Cu-Zn-Al SMA和TAMZ在模拟体液中的耐蚀性及牺牲阳极法制备HAP涂层
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物医用金属材料的使用在提高人类生活质量方面发挥了巨大的作用。然而,金属材料植入人体后,在体液中不可避免地会发生腐蚀。腐蚀不仅会降低金属材料的力学和机械性能,甚至导致植入失效,而且,溶入体液的金属离子对周围组织会产生一定的副作用,严重的则引发组织病变或者癌变。因此,医用金属材料的耐蚀性研究对于保障其在人体内的安全使用具有十分重大的现实意义。
     羟基磷灰石(hydroxyapatite,HAP)以其优异的生物相容性和生物活性而引起了研究工作者的极大兴趣,其力学和机械性能不能满足承力植入材料的要求。将金属材料和HAP复合综合了各自的优点,是一类极具发展前途的生物材料。开发低温低成本HAP涂层制备方法吸引了众多研究者的兴趣。
     本文研究了Cu-Zn-Al SMA和TAMZ钛合金生物材料在模拟体液中的耐蚀行为,并采用牺牲阳极法在TAMZ合金表面制备生物活性HAP涂层,得出如下的结论:
     (1)pH 7.2的模拟宫腔液中,紫铜和Cu-Zn-AI SMA的腐蚀速率分别为66.42、7.21
     p∥d,在模拟宫腔液中紫铜和Cu-Zn-Al SMA电化学反应主要受阴极氧的去极化控制。
     (2)Cu-Zn-Al SMA在模拟宫腔液中发生小孔腐蚀,其在pH 7.2的模拟宫腔液中的临界孔蚀电位为1.70V(SCE)。小孔形貌有两种,分别为龟贝状和不规则溃疡状。Cu-Zn-AlSMA在模拟宫腔液中蚀孔发展的动力学方程为:i_0=465.68t~(-0.5)+1.5。
     (3)在分析生理盐水中Cu-Zn-Al SMA腐蚀形貌的基础上,提出了Cu-Zn-Al SMA在模拟体液中的腐蚀模型。腐蚀产物最外层为碱式铝盐和锌盐,其次为由溶入溶液中的铜离子发生阴极沉积反应而形成的由铜组成的沉积铜层。脱成分(锌和铝选择性溶解)腐蚀层为腐蚀最里层,由铜和少量的锌和铝组成。
     (4)化学镀镍磷表面改性及BTA钝化法可在金属基体表面形成性能稳定的阻碍膜层,显著提高Cu-Zn-Al SMA在模拟体液中的耐蚀性能。化学镀镍磷表面改性在Cu-Zn-AlSMA基体表面形成非晶态镀层,BTA法钝化方法在Cu-Zn-Al SMA表面形成了Cu(Ⅰ)-BTA和Cu(Ⅱ)—BTA的络合物的表面膜。
     (5)腐蚀电位测试和极化曲线测试结果表明,在模拟体液中,TAMZ合金具有最优的热力学稳定性和电化学稳定性。这是由于在TAMZ合金属β相结构,具有最佳的热力学稳定性和电化学稳定性。
The application of biomedical metals exerts huge effect on promoting living quality of human beings. However, when being implanted into body, metals would be corroded inevitably resulting from the influence of body fluid, which will decrease the mechanical properties of metals, even result in implantation failure. And the metal ions dissolved into body fluid have some side effect on the surrounding tissue, even leading to pathological changes or carcinomatous alteration. Hence, studies on corrosion resistance of biomedical metals have important practical sense in guaranteeing their safe application.Owing to good bioactivity and biocompatibility, hydroxyapatite (HAP) has attracted much interest of researchers. The materials that combine advantages of metals and HAP is a promising biomaterial. The preparation method of HAP coating at low temperature attracts many attentions of researchers.In this article, corrosion behavior of Cu-Zn-Al SMA and TAMZ Ti alloy (TAMZ) was investigated. And sacrificial anode method was applied to prepare bioactive HAP coating on TAMZ. The results were as follows:1) Corrosion rates of Cu and Cu-Zn-Al SMA in pH 7.2 simulated uterine fluid were 66.42、 7.21μ g/d, respectively. The electrochemical reaction was mainly controlled by cathodic reduction of oxygen.2) Cu-Zn-Al SMA occurred pitting corrosion in simulated uterine fluid. The critical pitting potential in pH 7.2 simulated uterine fluid was 1.70 V(SCE). And the dynamic equation of pitting development was i_0 = 465.68 t~(-0.5) + 1.5.3) The corrosion model of Cu-Zn-Al SMA in simulated body fluids was proposed based on the analysis of Cu-Zn-Al SMA corrosion morphology in saline solution. The outmost layer
