输电塔—线体系多维多点地震输入的试验研究与响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输电塔-线体系是重要的生命线工程,在我国经济建设中起着重要的作用。随着输电塔的高度和输电线的档距增加,近几十年地震导致输电塔-线体系破坏的现象不断出现。输电塔-线体系属于大跨度连续结构,所承受的地震地面运动是不同的,由行波效应、部分相干效应和局部场地效应等因素所致。对于输电塔-线体系大跨度空间结构,多维多点地震激励是其震害的主要原因之一,研究其在多维多点地震作用下的响应规律具有重要的现实意义。目前,关于输电塔-线体系地震响应分析中考虑多维多点地震效应的研究甚少,对于建立适合多维多点分析的计算模型也未有研究。本文对多维多点地震动输入,输电塔-线体系多维多点振动台试验,输电塔-线体系多维和多维多点地震响应分析,“折线型”输电线路多维多点地震响应以及“地形变化”输电线路多点地震响应等五个方面进行了研究,完成了以下主要研究内容:
     (1)针对输电塔-线体系这种连续结构,生成了多维多点地震动。利用迭代修正算法得到与《电力设施抗震设计规范》中地面加速度反应谱强度相当的地面加速度功率谱密度,并运用非线性最小二乘法对地面加速度功率谱密度进行拟合,得到了Clough-Penzien的修正过滤白噪声模型的参数。运用谐波叠加法生成了“直线型”多点地震动,针对“折线型”输电线路选用二维相干函数生成了“折线型”多点地震动,还给出了“地形变化”下多点地震动的生成方法;进一步推导了多维地震动分量之间的相关性,并生成了多维多点地震动时程。另外,布置了线状的强震观测系统,以期为研究这种体系提供基础性资料,并检验理论模型的正确性。
     (2)设计并制作了输电塔-线体系振动台试验模型,并进行了多维多点振动台试验研究。对输电塔-线体系试验模型非等比例问题进行了研究,完善了相似理论,并通过数值计算的方法加以验证。以500kV输电线路实际工程为背景,利用相似理论对输电塔模型和输电线模型进行了设计,制作了输电塔-线体系振动台试验模型。作者利用模拟地震振动台台阵系统对输电塔-线体系进行了多维多点振动台试验,试验结果表明:行波效应、部分相干效应和局部场地效应对体系响应有很大的影响,通过试验结果与数值分析的对比,验证了计算模型的合理性和考虑地震动多维多点的必要性,为进一步分析奠定了基础。
     (3)以辽宁盖州500kV直线塔为工程背景,建立了输电塔-线耦联体系的空间有限元模型,分别采用梁单元、杆单元和悬链线单元对输电塔、绝缘子和输电线进行了精确的模拟。对于悬挂式绝缘子,通过比较“三塔两线附加弹簧”模型和“三塔四线”模型,给出了适合多维多点分析的计算模型。选用不同场地类型的多条地震波对塔-线体系多维地震响应规律进行了总结。研究结果表明,纵向激励下输电塔的响应在多维激励中起主导作用,拟合了纵向激励下轴力最大值与三维激励下轴力最大值,并给出了拟合系数,供工程设计参考;对于输电线纵向和侧向位移仅考虑纵向或侧向激励就能得到最大值,而对于竖向最大位移需要考虑三向地震共同作用。利用生成的多维多点地震动时程,对塔-线体系多维多点地震响应规律进行了总结,研究结果表明:行波波速取值越低,塔-线体系的响应越大;相干性越弱,塔-线体系的响应越大;场地条件的差异性越大,塔-线体系的响应越大;多维多点分量间相干性对塔-线体系的响应影响很小,可以忽略。
     (4)根据辽宁某地区220kV耐张塔为工程背景,分别建立了“直线型”和“折线型”输电线路有限元模型。对“直线型”和“折线型”输电塔-线体系在多维多点地震激励下的响应进行对比研究,分析了由于折线对塔-线体系抗震性能带来的影响。选用SMART-I台阵多维多点地震动记录,分析多个折线角度的塔-线体系响应,得到不同角度下考虑多维多点地震效应对结构响应的影响不同。由直线型和折线型体系的多维多点响应结果表明:两种模型受行波效应的影响都很大,并且都随着行波波速的降低,反应更大;折线型受部分相干效应和局部场地效应的影响小于直线型的。
     (5)建立了“地形变化”输电线路有限元模型,对其进行了多点地震响应分析。分别研究了输电塔位于峰顶和谷底两种情况,研究结果表明:无论输电塔位于峰顶还是谷底受行波波速的影响很大,但两种模型受行波波速的影响程度不同,因此地震动的行波效应不可忽略;随着场地条件差异变大,结构的地震响应增大,对于输电塔位于峰顶的响应放大程度要大于输电塔位于谷底,因此应该考虑局部场地效应的影响。
Transmission tower-line system is an important lifeline project, which plays an important role in Chinese economical construction. In recent decades, the transmission tower-line systems are often destroyed by earthquakes with the increasing of tower height and line span. Transmission tower-line system is a large span continuous structure, and induces to the different excitations of different supports due to wave passage effect, incoherence effect and local site effect. As to transmission tower-line system, multi-component and multi-support seismic excitation is one of the main reasons of seismic damage, and it is significant to analyze the seismic performance under multi-component and multi-support excitations. Presently, there are less studies on seismic response analysis of transmission tower-line systme considering multi-component and multi-support seismic effects. Meanwhile the calculation model considering multi-component and multi-support analysis is not found. The five aspects of work done in this thesis are listed as follows:
     (1) Multi-component and multi-support ground motion time histories are generated in view of the continuous structure of transmission tower-line system. Based on the design response spectrum defined in the Chinese Code for Design of Seismic of Electrical Installations, the power spectral density of the acceleration at the ground level is evaluated by an iterative approach. Using the nonlinear fitting technique, the model parameters can be obtained to fit the power spectral density function of the Clough-Penzien filtered white noise model and generated power spectral density function. Linear type, fold line type and topographic variation type multi-support ground motion time histories are generated, respectively. Furthermore, the correlations between every two components of multi-component ground motions are derived. Finally, multi-component and multi-support ground motion time histories are generated. In order to verify the accuracy of the theory model, strong motion seismographs are arranged.
