四川几种竹叶部微生物区系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四川地区栽培的竹林主要分布于西南部,种类多,用途广。2008年特大冰雪灾害的发生对竹产业的生产和发展造成重大的损失,各地区竹林均表现出不同程度的受害,严重影响竹林林分健康。竹叶作为竹林健康状况的重要指示器官,同时也是许多微生物生存繁衍的重要场所,更是病原微生物侵害竹子的重要入口。其表面与内部均生活着大量不同种类的微生物,并构成稳定复杂的微生态系统。
     本实验首次以四川雅安、宜宾、泸州三地6种栽培范围较广的竹种为研究材料,主要包括雅安地区(撑x绿杂交竹(Bambusa pervariabilis×Dendrocalamopsis grandis)、慈竹(Neosinocalamus affinis))、宜宾地区(毛竹(Phyllostachys heterocycla)、硬头黄(Bambusa rigida))、泸州地区(梁山慈(Dendrocalamus farinosus)、西凤竹(Bambusa multiplex))。采用传统林木病理学和现代分子生物学相结合的研究方法,主要对雪灾后6竹种竹林(实施清林等恢复措施)叶部微生物区系中可培养微生物进行了数量和种群的季节动态分析。结果表明:
     ①竹叶部微生物区系主要由真菌和细菌两大类群组成,且细菌数量明显高于真菌。
     三地区6竹种叶部微生物总数量(慈竹附生微生物除外)只与细菌数量表现出显著相关(P≤0.05)或极显著相关(P≤0.01),另外,慈竹附生真菌、附生放线菌及附生微生物总数间也表现出显著相关(P≤0.05),硬头黄内生真菌与内生细菌、内生微生物总数也表现出显著相关(P≤0.05);同一竹种微生物总数量的季节变化趋势与细菌表现出相似的规律,与真菌、放线菌存在差异,而竹种间微生物数量的季节变化趋势存在较大差异;对同一地区两竹种微生物数量的比较分析表明,除泸州梁山慈叶部微生物及各类群数量均显著高于西凤竹外,雅安、宜宾竹林叶部微生物数量在季节、竹种和类群间差异较大,无明显规律;竹种和季节是造成叶部微生物数量差异的两个主要因素,双因素方差分析结果表明,两者对不同微生物类群数量的影响程度不同。
     ②三地区6竹种叶部微生物的种群组成及优势菌存在较大差异,各微生物种群的季节演替均有不同的变化规律。
     雅安地区共分离得到真菌43属60种,细菌14属24种,放线菌1属1种,明显多于宜宾(真菌26属33种,细菌12属17种)、泸州(真菌23属32种,细菌11属17种),且雅安地区两竹种叶部微生物的共有物种数要多于其余两地。在雅安两竹种的叶部微生物区系中,附生微生物和内生微生物类群均有其共有物种;在宜宾,两竹种在附生真菌、附生细菌、内生真菌的组成上有共有物种,而内生细菌种群组成差异较大;在泸州,两竹种附生真菌、内生真菌的种群组成上有共有物种,而附生细菌和内生细菌种群组成差异较大。
     ③三地区6竹种叶部微生物物种丰富度指数的变化无一致规律。
     雅安慈竹叶部微生物各类群间均表现出不同的季节变化趋势,撑×绿杂交竹附生微生物各类群间变化趋势相反,内生微生物变化趋势却完全一致。而不同竹种间,除慈竹附生真菌物种丰富度指数在四季均大于撑×绿杂交竹外,其余微生物类群无明显规律。
     宜宾毛竹叶部微生物各类群间表现出相似的季节变化规律,而硬头黄各类群指数变化趋势差异较大。在同一微生物类群的不同竹种间,硬头黄竹附生真菌物种丰富度在四季均大于毛竹,而毛竹内生细菌物种丰富度在四季(除冬季)大于硬头黄竹,两竹种附生细菌和内生真菌无明显规律。
     泸州两竹种叶部微生物各类群间物种丰富度指数的变化趋势均有较大差异,同一微生物类群在不同竹种间的差异也较大,无明显规律。
     ④在调查采样的过程中,竹林内仍有部分常见病虫害的发生,不同季节不同竹林内病虫害种类与发生程度不同,主要病害为常见的煤污,这与煤污菌在叶片上的广泛存在(如Cladosporium cladosporioides、Alternaria alternate等)密不可分,而主要虫害为食叶害虫(如竹织叶野螟(Algedonia coclesalis)等)和蚜虫。在微生物区系的组成及优势种群中存在潜在病原菌(并未引起植物表现病状),同时也存在一些有益微生物。
Cultivated bamboo forest, distributed mainly in southwest Sichuan Province, consists of a wide range of species with various usages. In early 2008, an unusual rainfall and a snowstorm destroyed a large population of the bamboo forest, and caused a significant loss in bamboo production in different areas. These adverse weather conditions affected health of the bamboo plants, including bamboo leaves. Not only reflect the growing condition of the entire bamboo plant, bamboo leaves are also important organs which provide an ideal habitat for many microorganisms and an entry for pathogen to colonize the entire system. These microorganisms, both on the surface and inside of the leaves, are abundant, belong to various species, and can form complex yet steady micro-ecosystem.
     Six species of bamboo plants cultivated in Ya'an (B. pervariabilis×D. grandis, N. affinis), Yibin (P. heterocycla, B. rigida) and Luzhou (D. farinosus, B. multiplex) were studied in this research. After the recovery from the snowstorm, traditional forest pathology and molecular biology methods were used to investigate seasonal dynamics of cultivable microorganisms'quantity and compositions of foliar sample from the bamboo plants. The following results have been obtained:
