单晶石英表面低损伤的摩擦诱导纳米加工研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米科技与生物科技及信息科技并列为21世纪最具影响的三大领域,深刻地改变着人类社会进程。而纳米制造技术是实现纳米产品生产的先决条件,是纳米科技走向应用的关键和基础。随着器件微型化发展至纳米尺度,传统的纳米加工技术遇到了前所未有的挑战,比如分辨率难以提升、工艺复杂、加工损伤高等。因此,开发新的纳米加工技术不仅能满足纳米科技发展的需求,而且有望为我国在纳米时代的国际竞争中实现跨越式发展提供支撑。
     本论文主要研究石英表面低损伤的摩擦诱导纳米加工方法。首先,石英屈服前摩擦表面可直接形成纳米凸起结构,据此提出石英表面摩擦诱导直接加工方法。凸结构机械性能与基体接近,但化学稳定性降低。为进一步减少加工损伤,根据摩擦区域石英材料可被KOH溶液选择性去除的现象,提出了石英表面摩擦诱导选择性刻蚀加工方法。研究表明摩擦化学作用可显著降低摩擦诱导加工损伤,改善所加工结构的性能。文中阐明了扫描参数(载荷、扫描次数、扫描速度)和刻蚀温度对所提摩擦诱导纳米加工的影响规律。通过透射电镜观测、X射线光电子能谱分析等手段,揭示了摩擦诱导纳米加工机理。为验证所提出的摩擦诱导选择性刻蚀机理和化学作用对加工损伤的影响,分别在玻璃表面和砷化镓表面进行了摩擦诱导纳米加工研究。主要研究内容和创新点如下:
     (1)揭示出石英表面摩擦诱导纳米凸结构的形成机理,提出了摩擦诱导直接加工方法。
     利用金刚石探针在单晶石英表面摩擦可直接加工纳米凸结构,凸结构形成的有效赫兹接触压力范围为0.4Py到Py(Py是石英屈服时对应的赫兹接触压力)。所加工纳米结构高度随扫描次数和扫描载荷的增加而增加并逐步平稳。X射线光电子能谱和透射电镜观测结果表明摩擦导致的晶格变形主导了凸起结构的形成。通过控制探针扫描轨迹,实现了纳米点、线、面等各种纳米结构的可控加工。尽管加工区域弹性模量比单晶基体下降了1.1-11.6%,但仍能承受微机电系统典型的接触压力。由于加工区域含有晶格缺陷,凸结构可被KOH溶液选择性去除。
     (2)阐明了石英摩擦诱导区域材料刻蚀去除的规律和机理,建立了摩擦诱导选择性刻蚀加工方法。
     结合无磨损扫描和KOH溶液刻蚀,提出摩擦诱导选择性刻蚀加工。详细研究了其加工规律,发现刻蚀厚度随扫描载荷和扫描次数的增加而增加,随扫描速度的增加而减小。提高刻蚀温度有利于提高加工效率,但不影响最终加工深度。透射电镜观测表明晶格畸变层不能够被KOH溶液刻蚀,结合非晶石英的对比刻蚀结果,选择性刻蚀加工机理可归因于摩擦诱导非晶层在KOH溶液中的快速化学反应。刻蚀动力学分析发现载荷不改变刻蚀反应活化能,其反应机制和刻蚀剂在扫描区域的优先扩散有关。通过优化扫描参数和刻蚀温度,实现了线阵列、斜面、多级台阶等图案的低损伤、高效率可控加工。所加工结构具有高度的化学稳定性,刻蚀后弹性模量比单晶石英基体下降了仅0.2-2.6%,该方法更适合于石英表面低损伤纳米加工。
     (3)验证了摩擦诱导选择性刻蚀机理和摩擦化学作用对低损伤加工的意义,分别提出了玻璃和砷化镓表面摩擦诱导纳米加工方法。
     X射线光电子能谱分析表明玻璃扫描区域被HF溶液刻蚀后形成难溶物AlF3,该结果不仅验证了摩擦诱导选择性刻蚀加工机理和反应机制,而且为玻璃表面摩擦诱导纳米加工方法提供理论依据。基于化学作用对低损伤加工的影响,利用摩擦化学在砷化镓表面实现了低损伤摩擦诱导纳米加工,加工所需接触压力仅为砷化镓屈服时接触压力的11%。高分辨透射电镜观测显示砷化镓加工区域下方无位错存在。
     综上所述,本文基于摩擦引起的石英表面结构变化及化学性质变化,提出了摩擦诱导直接加工和摩擦诱导选择性刻蚀加工方法。探索了玻璃、砷化镓表面摩擦诱导纳米加工,加深了对摩擦化学作用降低加工损伤的认识。本论文的研究结果不仅有助于丰富纳米摩擦学的基础理论,而且有望推动低损伤摩擦诱导加工在石英等材料纳米加工领域的应用。
Nanotechnology is one of the most important research topics in the21st century, which has a profound influence on the development of human society. Nanofabrication method is the foundation of the transition from nanoscience and nanotechnology to application. As the device dimension down to nanoscale, the traditional nanofabrication technologies have met serious technical challenges, such as poor resolution, complex processes and fabrication destruction etc. Researches on nanofabrication methods can not only meet the requirements of the nanotechnology, but also facilitate the great-leap-forward development of China in the violent international competition.
     In this doctoral thesis, low-destructive friction-induced nanofabrication methods on quartz are proposed. Firstly, hillock nano structures can be directly fabricated by scratching a diamond tip at the target area before the yield of quartz. The mechanical performance of the hillock is similar to the quartz substrate, but the chemical stability is weaker. To further reduce the fabrication destruction, friction-induced selective etching is developed by combination of the wearless scanning the quartz surface and selective etching the sample in KOH. The effects of the scan parameters and etching temperature on the fabrication are studied thoroughly. The fabrication mechanism is analyzed by transmission electron microscope observation, X-ray photoelectron spectroscope analysis and etc. Results show that the chemical etching can improve the fabrication quality. Finally, to discuss the mechanism of friction-induced selective etching and the role of chemistry in the low-destructive fabrication, the friction-induced nanofabrication is also practiced on glass and GaAs. The main contents of thesis are shown in follows.