     (2) Transmission tower-line system shaking table model is designed and made, and multi-component and multi-support shaking table experiment is carried out. Non-proportional in shaking table modeling power transmission tower-line system is studied, and the similarity theory is perfected and verified according to numerical calculation method. Based on the practical engineering, the transmission towers model and the transmission lines model are desigened, and the experimental model is made. The multi-component and multi-support shaking table experiment of transmission tower-line system is conducted according to shaking table arry system, and the natural vibration frequency between experimental model and finite model are compared. The experimental results show that wave passage effect, incoherence effect and local site effect have significant influence on the response of the system. From the comparison between experimental results and numerical analysis, the rationality of calculation model is verified, which lays the foundation for the further analysis.
     (3) Based on the practical engineering in Gaizhou city of Liaoning province, transmission tower-line system finite element model is established. The tower, the isolator and the transmission line are simulated by the beam element, truss element and catenary cable element, respectively. According to comaparing the structural system of three towers and two-span lines additional spring model with the model of three towers and four-span lines model, a resonable computational model is performed. The response of transmission tower-line system is analyzed under multi-component excitations, and earthquake waves are slected according to different site condition type. The results show that the response of transmission tower under longitudinal excitation is the most significant in multi-component excitations. The maximum axial force under longitudinal excitation and the maximum axial force under multi-component excitations are fitted, and the fitting factors are given which can provide a reference for engineering design. The longitudinal and transverse maximum displacement responses of transmission lines can be obtained under longitudinal excitation or transverse excitation, but the vertical maximum displacement reponses need to consider multi-component earthquake effects. The responses of transmission tower-line system under multi-component and multi-support excitations are analyzed. The results show that the response of the system is large when the traveling wave velocity is small, the degree of correlation is low, the differences of site conditions are large. Moreover, the correlations between every two components of multi-component earthquake motions have insignificant effect on the response of the system.
     (4) Based on the practical engineering in Liaoning province, linear type and fold line type transmission line finite eleemnt models are established, respectively. The dynamic characteristics of linear type and fold line type transmission tower-line system under multi-component and multi-support seismic excitations are compared. The seismic performance of the system caused by the influence of fold line is discussed. Multi-component and multi-support earthquake records in SMART-I array are selected, and the seismic response of multiple fold line angles type transmission tower-line system are analyzed. The results show that the responses of system under multi-component and multi-support seismic excitations are different when the angles are different. The responses of linear type and fold line type transmission tower-line system under multi-component and multi-support seismic excitations show that the two models are influenced significantly by wave passage effect, and the responses are large when the traveling wave velocity is low, and the responses of fold line type by the coherence loss effect and the local site effect are smaller than the responses of linear type structural system.
     (5) Topographic variation type transmission line system finite element model is established, and the responses of the model under multi-support seismic excitations are analyzed. The transmission towers are assumed to locate in the crest of peak and vally floor respectively. The results show that the traveling wave velocity has a significant effect on the two models, but the degree of the effect is different. Wave passage effect of earthquake ground motion can not be neglected. The larger is the difference between the site conditions, the larger are the responses of the structure. The responses of transmission tower located in the crest of peak are larger than the response of transmission tower located in the vally fllor. The effect of the local site effect should be taken into consideration.