     ①The foliar microflora of bamboo plants mainly consisted of fungi and bacteria, with bacteria as the dominating microorganism.
     The total microorganism counts were significantly correlated (P<0.05) or highly significantly correlated (.P<0.01) with bacteria counts. The counts of phylloplane fungi, actinomycetes and microorganism of N. affinis leaves were significantly correlated (P<0.05) with each other; the endophyte counts of B. rigida leaves had significant correlation (P<0.05) with bacteria's and total microorganism's counts as well. Seasonal dynamics of microorganism's total counts were similar to the bacteria counts, but different from fungi and actinomycetes of the same bamboo species. Seasonal dynamics of total microorganism counts were different among different species in different locations, and species in the same locations except the two species in Luzhou area (D. farinosus, and B. multiplex). In this study, bamboo species and seasonal changes were the two major factors that influenced the total microorganism counts. Results of double-factor ANOVA also showed that the two factors had different influences on different microorganism populations.
     ②The microorganisms isolated from the six species at the three locations demonstrated various differences in population composition, dominant population, and their responses to seasonal changes.
     In Ya'an area, samples isolated contained 43 genera and 60 species of fungi,14 genera and 24 species of bacteria, and 1 genus and 1 species of actinomycetes. The microorganism population was significantly larger than the microorganisms isolated from samples collected from the other two locations. Samples from Yibin contained 26 genera and 33 species of fungi,12 genera and 17 species of bacteria, and sample collected from Luzhou contained 23 genera and 32 species of fungi, and 11 genera and 17 species of bacteria. Similar trend was found with the commonly seen microorganism counts from different locations as well. In Ya'an, the phylloplane and endophytic microflora of two bamboo forests had common species. Similarly, it was also in samples collected in Yibin except the endophytic bacteria. However, samples collected in Luzhou only had common species in phylloplane and endophytic fungi, the bacteria populations were remarkably difference on compositions between phylloplane microflora and endophytic microflora.
     ③The variations of species richness indexes between different bamboo forests in the same area were inconsistent.
     In samples collected from Ya'an, responses to seasonal changes of different microorganism populations varied. For example, phylloplane population of N. affinis leaves showed the opposite tendency, but similar tendency among endophytic populations in B. pervariabilis×D. grandis leaves. Species richness indexes of same microorganism population between different bamboo species did not show a clear trend, except phylloplane fungi of N. affinis leaves were more abundant than that of B. pervariabilis×D. grandis leaves in four seasons.
