低能离子束诱导晶体表面纳米自组织结构及光学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低能离子束溅射/刻蚀固体表面形成自组织纳米微结构,是一种高效、简便、低成本制造大面积有序纳米结构的方法。该方法具有加工精度高、改变离子束参数可实现纳米微结构的尺寸控制、易于实现自动化等特点。因此,低能离子束刻蚀晶体表面形成自组织纳米结构近年来一直是学术界研究的热点。本文针对单晶硅和蓝宝石材料,研究了不同离子束参数刻蚀形成规则自组织纳米微结构的关键技术,所取得主要研究成果是:
     1.对离子束刻蚀形成纳米微结构的理论模型进行了分析和仿真。分析了基于sigmund溅射理论的BH模型和MCB模型,通过引入离子束诱导项和非线性项,MCB模型对BH模型不能解释的低温下纳米结构形成及长时间刻蚀饱和的不足进行了改进。本文针对MCB模型进行了详细的分析和仿真,建立了刻蚀项、分散项和扩散项与离子束参数的关系,阐释了纳米自组织结构的形成原因及演变过程。
     2.建立了样品旋转时自组织纳米点状结构形成的数学模型,确定了不定形层热扩散是单晶硅主要扩散机制,获得了单晶硅的纳米微结构。研究发现:当离子束能量1000eV、束流密度265A cm2、样品不旋转时,离子束小角度(540)刻蚀单晶硅表面可获得条纹状纳米结构;增大入射角度(4050),样品表面趋于光滑;继续增大入射角度到65以后样品表面出现柱状纳米结构。而当样品旋转时,在相同离子束参数作用下,在较小离子入射角度(540)和较大入射角度(6585)都可获得纳米点状结构,尺度约为5085纳米,实验结果验证了模型的正确性。
     3.获得了蓝宝石纳米结构,针对蓝宝石晶体结构,提出了3+1维数学模型,揭示了离子束刻蚀下蓝宝石表面形貌的演变规律;确定了离子束诱导扩散是蓝宝石表面主要的扩散机理。利用Ar+离子束刻蚀蓝宝石,在离子束能量1200eV、束流密度265、样品不旋转下,在520和3545时,形成了纵向尺度较小的点状纳米结构,有序性较差;在30附近,样品表面趋于光滑,增大入射角度到45,样品表面出现有序的条纹结构,条纹方向与离子束方向垂直,继续增大离子束入射角度,在离子束入射方向出现柱状结构,垂直于离子束方向仍保持规则的有序条纹状结构,且样品表面粗糙度迅速增大。不同于单晶硅,离子束能量在蓝宝石中分布各向异性,蓝宝石表面弛豫主要是离子束诱导机制,利用建立的数学模型对刻蚀结果进行了仿真与分析。
     4.建立了Ar+离子束能量与刻蚀后蓝宝石表面形貌的关系,揭示了不同表面形貌形成的机理。研究发现相同角度,不同能量刻蚀后蓝宝石样品表面也会出现多种纳米结构。在入射角度65、能量较小(600750eV)时,样品表面出现点状结构,增加能量到900eV,样品表面出现规则的条纹状结构,继续增大能量,样品在离子束入射方向出现柱状结构,垂直方向为有序条纹状结构。渗透深度及能量各向异性分布是纳米结构形貌演变的主要因素。
     5.提出了使用离子束刻蚀形成的有序纳米结构提高样品透过率的方法。在1100nm2000nm波长范围内,利用Ar+刻蚀单晶硅,当离子束能量1000eV、束流密度265A cm2,在入射角度15、样品不旋转时,表面形成的规则条纹结构可使透过率提高约8%;而在入射角度65、样品旋转时,形成的规则点状结构,可使透射率提高约15%;透过率随纳米结构的有序性及纵向尺寸的增大而提高。引入等效折射率理论解释了样品表面减反射的现象。
     6.研究了刻蚀时间对单晶硅和蓝宝石刻蚀的影响规律。结果发现增加刻蚀时间,纳米结构形貌未发生变化,但纳米结构纵向尺度增大,有序性增强,长时间刻蚀后趋于饱和,此时模型非线性项起主要作用。
Low energy ion beam erosion to generate self-organizing nano-structure on solidsurfaces is a simple, effective, and inexpensive method for production of orderlynano-structure with a large area. This method has the features of higher manufacturingprecision, realization of control over nano-structure dimensions by changing ion beamparameters, and aptness for automation. Therefore, it has been a research focus inEurope and the USA in recent years. This paper researches the critical techniques ofnano-structure formation with various ion beam parameters, for experimental materialsof monocrystalline silicon and sapphire, which makes the major research achievementsas following:
     1. The analyses and simulations of the theoretical models for nano-strucureformation by ion beam erosion are conducted. BH model and MCB model, both ofwhich are based on Sigmund spurting theory, are analyzed. And the introduction of ionbeam inducing term and non-linear term to MCB model improves the shortcoming ofBH mode, failure to explain nano-structure formation at low temperatures and long-timeerosion saturation. This paper makes the detailed analyses and simulations of MCBmodel, provides erosion term, dispersion term and diffusion term, and accounts for theformation and evolution of self-organizing nano-structure.