引文
[1]李宏男,白海峰.高压输电塔-线体系抗灾研究的现状与发展趋势[J].土木工程学报,2007,40(2):39-46.
    [2]Li Hongnan, Bai Haifeng. High-voltage transmission tower-line subjected to disaster loads [J]. Progress in Natural Science,2006,16(9):899-911.
    [3]项立人.应该加快我国特高压输电前期工作研究[J].电网技术,1999,20(2):54-58.
    [4]白海峰.输电塔线体系环境荷载致振响应研究[D].大连理工大学博士学位论文,2007.
    [5]Hall F J. Northridge earthquake of January 17,1994:reconnaissance report[J]. Earthquake Spectral,1995,11 (3):212-215.
    [6]Shinozuka M. The Hanshin -Awaji earthquake of January 17,1994:performance of lifelines[R]. State University of New York at Buffalo, NCEER report:95-0015.
    [7]童林旭.城市生命线系统的防灾减灾问题:日本阪神大地震生命线震害的启示[J].城市发展研究.2000,7(3):8-12.
    [8]谢强,李杰.电力系统自然灾害的现状与对策[J].土木工程学报,2006,15(4):126-131.
    [9]日本电器技术标准调查委员会.电气设备抗震设计指南(JEAG5003-1980)[S].技术标准出版社,1984.
    [10]张敏政.土耳其伊兹米特地震震害考察[J].工程抗震,2000,(4):34-38.
    [11]中国科学院工程力学所.海城地震震害[M].北京:地震出版社.1979.
    [12]刘恢先.唐山大地震震害[M].北京:地震出版社.1989.
    [13]卢永坤,施伟华,非明伦等.会泽5.3级地震建(构)筑物震害分析[J].地震研究,2006,29(1):92-96.
    [14]非明伦,周光全,谢英情等.盐津5.1级地震现场调查与烈度分布[J].地震研究,2006,29(4):411-417.
    [15]解丽,非明伦,卢永坤.2007年宁洱6.4级地震建(构)筑物震害特征[J].地震研究,2007,30(4):373-378.
    [16]台湾地震工程研究中心.九二一集集大地震震灾调查报告[R].2001.
    [17]张子引,赵彪,曹伟炜.四川汶川8.0级地震电网受灾情况调研与初步分析[J].电力技术经济,2008,20(4):1-4.
    [18]尹荣华,李东亮,刘戈林,翟桐.高压输电塔震害及抗震研究[J].世界地震工程,2005,21(1):51-54.
    [19]Irvine H M. Cable structures[M]. Cambridge:The MIT Press,1981.
    [20]Ozono S, Maeda J. In plane dynamic interaction between a tower and conductors at lower frequencies[J]. Engineer Structures,1992,14(4):210-216.
    [21]Suzuki T. Seismic response characteristics of transmissions towers[C]. 10thWCEE, Balkema Rotterdam,1992.
    [22]Yasui H, Marukawa H, Momomura Y et al. Analytical study on wind-induced vibration of power transmission towers[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999.83(1-3):431-441.
    [23]李宏男,陆鸣,王前信.大跨越自立式高压输电塔电缆体系的简化抗震计算[J].地震工程与工程震动,1990,10(2):73-87.
    [24]李宏男,石文龙,贾连光.导线对输电塔体系纵向振动的影响界限及简化抗震计算方法[J].振动与冲击,2004,23(2):1-7.
    [25]李宏男,石文龙,贾连光.考虑导线影响的输电塔侧向简化抗震计算方法[J].振动工程学报,1997b,16(2):233-237.
    [26]李宏男,王前信.大跨越输电塔体系的动力特性[J].土木工程学报,1997,30(5):28-36.
    [27]李宏男,肖诗云.纵向地震作用下输电塔相互作用体系分析[J].岩土工程学报,1998,20(6):102-104.
    [28]梁枢果,朱继华,王力争.大跨越输电塔-线体系动力特性分析[J].地震工程与工程振动,2003,23(6):63-69.
    [29]张朝阳,王海期,孙炳楠.多跨输电线平面振动特性的传递矩阵法分析[J].华中理工大学学报,1997,25(4):95-98.
    [30]马星.输电塔线耦合体系风振响应分析[C].第十届全国结构风工程学术会议论文集,1999.
    [31]胡松,何艳丽,王肇民.大挠度索结构的非线性有限元分析[J].工程力学,1999,17(2):36-42.
    [32]Ghobarah A., Aziz T.S., El-Attar M. Response of transmission lines to multiple support excitation[J]. Engineering Structures,1996,18(12):936-946.
    [33]Rao G V, Iyengar R N. Seismic response of a long span cable[J]. Earthquake Engineering and Structural Dynamics.1991,20(3):243-258.
    [34]李宏男.国家自然科学基金项目“大跨越高压输电塔线体系抗震研究”技术报告[R].大连理工大学,2003.