     (1) Based on the clarification of the formation mechanism of friction-induced hillocks on quartz surface, the direct friction-induced nanofabrication on quartz is proposed.
     The protrusive nanostructures can be produced by sliding a diamond tip on quartz when the contact pressure is ranged from0.4Py to Py (Py is the critical yield pressure of quartz). The height of these nanostructures increases with the increase of the number of scratching cycles or the normal load. X-ray photoelectron spectroscopy and transmission electron microscope observation indicates that the mechanical interaction playes a dominating role during the fabrication. Various nanostructures such as nanodots, nanolines, surface mesas and nanowords can be fabricated by programming the tip traces according to the demanded patterns. Although the protrusive nanostructures exhibit a slightly lower elastic modulus than quartz substrate (decreased by1.1-11.6%), they can resist the typical contact pressure in MEMS. Such nanostructures can be selectively dissolved in20%KOH solution, which can provide an erasing technique for this method.
     (2) The fabrication rules and mechanism of the selective etching on scanned quartz surface are revealed, and the friction-induced selective etching on quartz surface is proposed.
     Nanofabrication on quartz can also be achieved by wearless scanning on a target area and post-etching in a KOH solution. The etching thickness on the wearless scan area increases with the increase of the scan load and scan cycles but decreases with the scan speed. Higher etching temperature below318K can improve the fabrication efficiency and does not change the final fabrication depth. Transmission electron microscope observation shows that the distorted lattice can not be etched by KOH. Combinning with the contradistinctive etching experiments, the fabrication mechanism could be summarized as the selective etching of friction-induced amorphous layer on fabrication surface. Chemical kinetics analysis shows that the dependence of the etching rate on the contact pressure should be mainly attributed to the variation of frequency factor and the concentration of reactants, rather than the decrease of the activation energy. The reaction pathway may be related to the preferential diffusion of solutes into the fabrication area. By optimizing the scan parameters and etching temperature, various nanostructures including line arrays, slops, hierarchical stages can be fabricated on quartz surface in a low-destruction and high efficiency way. These nanostructures have a stronger chemical stability and a better mechanical performance (the elastic modulus is only0.2-2.6%lower than the substrate). This means that the selective etching can reduce the fabrication destruction in higher level.
     (3) To further understand the friction-induced selective etching and the role of chemistry in the low-destructive fabrication, friction-induced nanofabrication is practiced on glass and GaAs.
     X-ray photoelectron spectroscopy shows that the fluorine species can preferentially diffuse into the scan area on glass and form AIF3. Such insoluble AIF3acts as a mask layer to prevent the etching of glass and then the protrusive nanostructures are formed on the fabrication area after HF etching. Therefore, the friction-induced selective etching is further verified and a maskless nanofabrication on glass is proposed. Another low-destructive method is attempted for fabricating "defect free" nanofabrication on GaAs based on the tribochemical reaction. Tribochemical reaction facilitates the removal of GaAs material when the contact pressure was only11%of the critical yield pressure of GaAs. Transmission electron microscope observation shows that there is no lattice damage beneath the fabrication area.
     In brief, based on the friction-induced structural and chemical modification, low-destructive nanofabrication methods are developed on quartz. The friction-induced nanofabrication of glass and GaAs deepens the understanding of the involved mechanism. The results in this thesis can not only enrich the nanotribology theory, but also encourage the application of the low-destructive friction-induced nanofabrication on quartz and other materials.
引文
[1]R. P. Feynman. There's plenty of room at the bottom [J]. Engineering and Science,1960, 23 (5):22-36.
    [2]N. Taniguchi. On the Basic Concept of "Nano-Technology'[J]. Bulletin of the Japan Society of Precision Engineering,1974:18-23.
    [3]G. Binnig, H. Rohrer, C. Gerber, E. Weibel. Surface studies by scanning tunneling microscopy [J]. Physical Review Letters,1982,49 (1):57-61.
    [4]D. M. Eigler, E. K. Schweizer. Positioning single atoms with a scanning tunneling microscope [J]. Nature,1990,344:524-526.
    [5]白春礼.纳米科技及其发展前景[J].科学通报,2001,2.
    [6]M. C. Roco. National nanotechnology initiative-past, present, future [J]. Handbook on nanoscience, engineering and technology,2007,2:3.1-3.26.
    [7]科技部.纳米研究国家重大科学研究计划“十二五”专项规划[S].2012.
    [8]A. Nozik, M. Beard, J. Luther, M. Law, R. Ellingson, J. Johnson. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells [J]. Chemical Reviews,2010,110 (11):6873.
    [9]E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, M. A. Reed. Label-free immunodetection with CMOS-compatible semiconducting nanowires [J]. Nature,2007,445 (7127):519-522.
    [10]A. J. Roberts, N. Numata, M. L. Walker, Y. S. Kato, B. Malkova, T. Kon, R. Ohkura, F. Arisaka, P. J. Knight, K. Sutoh. AAA+ Ring and linker swing mechanism in the dynein motor [J]. Cell,2009,136 (3):485-495.
    [11]J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, M. Zukowski. Multiphoton entanglement and interferometry [J]. Reviews of Modern Physics,2012,84 (2):777.
    [12]Y. Wang, X. Rong, P. Feng, W. Xu, B. Chong, J. Su, J. Gong, J. Du. Preservation of bipartite pseudoentanglement in solids using dynamical decoupling [J]. Physical Review Letters,2011,106 (4):040501.
    [13]L. S. Fan, Y. C. Tai, R. S. Muller. Integrated movable micromechanical structures for sensors and actuators [J]. Electron Devices, IEEE Transactions on,1988,35 (6): 724-730.