     2. This paper establishes a mathematical model to describe formation ofself-organizing spot nano-structure with sample rotations, confirms that amorphouslayer thermal diffusion is the main diffusion mechanism for monocrystalline silicon andobtains nono-stucture of monocrystalline silicon. When ion flux density is265A/cm2and ion beam energy1000eV, without sample rotations, ribbon pattern nano-structuresappear on the surfaces of samples, spurted by ion beams with a small angle (540).Increase in the incident angle(4050) leads to the tendency to be smoother for thesample surfaces; further increase in the incident angle up to65, columnarnano-structures begin to emerge on sample surfaces. While samples are rotating, withthe identical ion beam parameters, dot nano-structures can be obtained no matter theincident angle is smaller(540) or larger(>65), with a dimension range of5085nanometer. The erosion results confirm the validity of the mathematical model.
     3. After obtaining sapphire nano-structure and confirming that ion beam inducingdiffusion is sapphire’s main surface diffusion mechanism, a3+1dimensionmathematical model is established to describe the evolution of sapphire surfacetopographies by ion beam erosion. When Ar+ion beams are employed to erode sapphire, with an ion beam energy of1200eV and an ion flux density of265A cm2, dotnano-structures of smaller vertical dimensions can form, with lower orderliness, at anincident angle of520and3545; if the incident angle lies in30about, samplesurfaces tend to be smother; if the incident angle is up to45, orderly ribbon patternstructures appear on sample surfaces, perpendicular to ion beams; if the incident angle isfurther raised, columnar structures turn up in the incident direction of ion beams andorderly ribbon pattern structures remain in the vertical direction, with a rapidenhancement of sample surface roughness. Different from monocrystalline silicon,sapphire has an anisotropic ion beam energy distribution, and sapphire surfacerelaxation mainly depends on ion beam inducing mechanism. The establishedmathematical model is employed to simulate and analyze the erosion results.
     4. The relationship is established between surface topographies of erodedsapphire and different Ar+ion beam energies, and the formation mechanism of surfacetopographies is displayed. The experiments find that various energies with the sameincident angles can produce different nano-structures on sapphire surfaces after eroding.At the incident angle of65, lower energy (600750eV) results in dot structures onsample surfaces; higher energy(900eV) produces regular ribbon pattern structures; andeven higher energy(>900eV) generates columnar structures in the incident direction ofion beams and orderly ribbon pattern structures in the vertical direction. Depositiondepth and anisotropic energy distribution are chief causes for evolution ofnano-structures.
     5. A method is raised to improve sample transmittance with formation of orderlynano-structure by employing ion beam erosion. Within the wavelength range of1100nm2000nm,Ar+ion beams are employed to erode monocrystalline silicon,whenincident angle is at15with ion flux density265A/cm2and ion beam energy1000eV,without samples rotation, ribbon pattern nano-structures appear on the surfaces ofsamples, transmittance of samples increased by8%approximately; when incident angleis at65with the same ion flux density and ion beam energy, with samples rotation, dotpattern nano-structures emerge, transmittance of samples increased by20%approximately. Enhancement of surface orderliness and height of nano-structures resultsin the increase of transmittance, which accounts for sample surface antireflections, withthe introduction of equivalent refractive index theory.
     6. The effects of eroding time on monocrystalline silicon and sapphire erosions are
     studied. The results find that time extension is unable to change nano-struture
     topographies, but able to increase the vertical nano-structure dimensions and enhance the orderliness. When saturation is achieved after long-time erosion, non-linear termsof model function principally.
引文
[1]吴广森,靳安民.纳米科技-生命医学进程的跃迁[J].中国现代医学杂志.2004,14(1):143-5
    [2]朱世东,周根树,蔡锐等.纳米材料国内外研究进展Ⅰ——纳米材料的结构、特异效应与性能[J].热处理技术与装备.2010(03):1-5+26
    [3]解思深,张立德.纳米材料和纳米结构[M]:化学工业出版社;2005.