    [35]田利,李宏男.高压输电塔-线耦联体系的实用简化抗震设计方法[J].振动与冲击,2008,27(10):27-31.
    [36]李泽.大跨越输电塔线体系地震反应分析[D].同济大学博士学位论文,2002.
    [37]曹枚根.钢管组合大跨越输电塔线体系抗震减震分析研究[D].广州大学硕士学位论文,2006.
    [38]何运祥.大跨越输电塔的抗震及绝缘子断裂分析[D].浙江大学硕士学位论文,2006.
    [39]王雷.输电塔-导线体系非线性动力反应分析[D].辽宁工程技术大学硕士论文,2008.
    [40]李保华.输电塔线体系多维地震反应分析[D].哈尔滨工业大学硕士论文,2007.
    [41]Andre F, Christophe S. Seismic response of electrical substation equipment interconnected by flexible conductors[J]. Journal of structural engineering,2004. 130(5),769-778.
    [42]Kotsubo S, Takanishi T, Uno K, Sonoda T. Dynamic tests and seismic analysis of high towers of electrical transmission line[J]. Transactions of the Japan Society of Civil Engineers,1985.15:72-75.
    [43]Taskov L, Bojadziev M, Stefanovski M. Experiment studies for development and application of dampers for vibration damping at power transmission structures[C]. 8th European Conference on Earthquake Engineering,1986,8(5):25-32.
    [44]Kempner Jr L, Stroud R C. Transmission line dynamic/static structural testing[J]. Journal of the Structural Division, ASCE,1981.107(10):1895-1906.
    [45]石文龙,李宏男,贾连光.输电塔-导线耦联体系模型的振动台试验研究[J].工程力学,2006,23(5):89-93.
    [46]Anderson K, Hagedorn P. On the energy dissipation in spacer dampers in bundled conductors of overhead transmission lines[J]. Journal of Sound and Vibration,1995, 180 (4):539-566.
    [47]Battista R C, Rodrigues R S, Pfeil M S. Dynamic behavior and stability of transmission line towers under wind forces[J]. Journal of Wind Engineering and Industrial Aerodynamics,2003.91(8):1051-1067.
    [48]李黎,夏正春,张行等.FPS型MTMD在输电塔减震中的应用[J].华中科技大学学报(城市科学版),2007,24(3):4-7.
    [49]曹枚根,周福霖,徐忠根等,.大跨越输电塔线体系减震控制分析研究[J].电网技术,2007,31(14):45-51.
    [50]吴冬梅.SMA-滚动隔震支座在输电塔中的隔震研究[D].广州大学硕士学位论文,2007.
    [51]李宏男.结构多维抗震理论[M].北京:科学出版社,2006.
    [52]何晓宇.环境激励下海洋平台多维地震反应分析及控制[D].大连理工大学博士学位论文,2009.
    [53]曹资,薛素铎等.单层球面网壳在多维地震作用下的随机响应分析[J].空间结构,2002,8(2):3-11.
    [54]薛素铎,曹资等.多维地震作用下网壳结构的随机分析方法[J].空间结构,2002,8(1):44-51.
    [55]易方民,高小旺等.高层建筑钢结构在多维地震动输入作用下的反应[J].建筑结构学报,2003,24(3):33-43.
    [56]张爱林,张传成,刘学春.多维地震输入下首都机场航站楼T3反应谱分析[J].地震工程与工程振动,2008,28(1):32-37.
    [57]李宏男.地震动的转动分量及有关的结构反应分析[J].世界地震工程,1991,7(4):44-51.
    [58]Li H. N., Sun L.Y. and Wang S. Y. Improved approach for obtaining rotational components of seismic motion[J]. Nuclear Engineering and Design,2004,232(2): 131-137.
    [59]建筑抗震设计规范(GB 50011-2001).北京:中国建筑工业出版社,2001.
    [60]高小旺等.建筑抗震设计规范理解与应用[M].北京:中国建筑工业出版社,2002.
    [61]Lopez 0. A., Hernandez J. J. Response spectra for two horizontal seismic components and application of the CQC3-rule[C]. Proceedings of the 7th U.S. National Conference on Earthquake Engineering, Boston,2002.
    [62]Bozorgnia Y., Campbell K. W., Niazi M. Observed spectral characteristics of vertical ground motion recorded during worldwide earthquakes from 1957 to 1995[C]. Proceedings of the 12th World Conference on Earthquake Engineering, New Zealand, 2000.
    [63]Hernandez J. J., Lopez O. A. Evaluation of combination rules for peak response calculation in three-component seismic analysis[J]. Earthquake Engineering and Structural Dynamics,2003,32:1585-1602.