    was salt of zinc and aluminum. Next was the deposition Cu layer, then was the selective dissolution layer..4) The inhibitive film was formed on the surface of Cu-Zn-Al SMA by Ni-P electroless plating and BTA passivation method, which improved electrochemical stability of Cu-Zn-Al SMA. Ni-P electroless plated method could produce amorphous layer. Complexes of Cu( I )— BTA and Cu(II)—BTA were formed on the surface of Cu-Zn-Al SMA by BTA passivation method.5) The results of corrosion potential and polarization curves showed that TAMZ possessed the best electrochemical stability. TAMZ had the P phase structure, which possessed the best thermal dynamic stability and electrochemical stability.6) HAP coating could be prepared on TAMZ by the single chamber and dual chambers method successfully. The sacrificial method had the characteristic of easy operation, economic and good repetition, with a promising future.7) The mechanism of the dual chambers method was in accordance with electro deposition method. A CaHPO_4 ? 2 H_2O layer was formed on the metallic substrate firstly, than this layer transformed into HAP through a steam treatment. The mechanism of the single chamber method was controlled by temperature. When the temperature for preparation of initial coating was 20℃, 40℃ and 60℃, the mechanism was the same as electro deposition method. At 80℃, a calcium deficient hydroxyapatite (CDHA) was formed firstly, then it transformed into HAP through a hydrothermal treatment.
引文
[1] Williams D F. The Williams Dictionary of Biomaterials. Liverpool, UK: Liverpool University niversity Press, 1999.
    [2] Hench L L, Polak J M. Third-generation biomedical materials. Science, 2002, 295: 1014-1017.
    [3] 阮建明,邹俭鹏,黄伯云.生物材料学.北京:科学出版社,2004.
    [4] 顾汉卿,许国风.生物医学材料学.天津:天津科技翻译出版公司,1993.
    [5] 俞耀庭,张兴栋.生物医用材料.天津:天津大学出版社,2000.
    [6] Thiery M. Intrauterine contraception: from silver ring to intrauterine contraceptive implant. European journal of obstetrics & gynecology and reproductive biology. 2000, 90(2): 145-152.
    [7] 孙珊,姚康德.宫内节育器的九十年.生殖与避孕.1992,12(1):7-11.
    [8] Reinprayoon D, Gilmore C, Farr G et al. Twelve-month comparative multicenter study of the TCu 380A and ML 250 intrauterine devices in Bangkok, Thailand. Contraception. 1998, 58(3): 201-206.
    [9] 郭泉清.宫内节育器的今昔.生殖与避孕.1981,1(1):3-5.
    [10] Zipper J A, Tatum H J, Pastene Let al. Metallic copper as a complementary adjunct to the "T" intrauterine device. Am J Obstat Gynec. 1969, 105: 1274-1278.
    [11] Wu S C, Hu J, Dirk W. Performance of the frameless GyneFix and the TCu380A IUDs in a 3-year multicenter, randomized, comparative trial in parous women. Contraception. 2000, 61(2): 91-98.
    [12] 马艳萍,宿凌云,章晓梅.GyneFix IN与TCu220C的临床效果观察.中国计划生育学杂志.2000. 7(7):313-314.
    [13] Moussa A. Evaluation of postabortion IUD insertion in Egyptian women[J]. Contraception, 2001, 63(6): 315-317.
    [14] Rivera R, Chen M M, McMullen S. Analysis of client characteristics that may affect early discontinuation of the TCu-380A IUD. Contraception, 1999, 60(3): 155-160.
    [15] 董光华,汪蓉芬,华晓梅等.四种新型宫内节育器使用5年临床效果评价.中国计划生育学杂志.1999,6(6):247-249.
    [16] 陈和平,刘锋,陈恩林等.含消炎痛铜宫形器的三个中心临床观察.生殖医学杂志.2000,9(2):67-70.
    [17] Louis G, Feo M D. The pH of the human uterine cavity in situ. Am J Obstet. Gynaecol. 1955, 70(1): 60-64.
    [18] Bastidas J M, Simancas J. Characterization of corrosion products on a copper-containing intrauterine device during storage at room temperature. Biomaterials. 1997, 18(3): 247-250.
    [19] 张承典,徐乃欣,杨秉炎.含铜宫内节育器中同的腐蚀.生殖与避孕.1994,14,163-168.
    [20] 徐乃欣,张承典,薛华实.关于含铜宫内节育器腐蚀的研究.腐蚀与防护.1999,20:222-225.
    [21] Kosonen A. Corrosion of copper in utero. Fertility and Sterility. 1978, 30 (1): 59-65.