     In Yibin, similar seasonal responses were found among different microorganism populations of P. heterocycla leaves, but not that of B. rigida leaves. Between the two different bamboo species, the species richness indexes of phylloplane fungi of B. rigida leaves were larger than that of P. heterocycla leaves in four seasons, but the endophytic bacteria index were lower in B. rigida than that of P. heterocycla leaves in four seasons except for winter.
     In Luzhou, results showed different variation tendency between different bamboo species and microorganism populations.
     ④During the survey, commonly seen pests were also discovered at different seasons and among different bamboo species. The main fungal disease was sooty blotch, which was directly related to the widespread phylloplane sooty moulds (C. cladosporioides, Alternaria alternate, et al.). The main insect was defoliator (Algedonia coclesalis, et al.) and aphids (Aphidoidea). There were also some potential pathogens in the foliar microflora and dominant species, and some beneficial microorganisms.
引文
[1]梅汝鸿.植物微生态学的研究[J].世界农业,1991(7):22-23.
    [2]李兴杰.微生物与高等植物间的相互关系[J].张家口农专学报,1998,14(2):61-62,54.
    [3]陈晖奇,徐焰平,谢丽华,等.茶树内生真菌的分离及其在寄主组织中的分布特征[J].莱阳农学院学报(自然科学版),2006,23(4):250-254.
    [4]贺稚非,李洪军,徐毅,等.鲜辣椒微生物区系的研究[J].中国酿造,2008(23):22-25.
    [5]袁红旭,周立赖,周锦兰,等.富贵竹内生细菌群落的生物效应研究[J].中国生态农业学报,2005,13(1):95-97.
    [6]王振跃,汪敏,高书锋,等.温室黄瓜叶部微生物区系[J].生态学杂志,2008,27(3):425-428.
    [7]徐淑霞,靳赛,吴坤,等.小麦表面微生物多样性研究[J].粮食储藏,2004,32(6):41-43.
    [8]周亚奎,陈旭玉,郑服丛.叶围微生物宏基因组文库的构建和分析[J].广西农业科学,2008,39(3):265-268.
    [9]邢德峰,任南琪.应用DGGE研究微生物群落时的常见问题分析[J].微生物学报,2006,46(2):331-335.
    [10]马俊孝,季明杰,孔健PCR-DGGE技术在微生物物种多样性研究中的局限性及其解决措施[J].食品科学,2008,29(5):493-497.
    [11]Sabine P, Stefanie K, Frank S, et al. Succession of microbial communities during hot composting as detected by PCR-Single-strand-Conformation polymorphism-based genetic profiles of small-subunit rRNA genes[J]. Appl. Environ. Microbiol.,2000,66(3):930-936.
    [12]Fuhs GW, Chen M. Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater[J]. Microbiol. Ecol.,1975,2:119-138.
    [13]Wagner M, Erhart R, Manz W, Amann R, et al. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge[J]. App 1. Environ. Microbiol.,1994,60:792-800.
    [14]龙良鲲,羊宋贞,姚青,等.AM真菌DNA的提取与PCR-DGGE分析[J].菌物学报,2005,4(4):564-569.
    [15]接伟光,蔡柏岩,葛菁萍,等.黄檗丛枝菌根(AM)真菌PCR-DGGE条件研究[J].黑龙江大学自然科学学报,2008,25(4):4-8.
    [16]杨锐,方文雅,单媛媛,等.条斑紫菜外生细菌的遗传多样性[J].海洋学报,2008,30(4):1-8.
    [17]罗海峰,齐鸿雁,薛凯,等.PCR-DGGE技术在农田土壤微生物多样性研究中的应用[J].生态学报,2003,23(8):1570-1575.
    [18]王岳坤,洪葵.红树林土壤细菌群落16SrDNA V3片段PCR产物的DGGE分析[J].微生物学报,2005,45(2):201-204.