    [64]Niazi M.,Bozorgnia Y. Behavior of near-source vertical and horizontal response spectra at SMART-I array, Taiwan [J]. Earthquake Engineering and Structural Dynamics, 1992,21(1):37-50.
    [65]Ohno S., Konno T., Abe K., et al. Method of evaluating horizontal and vertical earthquake ground motions for aseismic design[C]. Proceedings of the 11th World Conference on Earthquake Engineering, Mexico,1996.
    [66]王国权.921台湾集集地震近断层地面运动特征[D].中国地震局地质研究所博士学位论文.2001.
    [67]周正华,周雍年,卢滔,杨程.竖向地震动特征研究[J].地震工程与工程振动,2003,23(3):25-29.
    [68]耿淑伟,陶夏新.地震动加速度反应谱竖向分量与水平分量的比值[J].地震工程与工程振动,2004,24(5):33-38.
    [69]贺秋梅.近场竖向地震动随机特性研究[D].北京工业大学硕士学位论文.2006.
    [70]于海英等.汶川8.0级地震强震动特征初步分析[J].震灾防御技术,2008,3(4):321-336.
    [71]李恒,李井冈,王墩,蔡永建.竖向与水平向地震动加速度峰值比统计特征分析[J].地震研究,2010,33(2):195-199.
    [72]Penzien J, Watabe M. Characteristics of 3-dimensional earthquake ground motions [J]. Earthquake Engineering and Structural Dynamics,1974,3(4):365-373.
    [73]Kubo T, Penzien J. Analysis of three-dimensional strong ground motions along principal axes, San Fernando earthquake [J]. Earthquake Engineering and Structural Dynamics,1979,7(3):265-278.
    [74]Kubo T, Penzien J. Simulation of three-dimensional strong ground motions along principal axes, San Fernando earthquake [J]. Earthquake Engineering and Structural Dynamics,1979,7(3):279-294.
    [75]Lopez O. A., Torres R. The critical angle of seismic incidence and the maximum structural response[J]. Earthquake Engineering and Structural Dynamics,1997, 26(9):881-894.
    [76]Menun C, Kiureghian A. D. A replacement for the 30%,40%, and SRSS rules for multicomponent seismic analysis[J]. Earthquake Spectra,1998,14(1):153-163.
    [77]克拉夫,彭津著,王光远译.结构动力学[M].北京:高等教育出版社,2006.
    [78]Anagonostopoulos S. A. Response spectrum techniques fot three component earthquake design[J]. Earthquake Engineering and Structural Dynamics,1981,9:459-476.
    [79]Hadjian A. H. On the correlation of the components of strong ground motion-part2[J]. Bulletin of Seismological Society of America,1981,71(4):1323-1331.
    [80]Chen C.,Lee J. P. Correlation of artificially generated three component time-histories[C]. Proceedings of the Second International Conference on Structural Mechanics in Reactor Technology, Berlin,1973.
    [81]黄玉平,刘季.双向水平地震动的空间相关性[J].哈尔滨建筑工程学院学报,1987,(3):10-14.
    [82]王君杰.多点多维地震动随机模型及结构的反应谱分析[D].国家地震局工程力学研究所博士学位论文,1992.
    [83]陈国兴,孙士军,宰金珉.多维相关地震动作用下结构反应的反应谱法[J].南京建筑工程学院学报,1999,(4):15-23.
    [84]薛素铎,曹资,王雪生,李明辉.多维地震动作用下网壳结构的随即分析方法[J].空间结构,2002,8(1):44-51.
    [85]钟菊芳,胡晓,屈铁军.同一测点不同地震动分量空间相干性分析[J].地震研究,2005,28(4):378-382.
    [86]吴健,金峰,徐艳杰.多维地震动个方向相关性对拱坝动应力的影响[J].地震工程与工程振动,2005,25(2):50-54.
    [87]Kiureghian A. D., Neuenhofer A. Response spectrum method for multi-support seismic excitations[J]. Earthquake Engineering and Structural Dynamics,1992,21(8): 713-740.
    [88]Oliveira C.S., Hao H., Penzien J. Ground motion modeling for multiple-input structural analysis[J]. Structural Safety,1991,10(1-3):79-93.
    [89]Harichandran R S. Estimating the Spatial Variation of Earthquake Ground motion from Dense Array Recordings[J]. Structural Safety,1991,10(1-3):219-233.
    [90]屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型[J].地震学报,1996,18(1):55-62.
    [91]冯启民,胡聿贤.空间相关地面运动的数学模型[J].地震工程与工程振动,1981,1(2):1-8.
    [92]Harichandran R S, Vanmarcke E H. Stochastic variation of earthquake ground motion in space and time[J]. Journal of Engineering Mechanics,1986,112(2):154-175.
    [93]Loh C. H.,Yeh Y. T. Spatial variation and stochastic modeling of seismic differential ground movement[J]. Earthquake Engineering and Structural Dynamics, 1988,16(5):583-596.