    [22] Cai S Z, Xia X P, Xie C S. Research on Cu2+ transformations of Cu and its oxides particles with different sizes in the simulated uterine solution. Corrosion science. 2005, 47:1039-1047.
    [23] Bastidas J M, Cano E, Morn N. Copper corrosion - simulated uterine solutions. Contraception. 2000, 61(6):395-399.
    [24] 张承典,徐乃欣,陆菊芳等.模拟宫腔液中铜腐蚀行为的研究.中国腐蚀与防护学报.1995,15(4):261-266.
    [25] Zhu J J, Xu N X, Zhang C D. Characteristics of copper corrosion in simulated uterine fluid in the presence of protein. Advanced contraception. 1999, 15(3):179-190.
    [26] Oster G K. Chemical reactions of the copper intrauterine device. Fertility and Sterility. 1972, 23(1): 18-23.
    [27] 朱建军,徐乃欣,张承典等.血清白蛋白对模拟宫腔液中铜腐蚀的影响.中国腐蚀与防护学报.2000,20(2):81-87.
    [28] Kosonen A. in Medicated Intrauterine Devices (ed. E. S. E. Hafe and W. A. A. van Os). Amsterdam Martinus Nijhott Press, 1981.
    [29] 张承典,徐乃欣,陆菊芳等.用电化学方法研究IUD在人工配制液中同的腐蚀.生殖与避孕,1995.15(1):28-32.
    [30] Zhang C, Xu N, Yang B. The corrosion behavior of copper in simulated uterine fluid[J]. Corrosion science, 1996,38(4):635-641.
    [31] Mora N, Cano E, Mora E M et al. Influence of pH and oxygen on copper corrosion in simulated uterine fluid. Biomaterials. 2002,23(3):667-671.
    [32] Lewis K M, Archer R D, Ginsberg A P. The corrosion chemistry of copper intrauterine devices. Contraception. 1977, 15(1): 93-104.
    [33] Xue H S, XuN X, Zhang C D. Corrosion behavior of copper in a copper bearing intrauterine device in the presence of indomethacin. Contraception. 1998, 57(1):49-53.
    [34] Yang D Z. Shape memory alloy and smart hybrid composites-advanced materials for the 21st century. Materials and design. 2000, 21(6):503-505.
    [35] Flores Z H, Rios-Jara D, Belkahla K et al. The training and re-training procedures for the two way memory effect and its degradation in a Cu-Al-Be alloy. Scripta Materialia. 1996, 34(12):1899-1904.
    [36] Olander A. An electrochemical investigation of solid cadmium-gold alloys. J Amer Chem Soc. 1932, 54(10):3819-3833.
    [37] Chang L C, Read T A. Plastic deformation and diffusionless phase change in metals-the gold-cadmium beta phase. Trans AIME. 1951, 191(1):47.
    [38] Burhler W J, Gilfrich J V, Wiley R C. Effect of low-temperature phase changes on mechanical properties of alloys near composition TiNi. J Appl Phys. 1963, 34(5): 1475-1477.
    [39] 殷景华,王雅珍,鞠刚.功能材料概论.哈尔滨:哈尔滨工业大学出版社,1999.
    [40] 舟久宝熙康编.形状记忆合金.北京:机械工业出版社,1992.
    [41] 杨杰,吴月华.形状记忆合金及其应用.合肥:中国科技大学出版社,1993.
    [42] 李建忱,吕晓霞,蒋青等.形状记忆合金的回顾与前瞻.吉林工业大学学报.1995,25(2):116-124.
    [43] Ahlers M, Barcelo G, Rapacioli R. A model for the rubber-like behavior in Cu-Zn-Al martensites. Scripta Metall. 1978, 12(12):1075-1078.
    [44] Marukawa K, Tsuchiya K. Short-range ordering as the cause of the rubber-like behavior in alloy martensites. Scripta Metall. 1995, 32(1):77-82.
    [45] Ren X, Otsuka K. Origin of rubber-like behavior in metal alloys. Nature. 1997, 389:579-582.
    [46] Sure G N, Brown L C. Fatigue properties of gain refined beta-CuAlNi stain-memory alloys. Scripta Metall. 1985, 19(5): 401-404.
    [47] Mukunthan K, Brown L C. Preparation and properties of fine grain β-CuAlNi stain-memory alloys. Met Trans A. 1988, 19A:2921-2929.
    [48] Humbeeck J V. Non-medical applications of shape memory alloys. Materials science and engineering A. 1999, 273-275:134-148.
    [49] Graesser E J, Cozzarelli F A. Shape memory alloys as new materials for aseismic isolation. J Eng Mech. 1991, 117(11):2590-2608.