    [19]SHANE M. POWELL, MARTIN J. RIDDLE, IAN SNAPE, et al. Location and DGGE methodolo-gy can influence interpretation of field experimental studies on the response to hydrocar-bons by Antarctic benthic microbial community [J]. Antarctic Science,2005,17(3):353-360.
    [20]S. Sadet, C. Martin, B. Meunier, et al. PCR-DGGE analysis reveals a distinct diversity in the bacterial population attached to the rumen epithelium[J]. Animal,2007,1(7):939-944.
    [21]Y.-Z. Sun, S.-Y. Mao, W. Yao,et al. DGGE and 16S rDNA analysis reveals a highly diverse and rapidly colonising bacterial community on different substrates in the rumen of goats[J].Animal,2008, 2(3):391-398.
    [22]陈爱辉,李朝霞,梁慧星,等.DGGE技术在湿地微生物多样性研究中的应用[J].湖北农业科学,2010,49(4):981-984.
    [23]LIU Huaide, LIU Mei, WANG Baojie, et al. PCR-DGGE analysis of intestinal bacteria and effect of Bacillus spp. on intestinal microbial diversity in kuruma shrimp (Marsupenaeus japonicus)[J]. Chinese Journal of Oceanology and Limnology,2010,28(4):808-814.
    [24]王宇,林文辉,王亚军,等.DNA不同提取方法对养殖池塘底泥细菌多样性PCR-DGGE检测的影响[J].吉林农业大学学报,2009,31(6):771-776.
    [25]赵兴青,杨柳燕,陈灿,等.PCR-DGGE技术用于湖泊沉积物中微生物群落结构多样性研究[J].生态学报,2006,26(11):3610-3616.
    [26]陈金华,王中康,贺闽,等DGGE和RFLP方法分析桑粒肩天牛幼虫肠道微生物多样性[J].生物技术通报,2008,6:115-119,123.
    [27]李鹏,毕学军,汝少国.DNA提取方法对活性污泥微生物多样性PCR-DGGE检测的影响[J].安全与环境学报,2007,7(2):53-57.
    [28]蒋建文,林文辉,王亚军,等.应用DGGE技术比较池塘人工生物膜与水体微生物多样性差异[J].安徽农业科学,2008,36(21):8956-8959.
    [29]Beattie G A, Lindow S E. Bacterial colonization of leaves:a spectrum of strategies [J]. Phytopathology,1999,89(5):353-359.
    [30]Lindow S E, Brandl M T. Microbiology of the Phyllosphere[J].Applied and Environmental Microbiology,2003,69(4):1875-1883.
    [31]施雯,张汉波.叶面微环境和微生物群落[J].微生物学通报,2007,34(4):761-764.
    [32]Leben C. Epiphytic microorganisms in relation to plant disease[J]. Annu. Rev. Phytopathol, 1965,3:209-230.
    [33]易龙.烟草内生与附生细菌互作对赤星病的控病及机理研究[D].西南农业大学,2004.
    [34]韦建福,孙福在,张世光,等.云南植物上冰核活性细菌鉴定[J].微生物学通报,1996,23(2):74-77.
    [35]孙福在,赵廷昌,王佳君,等.冰核细菌在我国北方玉米上的消长动态规律[J].生态学报,2005,25(4):784-790.
    [36]单卫星.植物附生微生物与叶部病害生物防治研究进展[J].生态学杂志,1992,11(1):48-53.
    [37]Andrews J H, Harris RF. The ecology and biogeography of microorganisms on plant surfaces[J]. Annual Review of Phytopathology,2000,38:145-180.
    [38]王守正,王海燕,李洪连,等.植物微生物区系和植物抗病性研究[J].河南农业科学,2001(5):20-23.
    [39]姜广正,郑是琳,李荣禧,等.中国叶围煤污菌初探[J].微生物学报,1990,30(3):201-209.
    [40]鲍晓明,郑是琳,姜广正.中国叶围煤污菌初探Ⅱ.毛白杨叶围煤污菌的研究[J].微生物学报,1992,32(1):36-41.