    [14]Y. Developpement. MEMS Markets & Applications [R].2012.
    [15]P. Kao, S. Tadigadapa. Micromachined quartz resonator based infrared detector array [J]. Sensors and Actuators A:Physical,2009,149 (2):189-192.
    [16]L. Xie, X. Wu, S. Li, H. Wang, J. Su, P. Dong. A z-axis quartz cross-fork micromachined gyroscope based on shear stress detection [J]. Sensors,2010,10 (3): 1573-1588.
    [17]Y. Developpement. Status of the MEMS Industry 2013 [R].2013.
    [18]H. G. Craighead. Nanoelectromechanical systems [J]. Science,2000,290 (5496): 1532-1535.
    [19]S. Evoy, D. W. Carr, L. Sekaric, A. Olkhovets, J. M. Parpia, H. G. Craighead. Nanofabrication and electrostatic operation of single-crystal silicon paddle oscillators [J]. Journal of Applied Physics,1999,86 (11):6072-6077.
    [20]X. M. H. Huang, C. A. Zorman, M. Mehregany, M. L. Roukes. Nanoelectromechanical systems:Nanodevice motion at microwave frequencies [J]. Nature,2003,421 (6922): 496-496.
    [21]J. E. Jang, S. N. Cha, Y. Choi, T. P. Butler, D. J. Kang, D. G. Hasko, J. E. Jung, Y. W. Jin, J. M. Kim, G. A. J. Amaratunga. Nanoelectromechanical switch with low voltage drive [J]. Applied Physics Letters,2008,93(11):113105-113103.
    [22]Q. Wang, Y. Chen, S. Long, J. Niu, C. Wang, R. Jia, B. Chen, M. Liu, T. Ye. Fabrication and characterization of single electron transistor on SOI [J]. Microelectronic Engineering, 2007,84(5):1647-1651.
    [23]M. Fuechsle, J. A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warschkow, L. C. Hollenberg, G. Klimeck, M. Y. Simmons. A single-atom transistor [J]. Nature Nanotechnology,2012,7 (4):242-246.
    [24]R. Maboudian, W. R. Ashurst, C. Carraro. Self-assembled monolayers as anti-stiction coatings for MEMS:characteristics and recent developments [J]. Sensors and Actuators A:Physical,2000,82 (1):219-223.
    [25]C. Vass, K. Osvay, M. Csete, B. Hopp. Fabrication of 550 nm gratings in fused silica by laser induced backside wet etching technique [J]. Applied Surface Science,2007,253 (19):8059-8063.
    [26]B. Bhushan, Y. Chae Jung. Wetting study of patterned surfaces for superhydrophobicity [J]. Ultramicroscopy,2007,107 (10-11):1033-1041.
    [27]Z. Han, L. Ren, Z. Liu. Investigation on anti-wear ability of bionic non-smooth surfaces made by laser texturing [J]. Mocaxue Xuebao(Tribology)(China),2004,24 (4):289-293.
    [28]L. J. Guo. Nanoimprint lithography:methods and material requirements [J]. Advanced Materials,2007,19 (4):495-513.
    [29]国家自然科学基金委员会工程与材料科学部.学科发展战略研究报告(2006-2010):机械与制造科学[M].科学出版社,北京,2006.
    [30]王国彪.纳米制造前沿综述[M].科学出版社,北京,2009.
    [31]吴琪乐.中国芯片技术未来发展趋势[J].半导体信息,2012,5:35-36.
    [32]D. Mijatovic, J. Eijkel, A. Van Den Berg. Technologies for nanofluidic systems: top-down vs. bottom-up-a review [J]. Lab on a Chip,2005,5 (5):492-500.
    [33]J. C. Love, G. M. Whitesides. The art of building small [J]. Scientific American,2001, 285 (3):38.
    [34]H. Lan, Y. Ding. Ordering, positioning and uniformity of quantum dot arrays [J]. Nano Today,2012,7 (2):94-123.
    [35]H. Z. Song, T. Usuki, T. Ohshima, Y. Sakuma, M. Kawabe, Y. Okada, K. Takemoto, T. Miyazawa, S. Hirose, Y. Nakata, M. Takatsu, N. Yokoyama. Site-controlled quantum dots fabricated using an atomic-force microscope assisted technique [J]. Nanoscale Research Letters,2006,1 (2):160-166.
    [36]B. Yu, L. Qian, J. Yu, Z. Zhou. Effects of tail group and chain length on the tribological behaviors of self-assembled dual-layer films in atmosphere and in vacuum [J]. Tribology Letters,2009,34 (1):1-10.
    [37]R. D. Piner, J. Zhu, F. Xu, S. Hong, C. A. Mirkin. "Dip-pen" nanolithography [J]. Science,1999,283 (5402):661-663.
    [38]Y. Li, B. W. Maynor, J. Liu. Electrochemical AFM "dip-pen" nanolithography [J]. Journal of the American Chemical Society,2001,123 (9):2105-2106.
    [39]S. W. Chung, D. S. Ginger, M. W. Morales, Z. Zhang, V. Chandrasekhar, M. A. Ratner, C. A. Mirkin. Top-Down meets Bottom-Up:Dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits [J]. Small,2005,1 (1):64-69.
    [40]K. Salaita, Y. Wang, J. Fragala, R. A. Vega, C. Liu, C. A. Mirkin. Massively parallel dip-pen nanolithography with 55 000-pen two-dimensional arrays [J]. Angewandte Chemie,2006,118 (43):7378-7381.
    [41]Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez, S. Morita. Complex patterning by vertical interchange atom manipulation using atomic force microscopy [J]. Science,2008,322 (5900):413-417.
    [42]M. F. Crommie, C. P. Lutz, D. M. Eigler. Confinement of electrons to quantum corrals on a metal surface [J]. Science,1993,262 (5131):218-220.