    [50] Otsuka K, Ren X B. Recent developments in the research of shape memory alloys. Intermetallics. 1999, 7(5):511-528.
    [51] 司乃潮.CuZnAl形状记忆合金在井下火灾预防系统上的应用初探.中国安全科学学报.1998,8(1):29-33.
    [52] 卢山.铜基形状记忆合金在空调设备中的应用.安装.1995,4(1):33-35.
    [53] 高岩.Cu-Zn-Al形状记忆合金在汗液和海水中的腐蚀特征.有色金属.1997,49(2):82-86.
    [54] 杨贤金,刘东广,孙中子.CuZnAlNi形状记忆合金的耐蚀性能.腐蚀与防护.1993,14(5):232-235.
    [55] 司乃潮.工业酸性废水对CuZnAl形状记忆合金腐蚀的影响.金属学报.1999,35(11):1160-1162.
    [56] 陈万才,尚秋立.TiNi形状记忆合金在医学上的应用.鞍山钢铁学院学报.1995,18(1),61-64.
    [57] Gil F J, Planell J A. Shape memory alloys for medical applications. Journal of Engineering in Medicine. 1998, 212(6):473-488.
    [58] Mantovani D. Shape memory alloys: properties and biomedical application. Metals and materials soc. 2000, 52(1):36-44.
    [59] Habib K. Crevice corrosion of copper alloys by optical interferometry. Optics and Lasers in Engineering. 1999, 31(1):13-20.
    [60] 郭海霞,梁成浩.Cu-Zn-Al形状记忆合金的缝隙腐蚀.稀有金属材料与工程.2001,30(1):27-30.
    [61] 梁成浩,郭海霞.Cu-Zn-Al形状记忆合金在人工体液中的耐蚀性研究.大连理工大学学报.2001,41(1):42-45.
    [62] 梁成浩,于洪梅,杨大智.Cu基形状记忆合金在生理盐水中的缝隙腐蚀.大连理工大学学报.1997,37(2):265-268.
    [63] de Damborenea J. Surface modification of metals by high power lasers. Surface and Coatings Technology, 1998, 100-101:377-382.
    [64] Dong H, Bell T. State-of-the-art overview: ion beam surface modification of polymers towards improving tribological properties. Surface and coatings technology. 1999, 111(1):29-40.
    [65] Ozdemir M, Sadikoglu H. A new and emerging technology: laser-induced surface modification of polymers. Trends in food science & technology. 1998, 9(4):159-167.
    [66] 梁成浩.化学钝化铜基形状记忆合金的腐蚀行为.表面技术.1997,26(1):15-17.
    [67] 郭宏,齐仕珍,刘洪臣.钛在可摘局部义齿修复中的应用.中华口腔医学杂志.1999,34(2):126-127.
    [68] 周宇,杨贤金,崔振铎.新型医用β-钛合金的研究现状及发展趋势.金属热处理.2005,30(1):47-50.
    [69] Satoh N, Fukuda S, Takizawa M et al. Chromium-induced carcinoma in the nasal region, A report of four cases. Rhinology. 1994, 32(1): 47-50.
    [70] 李佐臣.外科植入物用新型TAMZ合金的生物学性能(Ⅲ).钛工业进展.2001,18(6):20-22.
    [71] Long M, Rack H J. Titanium alloys in total joint replacement-a materials science perspetive. Biomaterials. 1998, 19(18): 1621-1639.
    [72] 张玉梅,郭天文,李佐臣.钛及钛合金在口腔科应用的研究方向.生物医学工程学杂志.2000,17(2):206-208.
    [73] Laing P, Fergosun A, Hodge E. Tissue reaction in rabbit muscle exposed to metallic implants. J Biomed Mater Res. 1967, 1(2): 135-149.
    [74] Buly R L. Titanium wear debris in failed cemented total hip arthroplasty. J Arthroplasty. 1992, 7 (3): 315-323.
    [75] 宁聪琴,周玉.医用钛合金的发展及研究现状.材料科学与工艺.2002,10(1):100-106.
    [76] 李佐臣,张春宝.外科植入物用新型TAMZ合金的生物学性能(Ⅱ).钛工业进展.2001,18(5):37-40.
    [77] 刘天晴,翟进,刘正铭.温度对钛合金膜电阻及其电化学腐蚀特性的影响.扬州师院学报.1996, 16 (2):32—35.
    [78] 侯东明.药物包膜支架的现状.现代诊断与治疗.1998,9(2):89-90.
    [79] 梁成浩,郭亮,隋洪艳.人工模拟体液中pH值对离子注N人体医用合金腐蚀行为的影晌.稀有金属材料与工程.2001,30(6):433-436.