    [41]陈福星,王磊,莫湘涛,等.烟叶发酵微生物的探讨[J].微生物通讯,1990,(2):37.
    [42]张庆,冷怀琼,朱继熹.苹果叶面附生微生物区系及其有益菌的研究[J].四川农业大学学报,1996,14(2):157-161.
    [43]赵铭钦,邱立友,张维群,等.陈化期间烤烟叶片中生物活性变化的研究[J].华中农业大学学报,2000,19(6):537-542.
    [44]邱立友,赵铭钦,岳雪梅,等.自然发酵烤烟叶面微生物区系的分离鉴定[J].烟草科技/烟草工艺,2000,(3):14-17.
    [45]文才艺,吴元华,田秀玲.植物内生菌研究进展及其存在的问题[J].生态学杂志,2004,23(2):86-91.
    [46]卢镇岳,新芳,永君.植物内生细菌的分离、分类、定殖与应用[J].生命科学,2006,18(1):90-94.
    [47]胡萌.植物内生细菌研究进展[J].山东农业大学学报(自然科学版),2008,39(1):148-151.
    [48]胡汝晓,李珊,谭周进,等.鱼腥草内生微生物的分布特征初探[J].生物技术通报,2008,(2):155- 157.
    [49]王跃强,谭周进,周清明,等.白菜内生细菌的分布规律初探[J1.世界科技研究与发展,2006,28(1):59-61.
    [50]张敏,沈德龙,饶小莉,等.甘草内生细菌多样性研究[J].微生物学通报,.2008,35(4):524-528.
    [51]Schulz B, Rommert A K,Dammann U,et al. The endophyte-host interaction:A balanced antagonism? [J].Mycological Research,1999,103:1275-1283.
    [52]宋子红,丁立孝,马伯军,等.花生内生菌的种群及动态分析[J].植物保护学报,1999,26(4):309-313.
    [53]刘云霞,张青文,周明.水稻体内细菌的动态研究[J].应用生态学报,1999,10(6):735-738.
    [54]Pamela D Adams, Joheph W Kloepper. Effect of host genotype on indigenous bacterial endophytes of cotton (Gossypium hirsutum L.) [J].Plant and Soil,2000,240(1):181-189.
    [55]黎起秦,谢义灵,林纬,等.广西番茄内生细菌的多样性和数量动态[J].生物多样性,2006,14(6):534-540.
    [56]罗明,卢云,陈金焕,等.哈密瓜内生细菌菌群密度及分布动态[J].干旱区研究,2007,24(1):28-33.
    [57]陈百文,郑晓彦,叶乃兴,等.茶树内生细菌的分布规律初探[J].福建茶叶,2008(1):27-29.
    [58]李小容.茶树叶面真菌、内生真菌群落比较及其互作关系的初步研究[D].福建师范大学,2009.
    [59]官珊,钟国华’孔之潭,等.植物内生真菌的研究进展[J].仲恺农业技术学院学报,2005,18(1):61-66.
    [60]Ananda K, Sridhar K R. Diversity of endophytic fungi in the toots of mangrove species on the west of India [J]. Canadian Journal of Microbiology,2002,48(10):871-878.
    [61]李培,王永斌.植物内生真菌的研究与展望[J].饮料工业,2008,11(7):11-13.
    [62]Arnold A E, Maynard Z, Gilbert G S. Are tropical fungal endophytes hyperdiverse? [J]. Ecology Letters,2000,3 (4):267-274.
    [63]Cannon P F, Simmons C M. Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana [J].Mycologia,2002,94 (2):210-220.
    [64]Estela L, Duran L, Daniel Ploper, et al. The foliar fungal endophytes of Citrus limon in Argentina[J].Canadian Journal of Botany,2005,83(4):350-355.
    [65]Suryanarayanan T S, Venkatesan G, Murali T S. Endophytic fungal communities in leaves of tropical forest trees:Diversity and distribution patterns [J]. Current Science,2003,85 (4):489-493.