    [94]Loh C. H, Lin S. G. Directionality and simulation in spatial variation of seismic waves[J]. Engineering Structures,1990,12(2):1-27.
    [95]Nakamura H. Depth-dependent spatial variation of ground motion based on seismic array records[C]. Proceedings of the 11th World Conference on Earthquake Engineering, Mexico,1996.
    [96]Luco J. E., Wong H. L. Response of a rigid foundation to a spatially random ground motion[J]. Earthquake Engineering and Structural Dynamics,1986,14(6):891-908.
    [97]Somerville P. G., Mclaren J. P., Sen M. K., et. al. The influnce of site condition on the spatial incoherence of ground motions[J]. Structural Safety,1991,10(1-3): 1-13.
    [98]Kiureghian A. D. A coherency model for spatially varying ground motions[J]. Earthquake Engineering and Structural Dynamics,1996,25(1):99-111.
    [99]Yang Q. S., Chen Y. J. A practical coherency model for spatially varying ground motions[J]. Structural Engineering and Mechanics,2000,9(2):141-152.
    [100]Sobczyk K. Stochastic wave propagation[M]. Kluwer Acadamic Publishers, Netherlands,1991.
    [101]丁海平,刘启方,金星,袁一凡.基岩地震动的一个相干函数模型-倾滑断层情形[J].地震工程与工程振动,2003,23(2):8-11.
    [102]丁海平,刘启方,金星,袁一凡.基岩地震动的一个相干函数模型-走滑断层情形[J].地震学报,2004,26(1):62-67.
    [103]刘先明,叶继红,李爱群.竖向地震动场的空间相干函数模型[J].工程力学,2004,21(2):140-144.
    [104]Housner G. W. Characteristics of strong motion earthquakes[J]. Bulletin of the Seismological Society of American,1947,37(1):19-31.
    [105]Kanai K. An empirical formula for the spectrum of strong earthquake motions[J]. Bulletin Earthquake Research Institue,1961,39(1):85-95.
    [106]Ruiz P., Penzien J. Probabilistic study of the behavior of structures during earthquakes[J]. Earthquake Engineering Research Center, UCB, CA, Report No. EERC 69-03,1969.
    [107]胡聿贤,周锡元.弹性体系在平稳和非平稳化地面运动下的反应[R].地震工程研究所报告集,第一集,1962.
    [108]欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程振动,1991,11(3):45-53.
    [109]杜修力,陈厚群.地震动随机模拟及其参数确定方法[J].地震工程与工程振动,1994,14(4):1-5.
    [110]Hao H, Nawawi C. Modeling of earthquake ground motion spatial variation on uneven sites with varying soil conditions [C]. The 9th International symposium on Structural Engineering for Young Experts, Xiamen,2006.
    [111]周飞秦.基于相位差谱的人工地震动拟合与桥梁地震响应分析[D].中南大学硕士学位论文,1992.
    [112]赖明,叶天义,李英民.地震动的双重过滤白噪声模型[J].土木工程学报,1995,28(6):60-66.
    [113]洪峰,李玉亭.地震地面运动模型的研究[J].华北地震科学,1998,16(4):17-22.
    [114]王君杰,江近仁.关于地震动平稳自功率谱模型的注记[J].世界地震工程,1997,13(2):37-40.
    [115]Hao H. Arch responses to correlated multiple excitations[J]. Earthquake Engineering and Structural Dynamics,1993,22:389-404.
    [116]Hao H. Ground motion spatial variation effects on circular arch responses[J]. Journal of Engineering Mechanics,1994,120(11):2326-2341.
    [117]Hao H., Duan X. N. Multiple excitation effects on response of symmetric buildings[J]. Engineering Structures,1996,18(9):732-740.
    [118]Zanardo G., Hao H. Seismic response of multi-span simply supported bridges to a spatially varying earthquake ground motion[J]. Earthquake Engineering and Structural Dynamics,2002,31:1325-1345.
    [119]范立础,王君杰.陈玮.非一致地震激励下大跨度斜拉桥的响应特征[J].计算力学学报,2001,18(3):358-363.
    [120]刘洪兵.范立础.大跨桥梁考虑地形及多点激励的地震响应分析[J].同济大学学报,2003,31(6):641-646.
    [121]李忠献,林伟,丁阳.大跨度空间网格结构多维多点随机地震反应分析[J].地震工程与工程振动,2006,26(1):56-63.
    [122]梁嘉庆,叶继红.多点输入下大跨度空间网格结构的地震响应分析[J].东南大学学报,2003,33(5):625-630.
    [123]苏亮,董石麟.多点输入下门式桁架结构的抗震分析[J].浙江大学学报(工学版),2007,41(1):187-192.