    [4]陈翌庆,石瑛.纳米材料科学基础:中南大学出版社;2008.
    [5] Guo LJ. Nanoimprint lithography: methods and material requirements[J]. AdvancedMaterials.2007,19(4):495-513
    [6] Xu M, Teichert C. How do nanoislands induced by ion suputtering evolve during theearly stage of growth[J]. Journal of applied physics.2004,96(4):2244-8
    [7]刘伟庭,蔡强,郭希山等.用软光刻技术实现微细结构[J].传感技术学报.2010(2):136-9
    [8]张继成,唐永建,吴卫东.聚焦离子束系统在微米/纳米加工技术中的应用[J].材料导报.2007,20(F11):40-3
    [9]袁琼雁,王向朝,施伟杰等.浸没式光刻技术的研究进展[J].激光与光电子学进展.2006(08):13-20
    [10]袁琼雁,王向朝.国际主流光刻机研发的最新进展[J].激光与光电子学进展.2007(01):57-64
    [11]巩岩,张巍.193nm光刻曝光系统的现状及发展[J].中国光学与应用光学.2008(Z1):25-35
    [12]曹振,李艳秋,刘菲.16~22nm极紫外光刻物镜工程化设计[J].光学学报.2013(09):257-64
    [13]刘菲,李艳秋.大数值孔径产业化极紫外投影光刻物镜设计[J].光学学报.2011(02):232-8
    [14]周杰.大高宽比纳米光学元件制作工艺及应用研究[D]:中国科学技术大学;2012.
    [15]孙丰强,蔡伟平,李越等.基于二维胶体晶体刻蚀法的纳米颗粒阵列[J].物理.2003,32(04):0
    [16]匡登峰,刘庆纲,胡小唐等.大气状态下AFM针尖诱导氧化加工Ti膜的机理分析[J].半导体学报.2004,24(12):1303-6
    [17] Mirkin CA. Dip-Pen Nanolithography: Automated Fabrication of CustomMulticomponent Sub-100-Nanometer Surface Architectures[J]. Mrs Bulletin.2001,26(07):535-8
    [18] Li Y, Vazquez L, Piner R, Andres R, Reifenberger R. Writing nanometer‐scalesymbols in gold using the scanning tunneling microscope[J]. Applied physics letters.1989,54(15):1424-6
    [19]彭英才,陈金忠,李社强等.硅表面上的纳米量子点的自组织生长[J].固体电子学研究与进展.2003(03):349-55
    [20]孙贤开,林碧霞,朱俊杰等. LP-MOCVD异质外延ZnO薄膜中的应力及对缺陷的影响[J].物理学报.2005,54(6):2899-903
    [21]李瑞.低能离子束刻蚀中自组织纳米结构形成研究[D]:西安工业大学;2012.
    [22]黄永光.飞秒激光诱导金属表面微纳米结构的基础研究[D]:北京工业大学;2010.
    [23] Ziberi B, Frost F, Rauschenbach B. Formation of large-area nanostructures on Siand Ge surfaces during low energy ion beam erosion[J]. Journal of Vacuum Scienceand Technology A: Vacuum, Surfaces and Films.2006,24(4):1344-8
    [24] Ziberi B, Frost F, Hoche T,et al. Ion-induced self-organized dot and ripple patternson Si surfaces[J]. Vacuum.2006,81(2):155-9
    [25] Navez M, Chaperot D, Sella C. Microscopie electronique-etude de lattaque duverre par bombardement ionique[J]. Comptes Rendus Hebdomadaires Des SeancesDe L Academie Des Sciences.1962,254(2):240-&
    [26] Rusponi S, Boragno C, Valbusa U. Ripple Structure on Ag(110) Surface Induced byIon Sputtering[J]. Physical Review Letters.1997,78(14):2795-8
    [27] Mishra P, Ghose D. The energy dependence of sputtering induced rippletopography in Al film[J]. Nuclear Instruments and Methods in Physics Research,Section B: Beam Interactions with Materials and Atoms.2008,266(8):1635-41
    [28] Chason E, Chan WL. Kinetic mechanisms in ion-induced ripple formation onCu(001) surfaces[J]. Nuclear Instruments and Methods in Physics Research SectionB: Beam Interactions with Materials and Atoms.2006,242(1-2):232-6
    [29] Cavanna D, Bracco G, editors. He scattering study of Au(111) nanostructured byion sputtering. ICFSI-10-10th International Conference on the Formation ofSemiconductor Interfaces, July3,2005-July8,2005;2006; Aix-en-Provence,France: EDP Sciences.