    [66]Rodrigues K F, Petrini O. Biodiversity of endophytic fungi in the tropic regions.IN:Hyde K D. Biodiversity of tropical Microfungi[D]. Hong Kong, HangKong University Press,1997,57-70.
    [67]Mahesh B, Tejesvi M V, Nalini MS, et al. Endophytic mycoflora of inner bark of Azadirachta indica A. Juss [J]. Current Science,2005,88 (2):218-219.
    [68]刘丽莉,吕国忠,孙晓东.林木内生真菌研究进展[J].菌物研究,2006,4(2):54-59.
    [69]郭良栋.内生真菌研究进展[J].菌物系统,2001,20(1):148-152.
    [70]Hata K,Atari R,Sone K. Isolation of endophytic fungi from leaves of Pasania edulis and their within-leaf distributions [J]. Mycoscience,2002,43(5):369-373.
    [71]Fisher P J, Petrini O, Petrini L E, et al. Fungal endophytes from the leaves and twigs of Quercus ilex. L. from England, Majorca and Switzerland [J].New phytologist,1994,127(1):133-37.
    [72]Gamboa M A, Laureano S,Bayman P.Measuring diversity of endophytic fungi in leaf fragments: Does size matter? [J]. Mycopathologia,2003,156(1):41-45.
    [73]杜少康,陈双林,林岱等.银杏叶部内生真菌多样性的研究[J].菌物学报,2009,28(4):504-511.
    [74]黄晓辉,李珊,谭周进,等.植物内生放线菌研究进展[J].生物技术通报,2008(1):42-46.
    [75]姜怡,杨颖,陈华红,等.植物内生菌资源[J].微生物学通报,2005,32(6):146-147.
    [76]田新莉,曹理想,杨国武,等.水稻内生放线菌类群及其对宿主病原菌的抗性研究[J].微生物学报,2004,44(5):641-646.
    [77]古强,刘宁,邱旦恒,等.植物叶片内生放线菌的分离、分类与拮抗活性[J].微生物学报,2006,46(5):778-782.
    [78]杨颖,陈华红,徐丽华.植物内生放线菌多样性研究[J].云南大学学报(自然科学版),2008,30(S 1):403-405.
    [79]张雪,刘应高,张翅,等.华山松叶栖内生真菌的分离鉴定及筛选[J].中国森林病虫,2009,28(1):1-4.
    [80]涂璇,黄丽丽,高小宁,等.黄瓜内生放线菌的分离、筛选及其活性菌株鉴定[J].植物病理学报,2008,38(3):244-251.
    [81]朱国胜,桂阳,黄永会,等.中国种子植物内生真菌资源及菌植协同进化[J].菌物研究,2005,3(2):6-13.
    [82]李红,周友兵,陈炳耀,等.分子生物学技术在微生物多样性研究中的应用[儿河北大学学报(自然科学版),2003,23(4):450-454.
    [83]张宝涛,王立群,伍宁丰,等PCR-DGGE技术及其在微生物生态学中的应用[J].生物信息学,2006,4(3):132-134,142.
    [84]徐玲玲,刘亚洁,李江,等.变性梯度凝胶电泳在微生物多样性分析中的应用及其技术发展[J].东华理工学院学报,2007,30(3):279-282.
    [85]李潞滨,刘敏,杨淑贞,等.毛竹根际可培养微生物种群多样性分析[J].微生物学报,2008,48(6):772-779.
    [86]马克平,刘玉明.生物群落多样性的测度方法Ia多样性的测度方法(下)[J].生物多样性,1994,2(4):231-239.
    [87]田柳.北京杨树人工林微生物区系比较分析[D].中国林业科学研究院,2009.
    [88]H. Amir, C. Isnard, D. Duhet, et al. Phyllosphere Microflora of Aloe vera from New Caledonia[J]. Asian Journal of Plant Sciences,2007,6(1):108-114.
    [89]崔永三,赵博光,刘云鹏.植物叶围细菌研究进展[J].中国森林病虫,2007,26(3):18,26-29.