    [80] 牟战旗,梁成浩.钛合金生物医学材料的耐蚀性能.腐蚀与防护,1998,19(4):151-154.
    [81] Steinemann S G. Corrosion of Titanium and Titantium Alloys for Surgical Implants. Titanium' 84 Sci and Tech. 1980: 1373.
    [82] 田中谦一.机能下表面钢研究.东北大齿志.1996,14(2):119-124.
    [83] Canay S, Hersek N, Culha A et al. Evaluation of titanium in oral conditionsand its electrochemical corrosion behaviour. J Oral Rehabil. 1998;25(10): 759-764.
    [84] Kedici S P, Abbas A, hlikicarslan A et al. Corrosion behaviour of dental metals and alloys in different media. J Oral Rehabil. 1998, 25 (10): 800-808.
    [85] 1999, 35(3): 334-336.
    [86] Griffin C D, Buchanan R A, Lemons J E. In vitro electrochemical corrosion study of coupled surgical implant materials. J Biomed Mat Res. 1983, 17(5): 489-500.
    [87] 李青,张立新,王华.医用金属材料的腐蚀测量.医疗卫生装备.2002(5):41-43.
    [88] Imam M A. ASTM STP684;1979: 128-143.
    [89] 徐增华.金属耐蚀材料.腐蚀与防护.2002,23(1):42-45.
    [90] Khan M A, Williams R L, Williams D F. The Corrosion Behavior of Ti6Al4V, Ti6Al7Nb and Ti13Nb13Zr in Protein Solutions. Biomaterials. 1999, 20(7): 631-637.
    [91] 张玉梅,郭天文,李佐臣等.牙用Ti-75合金铸造性能研究.稀有金属材料与工程.1999,28(2):125-128.
    [92] Sridhar T M, Kamachi M U, Subbaiyan M. Sintering atmosphere and temperature effects on hydroxyapatite coated type 316L stainless steel. Corrosion Science. 2003, 45(10): 2337-2359.
    [93] Carayon M T, Lacout J L. Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings. Journal of Solid State Chemistry. 2003, 172 (2): 339-350.
    [94] Aoki H, Aoki H, Kutsuno T. Study on the reaction of hydroxyapatite-sol injected into blood. Journal of Materials Science: Materials in Medicine. 2000,11(1): 67-72.
    [95] Larry L H. Bioceramics: From concept to clinic. Journal of the American Ceramic Society, 1991, 74 (7): 1487-1510.
    [96] 王迎军,刘康时.生物医学材料的研究与发展.中国陶瓷.1998,34(5):26-29.
    [97] 憨勇,徐可为.羟基磷灰石生物陶瓷涂层制备方法评述.硅酸盐通报.1997(5):47-50.
    [98] Webster T J, Ejiofor Jeremiah U. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials, 2004, 25 (19): 4731-4739.
    [99] Farrell N. Biomedical uses and applications of inorganic chemistry. An overview. Coordination Chemistry Reviews. 2002, 232 (1-2): 1-4.
    [100] Newman H M, Yang Raymond S H, Kathy R. Effects of developmental exposure to lead, magnesium and zinc mixtures on spatial learning and expression of NMDA receptor subunit mRNA in Fischer 344 rats. Toxicology Letters. 2002, 126 (2): 107-119.
    [101] Yang C Y, Wang B C, Chang E et al. The Influences of Plasma Spraying Parameters on the Characteristics of Hydroxyapatite Coatings: A Quantitative Study. Journal of Materials Science: Materials in Medicine. 1995 (6): 249-257.
    [102] Shirkhanzadeh M. calcium phosphate coating prepared by electrocrystallization from aqueous electrolysis. Journal of Materials Science: Materials in Medicine. 1991, 2(10): 1415-1417.
    [103] Chang C K, Huang J Q, Xia J Y et al. Study on crystallization kinetics of plasma sprayed hydroxyapatite coating. Ceramics international. 1999,25(5):479-483.
    [104] Piveteau L D, Girona M I, Schlapbach L et al. Thin films of calcium phosphate and titanium dioxide by a sol-gel route: a new method for coating medical implants. Journal of Materials Science: Materials in Medicine. 1999, 10 (3): 161-167.
    [105] 任强,武秀兰.钛基羟基磷灰石涂层制备技术的研究进展.中国陶瓷.2004,40(1):35-37.
    [106] 陈彩凤.金属基纳米羟基磷灰石涂层材料研究进展.陶瓷学报.2002,12(4):241-245.