    [30] Karmakar P, Ghose D. Low energy Ar+ion beam induced kinetic roughening ofthin Pt films on a Si substrate[J]. Nuclear Instruments and Methods in PhysicsResearch, Section B: Beam Interactions with Materials and Atoms.2004,222(3-4):477-83
    [31] Netcheva S, Bertrand P. Surface topography development of thin polystyrene filmsunder low energy ion irradiation[J]. Nuclear Instruments and Methods in PhysicsResearch Section B: Beam Interactions with Materials and Atoms.1999,151(1-4):129-34
    [32] Facsko S, Dekorsy T, Koerdt C, et al. Formation of ordered nanoscalesemiconductor dots by ion sputtering[J]. Science.1999,285(5433):1551-3
    [33] Facsko S, Dekorsy T, Trappe C, et al. Self-organized quantum dot formation by ionsputtering[J]. Microelectronic Engineering.2000,53(1-4):245-8
    [34] Facsko S, Kurz H, Dekorsy T. Energy dependence of quantum dot formation by ionsputtering[J]. Physical Review B.2001,63(16):165329
    [35] Bobek T, Facsko S, Dekorsy T, et al. Ordered quantum dot formation on GaSbsurfaces during ion sputtering[J]. Nuclear Instruments and Methods in PhysicsResearch Section B: Beam Interactions with Materials and Atoms.2001,178(1-4):101-4
    [36] Facsko S, Bobek T, Stahl A, et al. Dissipative continuum model for self-organizedpattern formation during ion-beam erosion[J]. PHYSICAL REVIEW-SERIES B-.2004,69(15):153412-
    [37] Flamm D, Frost F, Hirsch D. Evolution of surface topography of fused silica by ionbeam sputtering[J]. Applied Surface Science.2001,179(1-4):95-101
    [38] Gago R, Vazquez L, Cuerno R, et al.. Production of ordered silicon nanocrystals bylow-energy ion sputtering[J]. Applied Physics Letters.2001,78(21):3316-9
    [39] Lu M, Yang XJ, Perry SS, et al.. Self-organized nanodot formation on MgO(100)by ion bombardment at high temperatures[J]. Applied Physics Letters.2002,80(12):2096-9
    [40] Frost F. The role of sample rotation and oblique ion incidence on quantum-dotformation by ion sputtering[J]. Applied Physics A: Materials Science andProcessing.2002,74(1):131-3
    [41] Frost F, Rauschenbach B. Nanostructuring of solid surfaces by ion-beam erosion[J].Applied Physics A: Materials Science and Processing.2003,77(1):1-9
    [42] Ziberi B, Frost F, Tartz M, et al. Importance of ion beam parameters onself-organized pattern formation on semiconductor surfaces by ion beam erosion[J].Thin Solid Films.2004,459(1-2):106-10
    [43] Toma A, Buatier de Mongeot F, Buzio R, et al. Ion beam erosion of amorphousmaterials: evolution of surface morphology[J]. Nuclear Instruments and Methods inPhysics Research Section B: Beam Interactions with Materials and Atoms.2005,230(1-4):551-4
    [44] Ziberi B, Frost F, Rauschenbach B. Pattern transitions on Ge surfaces duringlow-energy ion beam erosion[J]. Applied Physics Letters.2006,88(17)
    [45] Ziberi B, Frost F, Tartz M, et al. Ripple rotation, pattern transitions, and long rangeordered dots on silicon by ion beam erosion[J]. Applied Physics Letters.2008,92(6)
    [46] Frost F, Ziberi B, Schindler A, et al. Surface engineering with ion beams: Fromself-organized nanostructures to ultra-smooth surfaces[J]. Applied Physics A:Materials Science and Processing.2008,91(4):551-9