    [90]卢艳花.23种竹子叶片表皮微形态的观察[J].竹类研究,1996,2(55):42-48.
    [91]毛毳.撑×绿杂交竹叶部微生物区系的研究[D].四川农业大学,2010.
    [92]马冬云,郭天财,查菲娜,等.不同种植密度对小麦根际土壤微生物数量及土壤酶活性的影响[J].华北农学报,2008,23(3):154-157.
    [93]顾爱星,范燕敏,武红旗,等.天山北坡退化草地土壤环境与微生物数量的关系[J].草业学报,2010,19(2):116-123.
    [94]张丹,徐建忠,熊东红,等.四川紫色土微生物数量与土壤肥力相关性初步研究[J].四川农业大学学报,2000,18(2):173-175.
    [95]康健,王海华,曾富华,等.不同季节龙葵叶面微生物与叶片冻害的关系[J].湖南农业大学学报(自然科学版),2001,27(3):185-187.
    [96]王志伟,王世梅,纪燕玲,等.中国禾本科植物内生真菌研究[J].草业科学,2005,22(2):60-64.
    [97]柴新义,陈双林.青檀内生真菌菌群多样性的研究[J].菌物学报,2011,30(1):18-26.
    [98]韩晓丽,康冀川.银杏内生真菌的分离鉴定及种群分布[J].贵州农业科学,2010,38(12):142-146.
    [99]Ramos-Mariano R L, Fernandes-de-Lira RV, Barbosa de Silveira, et al. Survey of endophytic and epiphytic fungi from coconut leaves in the northeast of Brasil. I. Frequency of fungal population and its host effect[J]. Agrotropica,1997,9(3):127-134.
    [100]Osono T, Bhatta B K, Takeda H. Phyllosphere fungi on living and decomposing leaves of giant dogwood [J]. Mycoscience,2004,45:35-41.
    [101]Osono T, Mori A. Distribution of phyllosphere fungi within the canopy of giant dogwood [J]. Mycoscience,2004,45:161-168.
    [102]Osono T, Mori A. Colonization of Japanese beech leaves by phyllosphere fungi [J]. Mycoscience, 2003,44:437-441.
    [103]Osono T. Endophytic and epiphytic phyllosphere fungi of red-osier dogwood (Comus stolonifera) in British Columbia [J]. Mycoscience,2007,48:47-52.
    [104]王娣,贾书华,张兆轩,等.霍山石斛内生真菌分离、培养及其促生作用的初步研究[J].菌物研究,2007,5(2):84-88.
    [105]张玉华,王立新,郑是琳,等.中国叶围煤污菌初探Ⅲ.黄瓜叶围煤污菌的研究[J].微生物学报,1994,34(6):469-474.
    [106]任长顺.木霉菌和番茄叶面主要微生物间的关系[J].植物保护科学,2004,20(5):232-233.
    [107]池玉杰,邹莉,赵科研.杨树冰核细菌溃疡病寄主树栖细菌种群相互拮抗关系的研究[J].林业科学研究,2002,15(4):499-502.
    [108]张丽娜.山茶叶部微生物区系与灰斑病发生关系的研究[D].四川农业大学,2009.
    [109]赵桂华,杨鹤同,席刚俊.我国竹材上的暗孢节菱孢[J].森林保护,2009,(10):29-30.
    [110]陈晔,樊有赋,彭琴,等.银杏内生真菌Ⅳ.银杏不同生长期内生真菌的分布[J].莱阳农学院学报(自然科学版),2006,23(4):260-262.
    [111]马冠华,肖崇刚.烟草内生细菌种群动态研究[J].微生物学杂志,2004,24(4):7-11.
    [112]王迎春,李春华,王云.生态和非生态茶园叶面附生微生物构成与发病率的相关性研究[J].福建茶叶,2005,3:4-5.
    [113]唐雪辉,毛凯,干友民,等.植物内生真菌的应用研究概况[J1.草原与草坪,2005,(5):16-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700