    [107] Xu G F, Aksay I A, Groves J T. Continuous crystalline carbonate apatite thin films. a biomimetic approach. J the Am Chem Soc. 2001, 123(10): 2196-2203.
    [108] Pham M T, Matz W. Hydroxyapatite nucleation on Na ion implanted Ti surfaces. Journal of Materials Science Letters. 2000, 19(12): 1029-1031.
    [109] Ducheyne P, Radin S, Heughebaert M et al. Calcium phosphate ceramic coatings on porous titanium: effect of structure and composition on electrophoretic deposition, vacuum sintering and in vitro dissolution. Biomaterials. 1990, 11(3): 244-254.
    [110] Ducheyne P, Van Raemdonck W, Heaghebaet M et al. Structural analysis of hydroxyapitite coatings on titaniumun. Biomaterials. 1986, 7(2): 97-103.
    [111] Yamashita K, Nagai M, Umegaki T. Fabrication of green films of single- and multi-component ceramic composites by electrophoretic deposition technique. Journal of Material Science. 1997, 32(24): 6661-6664.
    [112] Zhitomirsky I, Gal-Or L. Electrophoretic deposition of hydroxyapatite. Journal of Materials Science: Materials in Medicine. 1997, 8(4): 213-219.
    [113] 白晓军,刘海蓉,陈宗璋.电镀条件对不锈钢基Ni-HAP复合生物材料中HAP含量的影响.材料保护.1999,32(9):5-7.
    [114] He L P, Liu H R, Chen D C et al. Fabrication of HAp/Ni biomedical coatings using an electro-codeposition technique. Surface and Coatings Technology. 2002, 160(): 109-113.
    [115] 刘海蓉,陈宗璋,白晓军.不锈钢基Ni-HAP生物材料的复合电镀研究.无机材料学报.1998,13(6):913-917.
    [116] Dasarathy H, Riley C, Cobel H D. Hydroxyapatite/metal composite coatings formed by electrocodeposition. Journal of Biomedical Material Research. 1996, 31 (1): 81-89.
    [117] 吴振军,何莉萍,陈宗璋.电化学方法制备HAP/金属生物复合材料研究进展.表面技术.2003,32(3):1-4.
    [118] Shirkhanzadeh M. Calcium phosphate coating prepared by electrocrystallization from aqueous electrolysis. Journal of Materials Science: Materials in Medicine. 1995, 6(1): 90-93.
    [119] 张建民,林昌健,冯祖德等.电化学法制备生物活性陶瓷材料研究.高等学校化学学报.1997,18(6):961-962.
    [120] 胡皓冰,林昌健,陈菲等.电化学沉积制备羟基磷灰石涂层及机理研究.电化学.2002.8(3):288-294.
    [121] 黄立业,憨勇,徐可为.电化学沉积-水热合成法制备羟基磷灰石生物涂层的工业研究.硅酸盐学报.1998,26(1):87-91.
    [122] Huang L Y, Xu K W, Lu J. A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings. Journal of Materials Science: Materials in Medicine. 2000, 11(11): 667-673.
    [123] Yen S K, Lin C M. Cathodic reactions of electrolytic hydroxyapatite coating on pure titanium. Materials chemistry and physics. 2003, 77(1): 70-76.
    [124] Zhang J M, Lin C J, Feng Z D et al. Mechanistic studies of electrodeposition for bioceramic coatings of calcium phosphate by an in situ pH-microsensor technique. Journal of Electroanalytical Chemistry. 1998, 452(2): 235-240.
    [125] 赵中伟,李洪桂,孙培梅等.电化学沉积生物陶瓷新方法.稀有金属与硬质合金.2002,30(1):6-8.
    [126] Datta S, Bhunya A, Banerjee M K. Two way shape memory loss in Cu-Zn-Al alloy. Materials Science and Engineering: A. 2001, 300(1-2):291-298.
    [127] Bigeon M J, Morin M. Fatigue of the shape memory effect in thin wires-comparison between TiNi and CuZnAl. International Journal of Fatigue. 1997, 19(1):98.
    [128] Kayali N, Ozgen S, Adiguzel O. Ageing effects on ordering degree and morphology of 18R-type martensite in shape memory CuZnAl alloys. Materials Research Bulletin. 1997, 32(5): 569-578.
    [129] Liang C H, Guo H X and Chen W. Crevice corrosion of the CuZnAl shape memory alloy. Journal of advanced materials. 2003, 35(4): 8-11.
    [130] Zipper J, Medel M, Pastene L et al. Four years experience with the Cu-7 200 device-endouterine copper in fertility control. Contraception. 1976, 13(1): 7-15.
    [131] Orlans F B. Copper IUDs: a review of the literature. Contraception. 1974, 10(6): 543-559.