    [124]杨志,韩庆华,周全智,刘建.多维多点激励下老山自行车馆屋盖结构的地震反应分析[J].天津大学学报,2007,40(11):1277-630.
    [125]杨庆山,刘文华,田玉基.国家体育场在多点激励作用下的地震反应分析[J].土木工程学报,2008,41(2):35-41.
    [126]岳茂光,李宏男,王东升等.行波激励下输电塔-导线体系纵向地震反应分析[J].中国电机工程学报,2006,26(23):145-150.
    [127]《电力设施抗震设计规范》(GB 50260-96).北京:中国计划出版社,1996.
    [128]欧进萍,牛荻涛,杜修力.设计随机地震动的模型及其参数确定[J].地震工程与工程振动,1991,11(3):45-53.
    [129]洪峰,江近仁,李玉亭.地震地面运动的功率谱模型及其参数的确定[J].地震工程与工程振动,1994,14(2):46-51.
    [130]张冶勇,孙柏涛,宋天舒.新抗震规范地震动功率谱模型参数的研究[J].世界地震工程,2000,16(3):33-38.
    [131]潘晓东,秦从律,钱磊.与建筑抗震设计规范相对应的地面地震动随机参数研究[J].地震研究,2005,28(1):82-85.
    [132]薛素铎,王雪生,曹资.基于新抗震规范的地震动随机模型参数研究[J].土木工程学报,2003,36(5):5-10.
    [133]李桂青,曹宏,李秋胜,霍达.结构动力可靠性理论及其应用[M].北京:地震出版社,1993.
    [134]Davenport A G. Note on the distribution of the largest value of a random function with application to gust loading[J]. Proceedings of the Institution of Civil Engineerings,1964,28:187-196.
    [135]Housner G W, Jennings P C. Generation of artificial earthquake[J]. Journal of Engineering Mechanic Division, ASCE,1964,90(1):113-150.
    [136]Amin M, Ang A H-S. Nonstationary stochastic model of earthquake motion[J]. Journal of Engineering Mechanic Division, ASCE,1968,94(EM2):559-583.
    [137]江近仁,洪峰.功率谱与反应谱的转换和人造地震波[J].地震工程与工程振动,1984,4(3):1-10.
    [138]孙景江,江近仁.与规范反应谱对应的金井清谱的谱参数[J].世界地震工程,1990,8(1):42-48.
    [139]王济,胡晓MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,知识产权出版社,2006.
    [140]Hao H., Oliveira C. S., Penzien J. Multiple-station ground motion processing and simulation based on SMART-Ⅰ array data[J]. Nuclear Engineering and Design,1989, 111:293-310.
    [141]屈铁军,王前信.空间相关的多点地震动合成(Ⅰ)-基本公式[J].地震工程与工程振动,1998,18(2):8-15.
    [142]杨庆山,姜海鹏.基于相位差谱的时-频非平稳人造地震动的反应谱拟合[J].地震工程与工程振动,2002,22(1):32-38.
    [143]李建波,陈建云,高冲.基于相位差谱的多点激励人工波数值生成算法研究[J].大连理工大学学报,2009,49(4):558-563.
    [144]全伟.大跨度桥梁多维多点地震反应分析研究[D].大连理工大学学位论文,2008.
    [145]李建波,陈健云,林皋.相互作用分析中地震动输入长周期校正研究[J].大连理工大学学报,2004,44(4):550-555.
    [146]Trujillo D. M. A new approach to the investigation of accelerometer data[J]. Earthquake Engineering and Structural Dynamics,1982,10:529-535.
    [147]刘洪兵,朱晞.地震中地形放大效应的观测和研究进展[J].世界地震工程,1999,15(3):20-25.
    [148]Hao H, Nawawi C. Spatial ground motion variation site amplification effects[C]. Proceedings of a conference held by the Australian earthquake engineering society, Albury,2005.
    [149]Bi K M, Hao H. Simulation of spatially varying ground motions with non-uniform intensities and frequency content[C]. Proceedings of a conference held by the Australian earthquake engineering society, Ballarat,2008.
    [150]Bi K M, Hao H, Nawawi C. Required separation distance between decks and at abutments of a bridge crossing a canyon site to avid seismic pounding [J]. Earthquake Engineering and Structural Dynamics,2009,39(3):303-323.
    [151]时振梁,陈汉尧.基岩地震反应谱随震级、距离的变化特征[J].地震工程与工程振动,1995,15(1):14-17.
    [152]周正华,周雍年,赵刚.强震近场加速度峰值比和反应谱统计分析[J].地震工程与工程振动,2002,22(3):15-18.
    [153]石树种,沈建文,楼梦麟.基岩场地强地面运动加速度反应谱统计特征[J].同济大学学报,2002,30(11):1300-1304.