    [43]P. Liljeroth, I. Swart, S. Paavilainen, J. Repp, G. Meyer. Single-molecule synthesis and characterization of Metal-Ligand complexes by low-temperature STM [J]. Nano Letters, 2010,10 (7):2475-2479.
    [44]C. Tourney.35 atoms that changed the nanoworld [J]. Nature Nanotechnology,2010,5 (4):239-241.
    [45]M. J. Jackson. Microfabrication and nanomanufacturing [M]. CRC PressI Llc,2006.
    [46]L. W. Liebmann. Layout impact of resolution enhancement techniques:impediment or opportunity? [C]. Proceedings of the 2003 international symposium on Physical design, 2003:110-117.
    [47]B. W. Smith, Y. Fan, M. Slocum, L. Zavyalova.25 nm immersion lithography at 193 nm wavelength [C]. Proc. SPIE 5754 Optical Microlithography XVIII,2005:141-147.
    [48]T. Hiraka, S. Yusa, A. Fujii, S. Sasaki, K. Itoh, N. Toyama, M. Kurihara, H. Mohri, N. Hayashi. UV-NIL templates for the 22nm node and beyond [C].27th Annual BACUS Symposium on Photomask Technology,2007:67305P.
    [49]C. Wagner, N. Harned. EUV lithography:Lithography gets extreme [J]. Nature Photonics,2010,4(1):24-26.
    [50]J. Warlaumont. Pushing the limits [J]. Nature Photonics,2010,4 (1):30-30.
    [51]T. Robinson, D. Yi, D. Brinkley, K. Roessler, R. White, R. Bozak, M. Archuletta, B. Arruza. Nanomachining repair for the latest reticle enhancement technologies [C]. SPIE Photomask Technology,2011:81662Y.
    [52]S. Y. Chou, P. R. Krauss, P. J. Renstrom. Imprint lithography with 25-nanometer resolution [J]. Science,1996,272 (5258):85-87.
    [53]M. Colburn, S. C. Johnson, M. D. Stewart, S. Damle, T. C. Bailey, B. Choi, M. Wedlake, T. B. Michaelson, S. Sreenivasan, J. G. Ekerdt. Step and flash imprint lithography:a new approach to high-resolution patterning [C]. Microlithography'99,1999:379-389.
    [54]L. J. Guo. Recent progress in nanoimprint technology and its applications [J]. Journal of Physics D:Applied Physics,2004,37 (11):R123.
    [55]H. Lan, Y. Ding, H. Liu, B. Lu. Review of template fabrication for nanoimprint lithography [J]. Journal of Mechanical Engineering,2009,45 (6):1-13.
    [56]F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers. Polymer imprint lithography with molecular-scale resolution [J]. Nano Letters,2004,4 (12):2467-2471.
    [57]C. L. Soles. Metrology and materials for nanoimprint technologies:Needs and Prospects [C]. Synergies in NanoScaleManufacturing & Research Workshop,2010.
    [58]J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, J. A. Golovchenko. Ion-beam sculpting at nanometre length scales [J]. Nature,2001,412 (6843):166-169.
    [59]B. Ward, J. A. Notte, N. Economou. Helium ion microscope:A new tool for nanoscale microscopy and metrology [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures,2006,24 (6):2871-2874.
    [60]Ⅰ. Utke, P. Hoffmann, J. Melngailis. Gas-assisted focused electron beam and ion beam processing and fabrication [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures,2008,26 (4):1197-1276.
    [61]Y. Jiao, K. M. Wang, X. L. Wang, L. Wang, C. L. Jia, Y. Jiang, J. H. Zhang, F. Lu. Ion beam etched diffraction gratings in fused quartz and lithium niobate [J]. Surface and Coatings Technology,2007,201 (9):5046-5049.
    [62]F. Aramaki, T. Ogawa, O. Matsuda, T. Kozakai, Y. Sugiyama, H. Oba, A. Yasaka, T. Amano, H. Shigemura, O. Suga. Development of new FIB technology for EUVL mask repair [C]. SPIE Advanced Lithography, California,2011:79691C.
    [63]N. Khalfaoui, C. Rotaru, S. Bouffard, E. Jacquet, H. Lebius, M. Toulemonde. Study of swift heavy ion tracks on crystalline quartz surfaces [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2003,209:165-169.
    [64]K. Zheng, C. Wang, Y. Q. Cheng, Y. Yue, X. Han, Z. Zhang, Z. Shan, S. X. Mao, M. Ye, Y. Yin, E. Ma. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica [J]. Nat Commun,2010,1:24.
    [65]Y. Fu, N. K. A. Bryan. Investigation of physical properties of quartz after focused ion beam bombardment [J]. Applied Physics B,2005,80 (4-5):581-585.
    [66]P. Prewett, A. Eastwood, G. Turner, J. Watson. Gallium staining in FIB repair of photomasks [J]. Microelectronic Engineering,1993,21 (1):191-196.
    [67]G. Binnig, C. F. Quate, C. Gerber. Atomic force microscope [J]. Physical Review Letters, 1986,56 (9):930-933.
    [68]F. J. Giessibl, C. F. Quate. Exploring the nanoworld with atomic force microscopy [J]. Physics Today,2006,59 (12):44-50.
    [69]D. Wouters, U. S. Schubert. Nanolithography and nanochemistry:Probe-related patterning techniques and chemical modification for nanometer-sized devices [J]. Angewandte Chemie-International Edition,2004,43 (19):2480-2495.
    [70]Y. Kim, C. M. Lieber. Machining oxide thin films with an atomic force microscope: pattern and object formation on the nanometer scale [J]. Science,1992,257 (5068): 375-377.
    [71]R. Komanduri, S. Varghese, N. Chandrasekaran. On the mechanism of material removal at the nanoscale by cutting [J]. Wear,2010,269 (3-4):224-228.
    [72]Y. Yan, Z. Hu, X. Zhao, T. Sun, S. Dong, X. Li. Top-Down Nanomechanical Machining of Three-Dimensional Nanostructures by Atomic Force Microscopy [J]. Small,2010,6 (6):724-728.