    [132] Xue H S, Xu N X and Zhang C D. Corrosion behavior of copper in a copper bearing intrauterine device in the presence of indomethacin. Contraception. 1998, 57(1): 49-53.
    [133] 曹楚南.腐蚀电化学.北京:化学工业出版社.1994.
    [134] 张承典,徐乃欣,杨秉炎.含铜宫内节育器中铜的腐蚀.生殖与避孕.1994,14(3):163-168.
    [135] 王吉会,姜晓霞,李诗卓.黄铜脱锌腐蚀机理的研究进展.材料研究学报.1999,13(1):1-8.
    [136] 刘增才,林乐耘,刘少峰.实海暴露黄铜脱锌腐蚀行为及抑制脱锌机理研究.腐蚀科学与防护技术.1999,11(2):78-83.
    [137] 王吉会,姜晓霞,李诗卓.硼抑制铝黄铜脱锌机理的研究.中国腐蚀与防护学报.1996,16(2):87-93.
    [138] Rylkina M V, Kuznetsov Y I, Kalashnikova M V et al. Brass Depassivation in Neutral Chloride Media. Protection of Metals. 2002, 38(4):340-346.
    [139] Rylkina M V, Kuznetsov Y I, Kalashnikova M V et al. Halides as Activators of the Local Corrosion of Brass. Protection of Metals. 2003, 39(2):113-119.
    [140] Habib K. Localized corrosion of copper alloys by optical interferometry and other techniques. Desalination. 1999, 124(1-3):93-98.
    [141] Kaluzhina S A, Kobanenko I V. Mechanism of Local Activation of Copper in the Presence of Chloride and Sulfate Ions at Elevated Temperature and Heat Transfer. Protection of Metals. 2001, 37(3):237-243.
    [142] Habib K. Modifed electrochemical emission spectroscopy (MEES) As technique of NDT for detection localized corrosion of copper alloys in seawater. Optics and Lasers in Engineering. 2000, 33(1):1-13.
    [143] 张振邦,火时中,崔宝玉.钛孔蚀动力学研究.大连理工大学学报.1998,38(5):595-598.
    [144] 杨大智,吴明雄.Ni-Ti形状记忆合金在生物医学领域的应用.北京:冶金工业出版社,2003.
    [145] 郑玉峰,赵连城.生物医用镍钛合金.北京:科学出版社,2004.
    [146] 杨杰,吴玉华.形状记忆合金及其应用.合肥:中国科技大学出版社,1993.
    [147] Haruyuki K. Cytotoxicity of implantable metals and materials. Materia Japan. 1992;31(12): 1033-1037.
    [148] Lee J H, Park J B, Andreasen G F et al. Thermomechanical study of Ni-Ti alloys. J Biomed Mater Res. 1988,22(6):573-588.
    [149] 浦素云.金属植入材料及其腐蚀.北京:北京航空航天大学出版社,1990.
    [150] Liang C H, Mou Z Q. Electrochemical behaviour of commercially pure titanium and Co-Cr alloy in Ringer's solution. Rare metals. 2002, 21(4):266-270.
    [151] Rinju Y, Hiroshi N, KunitsuguA. Sers and impedance study of the equilibrium between complex formation and adsorption of benzotriazole and 4-hydroxybenzotriazole on a copper electrode in sulphate solutions. Electrochimica Acta. 1990, 35(6):1011-1017.
    [152] Kim J J, Kim S K B, Jong U K. Investigation of copper deposition in the presence of benzotriazole. Thin Solid Films. 2002, 415(1-2):101-107.
    [153] Chen J H, Lin Z C, Chen S et al. An XPS and BAW sensor study of the structure and real-time growth behaviour of a complex surface film on copper in sodium chloride solutions (pH=9), containing a low concentration of benzotriazole. Electrochimica Acta. 1998, 43(3-4): 265-274.
    [154] 杨武.金属的局部腐蚀.北京:化学工业出版社,1993.
    [155] Guden M, Celik E, Akar E et al. Compression testing of a sintered Ti6Al4V powder compact for biomedical applications. Materials Characterization. 2005, 54(4-5):399-408.
    [156] Guillemot F, Porte M C, Labrugere C et al. Ti~(4+) to Ti~(3+) Conversion of TiO_2 Uppermost Layer by Low-Temperature Vacuum Annealing: Interest for Titanium Biomedical Applications. Journal of Colloid and Interface Science. 2002, 255(1):75-78.
    [157] 冯颖芳,康浩方,张震.钛合金医用植入物材料的研究及应用.稀有金属.2000,25(5):349-354.