    [154]梁树霞.地震小区划方法的综合比较[D].大连理工大学硕士学位论文,2009.
    [155]付正新,赵永庆,崔建文等.SMA-1强震仪原理及特殊故障维修[J].地震研究,2003,26(3):286-291.
    [156]Li H N, Shi W L, et al. Simplified models and experimental verification for coupled transmission tower-line system to seismic excitations[J]. Journal of Sound and Vibration,2005,286(3):429-671.
    [157]国家电力公司华东电力设计院.架空送电线路杆塔结构设计技术规定(DL/T5154-2002).北京:中国电力出版社,1999.
    [158]邓洪洲,陈晓明,屠海明等.江阴大跨越输电塔模型试验研究[J].建筑结构学报,2001,22(6):31-35.
    [159]李宏男,任月明,白海峰.输电塔体系风雨激励的动力分析模型[J].中国电机工程学报,2007,27(30):43-48.
    [160]沈世钊,徐崇宝,赵臣.悬索结构设计[M].北京:中国建筑工业出版社,1997.
    [161]Hengold, W. M. and Russell, J. J. Equilibrium and natural frequencies of cable structures (a nonlinear finite element approach)[J]. Computers and structures, 1976,6(4-5):267-271.
    [162]柳国环.格构式输电塔及输电塔-线体系风振响应研究[D].大连理工大学博士学位论文,2010.
    [163]刘小会,严波,林雪松等.500kV超高压输电线路风偏数值模拟研究[J].工程力学,2009,26(1):244-249.
    [164]林雪松,严波,刘仲全等.220kV高压输电线路风偏有限元模拟研究[J].应用力学学报,2009,26(1):120-124.
    [165]张琳琳.随机风场研究与高耸、高层结构抗风可靠性分析[D].同济大学博士学位论文,2006.
    [166]戴鸿哲,王伟,袁平等.输电塔塔-线体系动力特性[J].哈尔滨工业大学学报,2008,40(12):1906-1909.
    [167]姚振纲等.建筑结构试验[M].上海:同济大学出版社,1996.
    [168]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学,2005.
    [169]周颖,卢文胜,吕西林.模拟地震振动台模型实用设计方法[J].结构工程师,2003,(3):30-38.
    [170]周颖,吕西林,卢文胜.不同结构的振动台试验模型等效设计方法[J].结构工程师,2006,22(4):37-40.
    [171]张敏政.地震模拟试验中相似律应用中的若干问题[J].地震工程与工程振动,1997,17(2):52-58.
    [172]张敏政,孟庆林,刘晓明.建筑结构的地震模拟试验研究[J].工程抗震,2003,(4):31-35.
    [173]李国强,沈祖炎,丁翔等.上海浦东国际机场R2钢屋盖模型模拟三向地震振动台试验研究[J].建筑结构学报,1999,20(2):18-28.
    [174]刘劲松,裘涛,贺明卫.大跨度刚桁架转换结构振动台试验研究[J].世界地震工程,2006,22(4):145-149.
    [175]陈以一,张大照,薛伟辰等.环向空问预应力结构模型振动台试验研究[J].地震工程与工程振动,2006,26(6):158-263.
    [176]柳国环,李宏男,林海.结构地震响应计算模型的比较与分析[J].工程力学,2009,26(2):10-15.
    [177]柳国环,李宏男,国巍.求解结构地震响应位移输入模型存在的问题及其AMCE实效对策[J].计算力学学报,2009,26(6):862-869.
    [178]柳国环,李宏男,国巍,田利.求解结构地震响应位移输入模型中存在问题的一种新解决方法[J].工程力学,2010,27(9):55-62.
    [179]王智峰.局部场地地震响应的有限元模拟分析[D].北京交通大学硕士学位论文,2004.
    [180]刘琳.考虑地形效应下桥梁随机振动分析[D].北京工业大学硕士学位论文,2005.
    [181]王蕾,赵成刚,王智峰.考虑地形影响和多点激励的大跨高墩桥地震响应分析[J].土木工程学报,2006,39(1):50-59.
    [182]刘必灯.考虑地形影响的多点输入下大跨桥梁地震反应及碰撞反应分析[D].中国地震局工程力学研究所硕士学位论文,2008.
    [183]陈来云.浦东机场二期航站楼不规则场地的地震动分析[D].同济大学硕士学位论文,2008.
    [184]肖文海.大型河谷场地地震动特征研究[D].中国地震局工程力学研究所硕士学位论文,2009.
    [185]王光远,程耿东,邵卓民等.抗震结构的最优设防烈度与可靠度[M].科学出版社,1999.
    [186]刘曾武等.地震波在工程中的应用[M].地震出版社,1982.
    [187]刘洪兵,朱晞.地震中地形放大效应的观测和研究进展[J].世界地震工程,1999,15(3):20-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700