    [73]D. Wang, S. Kim, W. D. I. Underwood, A. J. Giordano, C. L. Henderson, Z. Dai, W. P. King, S. R. Marder, E. Riedo. Direct writing and characterization of poly(p-phenylene vinylene) nanostructures [J]. Applied Physics Letters,2009,95 (23):233108-233103.
    [74]T. H. Fang, W. J. Chang. Effects of AFM-based nanomachining process on aluminum surface [J]. Journal of Physics and chemistry of Solids,2003,64 (6):913-918.
    [75]K. Bourne, S. G. Kapoor, R. E. DeVor. Study of a high performance AFM probe-based microscribing process [J]. Journal of Manufacturing Science and Engineering,2010,132 (3):030906-030910.
    [76]M. Yoshino, Y. Ogawa, S. Aravindan. Machining of hard-brittle materials by a single point tool under external hydrostatic pressure [J]. Journal of Manufacturing Science and Engineering,2005,127 (4):837-845.
    [77]N. Belkhir, D. Bouzid, V. Herold. Surface behavior during abrasive grain action in the glass lapping process [J]. Applied Surface Science,2009,255 (18):7951-7958.
    [78]J. Dagata, J. Schneir, H. Harary, C. Evans, M. Postek, J. Bennett. Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air [J]. Applied Physics Letters,1990,56 (20):2001-2003.
    [79]J. J. Ahn, K. S. Moon, S. M. Koo. Nano-structure fabrication of GaAs using AFM tip-induced local oxidation method:different doping types and plane orientations [J]. Nanoscale Research Letters,2011,6.
    [80]J. S. Kim, M. Kawabe, N. Koguchi. Ordering of high-quality InAs quantum dots on defect-free nanoholes [J]. Applied Physics Letters,2006,88 (7):072107.
    [81]S. Miyake, J. Kim. Nanoprocessing of silicon by mechanochemical reaction using atomic force microscopy and additional potassium hydroxide solution etching [J]. Nanotechnology,2005,16 (1):149-157.
    [82]P. Avouris, T. Hertel, R. Martel. Atomic force microscope tip-induced local oxidation of silicon:kinetics, mechanism, and nano fabrication [J]. Applied Physics Letters,1997,71 (2):285-287.
    [83]J. Perumal, T. H. Yoon, H. S. Jang, J. J. Lee, D. P. Kim. Adhesion force measurement between the stamp and the resin in ultraviolet nanoimprint lithography-an investigative approach [J]. Nanotechnology,2009,20 (5):055704.
    [84]S. Tadigadapa, K. Mateti. Piezoelectric MEMS sensors:state-of-the-art and perspectives [J]. Measurement Science and Technology,2009,20 (9):092001.
    [85]A. K. Hafeli, E. Rephaeli, S. Fan, D. G. Cahill, T. E. Tiwald. Temperature dependence of surface phonon polaritons from a quartz grating [J]. Journal of Applied Physics,2011, 110 (4):043517-043517-043515.
    [86]E. Seydel, H. Berger, G. Hildebrandt, H. Bradaczek. Lattice damages in quartz crystal blanks influence on the resonator properties and on the X-ray measurement [C]. Frequency Control Symposium and Exposition,2004. Proceedings of the 2004 IEEE International, Montreal,2004:109-115.
    [87]M. S. Kim, J. H. Choi, J. H. Kim, Y. K. Park. Accurate determination of spring constant of atomic force microscope cantilevers and comparison with other methods [J]. Measurement,2010,43 (4):520-526.
    [88]E. Tocha, H. Schonherr, G. J. Vancso. Quantitative nanotribology by AFM:A novel universal calibration platform [J]. Langmuir,2006,22 (5):2340-2350.
    [89]Z. Wu, C. Song, J. Guo, B. Yu, L. Qian. A multi-probe micro-fabrication apparatus based on the friction-induced fabrication method [J]. Frontiers of Mechanical Engineering,2013, Accepted.
    [90]B. Yu, X. Li, H. Dong, L. Qian. Mechanical performance of friction-induced protrusive nanostructures on monocrystalline silicon and quartz [J]. Micro & Nano Letters,2012,7 (12):1270-1273.
    [91]W. C. Oliver, G. M. Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research,1992,7 (06):1564-1583.
    [92]S. Pathak, D. Stojakovic, S. R. Kalidindi. Measurement of the local mechanical properties in polycrystalline samples using spherical nanoindentation and orientation imaging microscopy [J]. Acta Materialia,2009,57 (10):3020-3028.
    [93]K. L. Johnson. Contact mechanics [M]. Cambridge university press,1987.
    [94]H. Gercek. Poisson's ratio values for rocks [J]. International Journal of Rock Mechanics and Mining Sciences,2007,44 (1):1-13.
    [95]A. Kailer, K. G. Nickel, Y. G. Gogotsi. Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations [J]. Journal of Raman spectroscopy,1999,30 (10):939-946.
    [96]T. Masuda, T. Miyake, M. Enami. Ultra-high residual compressive stress (> 2 GPa) in a very small volume (< 1 μm3) of indented quartz [J]. American Mineralogist,2011,96 (2-3):283-287.
    [97]N. Guo, H. Zheng. Study on the accuracy of pressure determined by raman spectra of quartz [J]. Spectroscopy and Spectral Analysis,2010,30 (8):2161-2163.
    [98]K. J. Kingma, C. Meade, R. J. Hemley, H.-K. Mao, D. R. Veblen. Micro structural observations of alpha-quartz amorphization [J]. Science,1993,259:666-669.
    [99]B. Bhushan, J. N. Israelachvili, U. Landman. Nanotribology-friction, wear and lubrication at the atomic-scale [J]. Nature,1995,374 (6523):607-616.
    [100]B. Bhushan. Nanoscale tribophysics and tribomechanics [J]. Wear,1999,225: 465-492.