    [158] 张玉梅,王勤涛,郭天文.牙科用Ti-Zr合金的生物安全性评价.生物医学工程学杂志.2001,18(1):9-11.
    [159] 梁成浩,郭亮.人工模拟体液中离子注氮工业纯钛腐蚀行为.大连理工大学学报.2000,40(4):434-436.
    [160] Khan M A, Williams R L, Williams D F. Conjoint corrosion and wear in titanium alloys. Biomaterials. 1999, 20(8):765-772.
    [161] Okazaki Y. A new Ti-15Zr-4Nb-4Ta alloy for medical applications. Current Opinion in Solid State & Materials Science. 2001, 5(1): 45-53.
    [162] Wang K. The use of titanium for medical application in the USA. Materials science engineering. 1996, A213:134-137.
    [163] Semlitsch M, Weber H, Streicher R. Joint replacement composites made of hot-forged and surface treated Ti-6Al-7Nb alloy. Biomaterials. 1992, 13(11):781-788.
    [164] Iijima D, Yoneyama T, Doi H et al. Wear properties of Ti and Ti-6Al-7Nb castings for dental prostheses. Biomaterials. 2003, 24(8): 1519-1524.
    [165] 李佐臣,李常亮,裘松波等.外科植入TAMZ合金生物学评价.稀有金属材料与工程.1998,27(1):59-62.
    [166] 张晓凯,刘玮,陈晓峰.溶胶-凝胶生物活性玻璃在SBF中反应的形貌特征.化学物理学报.2004,17(4):495-498.
    [167] Leung V W H, Darrell B W. Artificial salivas for in vitro studies of dental materials. Journal of dentistry. 1997,25(6):475-484.
    [168] Dalby M J, Silvio L D, Davies G W et al. Surface topography and HA filler volume effect on primary human osteoblasts in vitro. Journal of Materials Science: Materials in Medicine. 2001, 12(10-12):805-810.
    [169] Manso M, Langlet M, Jimenez C et al. Hydroxyapatite coatings obtained by the thermal activation of polymeric sols. International journal of inorganic materials. 2001,3(8):1153-1155.
    [170] Matsuya S, Takagi S, Chow L C. Effect of mixing ratio and pH on the reaction between Ca_4(PO_4)_2O and CaHPO_4. Journal of Materials Science: Materials in Medicine. 2000, 11(5):305-311.
    [171] Hontsu S, Matsumoto T, Ishii J et al. Electrical properties of hyroxyapatite thin films grown by pulsed laser deposition. Thin solid films. 1997, 295(1-2):214-217.
    [172] Manuel D, Alberto A, Celso A. An Innovative Approach for Cranioplasty Using Hydroxyapatite Cement. Surgical Neurology. 1997, 48(3):294-297
    [173] Knepper M, Moricca S, Milthorpe B K. Stability of hydroxyapatite while processing short-fibre reinforced hydroxyapatite ceramics. Biomaterials. 1997, 18(23):1523-1529.
    [174] Klassen R D. Hydroxyapatite coating process. Metal finishing. 1996, 94(6):160.
    [175] Mostafa N Y. Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Materials Chemistry & Physics. 2005, 94(2-3):333-341.
    [176] Chen F, Wang Z C, Lin C J. Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Materials letters. 2002, 57(4):858-861.
    [177] Silva C C, Sombra A S B. Raman spectroscopy measurements of hydroxyapatite obtained by mechanical alloying. Journal of Physics and Chemistry of Solids. 2004, 65(5):1031-1033.
    [178] Filip P, Kneissl A C, Mazanec K. Physics of hydroxyapatite plasma coatings on TiNi shape memory materials. Materials Science and Engineering: A. 1997, 234-236: 422-425.
    [179] Carayon M T, Lacout J. Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings. Journal of Solid State Chemistry. 2003, 172 (2) : 339-350.
    [180] FazanF, Marquis P M. Dissolution behavior of plasma-sprayed hydroxyapatite coatings. Journal of Materials Science: Materials in Medicine. 2000, 11(12):787-792.
    [181] Zhang J M, Lin C J, Feng Z D. Hydroxyapatite/metal composite coating prepared by multi-step electrodeposition method. Journal of Materials Science Letters. 1998,17(13):1077-1082.
    [182] Pham M T, Matz W. Hydroxyapatite nucleation on Na ion implanted Ti surfaces. Journal of Materials Science Letters. 2000, 19(12): 1029-1031.
    [183] 中华人民共和国标准GB/T17731-2004,镁合金牺牲阳极.
    [184] Liou S C, Chen S Y, Lee H Y et al. Structural characterization of nano-sized calcium deficient apatite powders. Biomaterials. 2004, 25(2):189-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700