 May;8(5):375-6.
    [61]. Law M, Yang S, Babb JS, et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 2004;25:746-55
    [62]. Bhujwalla ZM, Artemov D, Natarajan K, Solaiyappan M, Kollars P, Kristiansen PEG. Reduction of vascular and permeable regions in solid tumors detected by macromolecular contrast magnetic resonance imaging after Treatment with antiangiogenic agent TNP-470. Clin Cancer Res2003; 9 :355 -362
    [63]. Degani H, Chetrit-Dadiani M, Bogin L, Furman-Haran E. Magnetic resonance imaging of tumor vasculature. Thromb Haemost2003; 89 :23 -33
    [64]. Vajkoczy P, Menger MD. Vascular microenvironment in gliomas. J Neurooncol2000; 50 :99-108
    [65]. Degani H, Chetrit-Dadiani M, Bogin L, Furman-Haran E. Magnetic resonance imaging of tumor vasculature. Thromb Haemost2003; 89 :23 -33
    [66]. M. Law, R. Young et al. Comparing Perfusion Metrics Obtained from a Single Compartment Versus Pharmacokinetic Modeling Methods Using Dynamic Susceptibility Contrast-Enhanced Perfusion MR Imaging with Glioma Grade [J]. AJNR Am J Neuroradiol, October 2006,27:1975-1982
    [67]. Yang S, Law M, Zagzag D, et al. Dynamic contrast-enhanced perfusion MR imaging measurements of endothelial permeability: differentiation between atypical and typical meningiomas. Am J Neuroradiol2003; 24:1554 -1559
    [68]. Haris M, Husain N, Singh A,et al. Dynamic contrast-enhanced (DCE) derived transfer coefficient (ktrans) is a surrogate marker of matrix metalloproteinase 9 (MMP-9) expression in brain tuberculomas. J Magn Reson Imaging. 2008 Sep;28(3):588-97
    [69]. Leach MO, Brindle KM, Evelhoch JL, et al. The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 2005;92:1599-1610.
    [70]. Harvey CJ , Blomley MJ , Dawson P ,et al. Functional CT imaging of the acute hyperemic response to radiation therapy of the prostate gland : earlyexperience. J comput Assisst Tomogr, 2001 ,25 :43
    [71]. Tsien C, Gomez-Hassan D, Chenevert TL ,et al.Predicting outcome of patients with high-grade gliomas after radiotherapy using quantitative analysis of T1-weighted magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2007 Apr 1;67(5):1476-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700