    [101]C. Song, X. Li, B. Yu, H. Dong, L. Qian, Z. Zhou. Friction-induced nanofabrication method to produce protrusive nanostructures on quartz [J]. Nanoscale Research Letters, 2011,6:310.
    [102]B. Yu, H. Dong, L. Qian, Y. Chen, J. Yu, Z. Zhou. Friction-induced nanofabrication on monocrystalline silicon [J]. Nanotechnology,2009,20 (46):465303.
    [103]J. Yu, L. Qian, B. Yu, Z. Zhou. Effect of surface hydrophilicity on the nanofretting behavior of Si(100) in atmosphere and vacuum [J]. Journal of Applied Physics,2010, 108 (3):034314-034310.
    [104]X. Xiao, L. Qian. Investigation of humidity-dependent capillary force [J]. Langmuir, 2000,16 (21):8153-8158.
    [105]D. F. Mitchell, K. B. Clark, J. A. Bardwell, W. N. Lennard, G. R. Massoumi, I. V. Mitchell. Film thickness measurements of S1O2 by XPS [J]. Surface and Interface Analysis,1994,21 (1):44-50.
    [106]B. Yu, L. Qian, H. Dong, J. Yu, Z. Zhou. Friction-induced hillocks on monocrystalline silicon in atmosphere and in vacuum [J]. Wear,2010,268 (9):1095-1102.
    [107]Y. Nakamura, J. Muto, H. Nagahama, I. Shimizu, T. Miura, I. Arakawa. Amorphization of quartz by friction:Implication to silica-gel lubrication of fault surfaces [J]. Geophysical Research Letters,2012,39 (21):L21303.
    [108]J. M. Gautier, E. H. Oelkers, J. Schott. Are quartz dissolution rates proportional to B.E.T. surface areas? [J]. Geochimica et Cosmochimica Acta,2001,65 (7):1059-1070.
    [109]A. A. Tseng. Removing material using atomic force microscopy with single-and multiple-tip sources [J]. Small,2011,7 (24):3409-3427.
    [110]J. Yan, M. Yoshino, T. Kuriagawa, T. Shirakashi, K. Syoji, R. Komanduri. On the ductile machining of silicon for micro electro-mechanical systems (MEMS), opto-electronic and optical applications [J]. Materials Science and Engineering a-Structural Materials Properties Micro structure and Processing,2001,297 (1-2): 230-234.
    [111]A. G. Khurshudov, K. Kato, H. Koide. Nano-wear of the diamond AFM probing tip under scratching of silicon, studied by AFM [J]. Tribology Letters,1996,2 (4):345-354.
    [112]A. Simoneau, E. Ng, M. A. Elbestawi. Chip formation during microscale cutting of a medium carbon steel [J]. International Journal of Machine Tools and Manufacture,2006, 46 (5):467-481.
    [113]余丙军.单晶硅表面摩擦诱导纳米凸结构的形成、机理及应用研究[D].西南交通大学,2012.
    [114]C. Xiang, H. J. Sue, J. Chu, B. Coleman. Scratch behavior and material property relationship in polymers [J]. Journal of Polymer Science Part B:Polymer Physics,2001, 39 (1):47-59.
    [115]D. Jiang, S. Teng, S. Zhong. Elasticity modulus loss rate of influence the precision cold-forming [J]. Journal of Guizhou University of Technology,2008,37 (6):15-17.
    [116]L. Hua, B. Yu, C. Song, L. Qian, Z. Zhou. Nanotribological behaviors of friction-induced hillocks on monocrystalline silicon [C].2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Xi'an,2012:80-83
    [117]N. Satyanarayana, S. K. Sinha. Tribology of PFPE overcoated self-assembled monolayers deposited on Si surface [J]. Journal of Physics D:Applied Physics,2005,38 (18):3512.
    [118]M. Deleuze, A. Goiffon, A. Ibanez, E. Philippot. Solvent influence on kinetics and dissolution mechanism of quartz in concentrated basic media (NaOH, KOH, LiOH) [J]. Journal of Solid State Chemistry,1995,118 (2):254-260.
    [119]A. Meike. Considerations for quantitative determination of the role of dislocations in selective dissolution [J]. Earth-Science Reviews,1990,29 (1-4):309-320.
    [120]E. Gnecco, R. Bennewitz, T. Gyalog, C. Loppacher, M. Bammerlin, E. Meyer, H. J. Guntherodt. Velocity dependence of atomic friction [J]. Physical Review Letters,2000, 84(6):1172-1175.
    [121]B. Yu, X. Li, H. Dong, Y. Chen, L. Qian, Z. Zhou. Towards a deeper understanding of the formation of friction-induced hillocks on monocrystalline silicon [J]. Journal of Physics D:Applied Physics,2012,45(14):145301.
    [122]F. Marinello, M. Balcon, S. Carmignato, E. Savio. Long term thermal drift study on SPM scanners [J]. Mechatronics,2011,21 (8):1272-1278.
    [123]S. K. Upadhyay. Chemical kinetics and reaction dynamics [M]. Springer,2006.
    [124]S. V. Yanina, K. M. Rosso, P. Meakin. Defect distribution and dissolution morphologies on low-index surfaces of a-quartz [J]. Geochimica et Cosmochimica Acta, 2006,70(5):1113-1127.
    [125]T. Kagami, T. Matsumoto, N. Sugaya, M. Kawasaki, H. Mitsugi, K. Hamaguchi, J. Takahashi. Heat treatment effect upon etch-channel formation in synthetic quartz crystals [J]. Journal of crystal growth,2001,229 (1):270-274.
    [126]S. Bhatia, D. Perlmutter. The effect of pore structure on fluid-solid reactions: Application to the SO2-lime reaction [J]. AIChE Journal,1981,27 (2):226-234.
    [127]M. Sahimi, G. R. Gavalas, T. T. Tsotsis. Statistical and continuum models of fluid-solid reactions in porous media [J]. Chemical Engineering Science,1990,45 (6):1443-1502.
    [128]R. Hemley, A. Jephcoat, H. K. Mao, L. Ming, M. Manghnani. Pressure-induced amorphization of crystalline silica [J]. Nature,1988,334 (6177):52-54.
    [129]K. R. Williams, K. Gupta, M. Wasilik. Etch rates for micromachining processing-Part Ⅱ [J]. Journal of Microelectromechanical Systems,2003,12 (6):761-778.
    [130]M. Tello. Nano-oxidation of silicon surfaces:Comparison of noncontact and contact atomic-force microscopy methods [J]. Applied Physics Letters,2001,79 (3):424-426.
    [131]J. Guo, C. Song, X. Li, B. Yu, H. Dong, L. Qian, Z. Zhou. Fabrication mechanism of friction-induced selective etching on Si (100) surface [J]. Nanoscale Research Letters, 2012,7(1):1-9.
    [132]K. Blohowiak, D. Treadwell, B. Mueller, M. Hoppe, S. Jouppi, P. Kansal, K. Chew, C. Scotto, F. Babonneau. S1O2 as a starting material for the synthesis of pentacoordinate silicon complexes.1 [J]. Chemistry of Materials,1994,6 (11):2177-2192.
    [133]M. Cai, S. C. Langford, J. T. Dickinson. Tribochemical wear of single crystal aluminum in NaCl solution studied by atomic force microscopy [J]. Journal of Applied Physics,2011,110 (6):063509.
    [134]C. Y. Lee, P. Z. Chang, Y. Y. Chen, C. L. Dai, P. H. Chen, S. J. Lee. Novel method for in situ monitoring of thickness of quartz during wet etching [J]. Japanese Journal of Applied Physics,2005,44:7662.
    [135]Ⅰ. Schweigert, K. Lehtinen, M. Carrier, M. Zachariah. Structure and properties of silica nanoclusters at high temperatures [J]. Physical Review B,2002,65 (23):235410.
    [136]S. Fouvry, P. Kapsa, H. Zahouani, L. Vincent. Wear analysis in fretting of hard coatings through a dissipated energy concept [J]. Wear,1997,203:393-403.
    [137]G. Sutter, N. Ranc. Flash temperature measurement during dry friction process at high sliding speed [J]. Wear,2010,268 (11-12):1237-1242.
    [138]D. E. Kim, J. J. Yi. Micro-patterning of silicon by frictional interaction and chemical reaction [J]. Journal of Tribology,1998,120 (2):353-357.
    [139]M. Endo, Z. Jin, S. Kasai, H. Hasegawa. Reactive ion beam etching of GaN and AlGaN/GaN for nanostructure fabrication using methane-based gas mixtures [J]. Japanese Journal of Applied Physics. Pt.1, Regular papers, short notes & review papers, 2002,41 (4B):2689-2693.
    [140]Ⅰ. Zubel. Silicon anisotropic etching in alkaline solutions III:On the possibility of spatial structures forming in the course of Si (100) anisotropic etching in KOH and KOH+ IPA solutions [J]. Sensors and Actuators A:Physical,2000,84 (1):116-125.
    [141]H. Schroder, E. Obermeier. A new model for Si{100} convex corner undercutting in anisotropic KOH etching [J]. Journal of Micromechanics and Microengineering,2000, 10(2):163-170.
    [142]K. Mohamed, M. Alkaisi, R. Blaikie. Fabrication of three dimensional structures for an UV curable nanoimprint lithography mold using variable dose control with critical-energy electron beam exposure [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures,2007,25 (6):2357-2360.
    [143]I. Choi, Y. Kim, J. Yi. Fabrication of hierarchical micro/nanostructures via scanning probe lithography and wet chemical etching [J]. Ultramicroscopy,2008,108 (10): 1205-1209.
    [144]F. Zhang, H. Y. Low. Ordered three-dimensional hierarchical nanostructures by nanoimprint lithography [J].Nanotechnology,2006,17 (8):1884.
    [145]F. E. Tay, C. Iliescu, J. Jing, J. Miao. Defect-free wet etching through Pyrex glass using Cr/Au mask [J]. Microsystem technologies,2006,12 (10-11):935-939.
    [146]Ⅰ. Zubel, M. Kramkowska. The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions [J]. Sensors and Actuators A:Physical,2001,93 (2):138-147.
    [147]A. Perriot, D. Vandembroucq, E. Barthel, V. Martinez, L. Grosvalet, C. Martinet, B. Champagnon. Raman microspectroscopic characterization of amorphous silica plastic behavior [J]. Journal of the American Ceramic Society,2006,89 (2):596-601.
    [148]C. Iliescu, J. Miao, F. E. Tay. Stress control in masking layers for deep wet micromachining of Pyrex glass [J]. Sensors and Actuators A:Physical,2005,117 (2): 286-292.
    [149]C. Iliescu, F. E. Tay, J. Miao. Strategies in deep wet etching of Pyrex glass [J]. Sensors and Actuators A:Physical,2007,133 (2):395-400.
    [150]R. Jackson, A. J. Pidduck, M. A. Green. Removal of surface contamination after reactive ion etching of silicon dioxide [J]. Vacuum,1994,45 (5):519-524.
    [151]M. M. J. W. van Herpen, D. J. W. Klunder, W. A. Soer, R. Moors, V. Banine. Sn etching with hydrogen radicals to clean EUV optics [J]. Chemical Physics Letters,2010, 484(4-6):197-199.
    [152]E. Hein, D. Fox, H. Fouckhardt. Glass surface modification by lithography-free reactive ion etching in an Ar/CF4-plasma for controlled diffuse optical scattering [J]. Surface and Coatings Technology,2011,205:S419-S424.
    [153]C. Zhang, J. Xu, W. Ma, W. Zheng. PCR microfluidic devices for DNA amplification [J]. Biotechnology advances,2006,24 (3):243-284.
    [154]V. N. Sigaev, N. V. Golubev, E. S. Ignat'eva, B. Champagnon, D. Vouagner, E. Nardou, R. Lorenzi, A. Paleari. Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices [J]. Nanoscale,2013,5 (1):299-306.
    [155]M. Beresna, M. Gecevicius, P. G. Kazansky, T. Gertus. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass [J]. Applied Physics Letters,2011,98 (20):201101-201101-201103.
    [156]B. Tanikella, R. Scattergood. Fracture damage in borosilicate glass during microcutting tests [J]. Scripta Materialia,1996,34 (2):207-213.
    [157]Ⅰ. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, M. Farsari. Diffusion-assisted high-resolution direct femtosecond laser writing [J]. ACS nano,2012,6 (3):2302-2311.
    [158]X. Wang, X. Xu. Molecular dynamics simulation of heat transfer and phase change during laser material interaction [J]. Transactions-ASME:Journal of Heat Transfer,2002, 124 (2):265-274.
    [159]Y. Liu, L. Wang, X. Tuo, L. Songnian, W. Yang. A study on the microstructure of a nitrate ester plasticized poly ether propellant dissolved in HCl and KOH solutions [J]. Journal of the Serbian Chemical Society,2010,75 (7):987-996.
    [160]C. Iliescu, B. Chen, J. Miao. On the wet etching of Pyrex glass [J]. Sensors and Actuators A:Physical,2008,143 (1):154-161.
    [161]Ⅰ. Suresh, C. Padmakar, P. Padmakaran, M. Murthy, C. Raju, R. Yadava, K. V. Rao. Effect of pond ash on ground water quality:a case study [J]. Environmental Management and Health,1998,9 (5):200-208.
    [162]J. F. Stebbins, Z. Xu. NMR evidence for excess non-bridging oxygen in an aluminosilicate glass [J]. Nature,1997,390 (6655):60-62.
    [163]J. F. Stebbins, J. Oglesby. Al-O-Al oxygen sites in crystalline aluminates and aluminosilicate glasses:High-resolution oxygen-17 NMR results [J]. American Mineralogist,1999,84:983-986.
    [164]L. Lallement, C. Gosse, C. Cardinaud, M.-C. Peignon-Fernandez, A. Rhallabi. Etching studies of silica glasses in SF6/Ar inductively coupled plasmas:Implications for microfluidic devices fabrication [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,2010,28 (2):277-286.
    [165]K. Machida, M. Enyo. Hydrofluoric acid-leached raney nickel materials for water electrolysis cathode [J]. J. Res. Inst. Catal., Hokkaido Univ.,1984,32 (1):37-42.
    [166]R. C. Artem, I. G Vladimir, M. Z. Ekaterina, A. C. Rafael. The concept of electronegativity. The current state of the problem [J]. Russian Chemical Reviews,1998, 67 (5):375.
    [167]L. Pauling. The nature of the chemical bond and the structure of molecules and crystals:an introduction to modern structural chemistry [M]. Ithaca, NY, Cornell University Press,1960.
    [168]J. Sheng, S. Luo.90-19/U HLW-glass leaching mechanism in underground water [J]. Journal of nuclear materials,2001,297 (1):57-61.
    [169]Y. Saito, S. Okamoto, H. Inomata, J. Kurachi, T. Hidaka, H. Kasai. Micro-fabrication techniques applied to aluminosilicate glass surfaces:Micro-indentation and wet etching process [J]. Thin Solid Films,2009,517 (9):2900-2904.
    [170]Y. Saito, S. Okamoto, A. Miki, H. Inomata, T. Hidaka, H. Kasai. Fabrication of micro-structure on glass surface using micro-indentation and wet etching process [J]. Applied Surface Science,2008,254 (22):7243-7249.
    [171]D. P. DiVincenzo. Double quantum dot as a quantum bit [J]. Science,2005,309 (5744): 2173-2174.
    [172]A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, A. Imamoglu. Deterministic coupling of single quantum dots to single nanocavity modes [J]. Science, 2005,308(5725):1158-1161.
    [173]H. W. Schumacher, U. F. Keyser, U. Zeitler, R. J. Haug, K. Eberl. Controlled mechanical AFM machining of two-dimensional electron systems:fabrication of a single-electron transistor [J]. Physica E,2000,6 (1-4):860-863.
    [174]C. Taylor, E. Marega, E. A. Stach, G. Salamo, L. Hussey, M. Munoz, A. Malshe. Directed self-assembly of quantum structures by nanomechanical stamping using probe tips [J]. Nanotechnology,2008,19 (1):015301(015310pp).
    [175]B. L. Liang, Z. M. Wang, K. A. Sablon, Y. I. Mazur, G. J. Salamo. Influence of GaAs substrate orientation on InAs quantum dots:Surface morphology, critical thickness, and optical properties [J]. Nanoscale Research Letters,2007,2 (12):609-613.
    [176]B. Bhushan, K. J. Kwak. Effect of temperature on nanowear of platinum-coated probes sliding against coated silicon wafers for probe-based recording technology [J]. Acta Materialia,2008,56 (3):380-386.
    [177]B. K. Yen. Influence of water vapor and oxygen on the tribology of carbon materials with sp(2) valence configuration [J]. Wear,1996,192 (1-2):208-215.
    [178]R. G. Mortimer. Physical Chemistry [M],3rd ed. Elsevier,2008:1416.
    [179]F. Katsuki. Single asperity tribochemical wear of silicon by atomic force microscopy [J]. Journal of Materials Research,2009,24 (1):173-178.
    [180]Y. Qi, J. Y. Park, B. L. M. Hendriksen, D. F. Ogletree, M. Salmeron. Electronic contribution to friction on GaAs:An atomic force microscope study [J]. Physical Review B,2008,77 (18):184105.
    [181]钱林茂,田煜,温诗铸.纳米摩擦学[M].科学出版社,北京,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700