    [47] Oates T, Keller A, Noda S, et al. Self-organized metallic nanoparticle and nanowirearrays from ion-sputtered silicon templates[J]. Applied physics letters.2008,93(6):063106--3
    [48] Zhang K, Rotter F, Uhrmacher M, et al. Pattern formation of Si surfaces bylow-energy sputter erosion[J]. Surface and Coatings Technology.2007,201(19-20):8299-302
    [49] Carbone D, Biermanns A, Ziberi B, et al. Ion-induced nanopatterns onsemiconductor surfaces investigated by grazing incidence x-ray scatteringtechniques[J]. Journal of Physics Condensed Matter.2009,21(22)
    [50] Fulga F, Nicolau DV. Simulation of the nanostructuring of surfaces under ion-beambombardment[J]. Microelectronic Engineering.2010,87(5):1455-7
    [51] Frost F, Fechner R, Flamm D, et al. Schindler A. Ion beam assisted smoothing ofoptical surfaces[J]. Applied Physics A: Materials Science and Processing.2004,78(5):651-4
    [52] Frost F, Fechner R, Ziberi B, et al. Large area smoothing of optical surfaces bylow-energy ion beams[J]. Thin Solid Films.2004,459(1-2):100-5
    [53] Frost F, Fechner R, Ziberi B, et al. Large area smoothing of surfaces by ionbombardment: Fundamentals and applications[J]. Journal of Physics CondensedMatter.2009,21(22)
    [54] Frost F, Schindler A, Bigl F. Ion beam smoothing of indium-containing III-Vcompound semiconductors[J]. Applied Physics A: Materials Science and Processing.1998,66(6):663-8
    [55] Frost F, Schindler A, Bigl F. Roughness evolution of ion sputtered rotating InPsurfaces: Pattern formation and scaling laws[J]. Physical Review Letters.2000,85(19):4116-9
    [56] Frost F, Lippold G, Otte K, et al. Smoothing of polycrystalline Cu (In, Ga)(Se, S)thin films by low-energy ion-beam etching[J]. Journal of Vacuum Science&Technology A: Vacuum, Surfaces, and Films.1999,17:793
    [57]崔芳,孙雨南.离子束刻蚀技术研究[J].光学技术.1993,5:003
    [58]谢东珠.聚焦离子束刻蚀多晶TiNi薄膜的表面形貌[J]. Journal of ShanghaiNorm' a l University (Natural Sciences).2005,34(3)
    [59]范文彬.自组织Si量子点的尺寸调控、发光特性及其它光学材料研究[D]:复旦大学;2006.
    [60]彭英才.半导体量子点的自组织生长及其应用[J].半导体杂志.1999(03):40-50
    [61]彭英才.纳米量子点结构的自组织生长[J].固体电子学研究与进展.2000(02):160-8
    [62]彭英才, X.W.Zhao,傅广生.晶粒有序Si基纳米发光材料的自组织化生长[J].材料研究学报.2004(05):449-60
    [63]彭英才,傅广生,王英龙.纳米薄膜材料的蓝光发射特性及其研究进展[J].人工晶体学报.2006(04):820-5
    [64]彭英才, X.W.Zhao,范志东等. Si纳米线的生长机制及其研究进展[J].真空科学与技术学报.2008(05):429-36
    [65]彭英才,马蕾.量子点光电子器件及其研究进展[J].固体电子学研究与进展.2008(02):235-40
    [66]彭英才,王峰,江子荣等.高效率量子点中间带太阳电池的构建与实现[J].微纳电子技术.2012(06):353-9+74
    [67]彭英才,马蕾,沈波等.表面等离子增强太阳电池及其研究进展[J].微纳电子技术.2013(07):417-24+29
    [68]张雷,彭英才,马蕾等. Ge纳米结构的制备技术与发光特性研究进展[J].河北大学学报(自然科学版).2008(01):101-6
    [69]周靖.硅表面自组织纳米结构的离子束辐射制备及光学性质的研究[D]:复旦大学;2011.
    [70] Chen Z-l, Liu W-g, Xu X-h, editors. Formation of self-organized nanostructures onSi surfaces during low energy ion beam erosion.5th International Symposium onAdvanced Optical Manufacturing and Testing Technologies;2010: InternationalSociety for Optics and Photonics.
    [71]陈智利,刘卫国.低能斜入射离子束诱导单晶硅纳米结构与光学性能研究[J].真空科学与技术学报.2013(08):826-31
    [72]陈智利,刘卫国.不同离子束参数诱导单晶硅纳米微结构与光学性能[J].红外与激光工程.2013(09):2490-5
    [73]陈智利,刘卫国.低能离子束诱导单晶硅点状纳米结构与光学性能研究[J].光学学报.2013(09):245-50
    [74]陈智利,刘卫国,张锦等.低能离子束诱导Ag表面纳米金字塔微结构[J].光子学报.2014,43(1):116003-
    [75]牛智红,任正伟,贺振宏. GaAs(331)A面InAs自组织纳米结构形貌演化[J].真空科学与技术学报.2008(02):108-11
    [76]钟敏建,马宁华,叶果等.飞秒激光诱导硒化锌晶体表面自组织生长纳米结构[J].强激光与粒子束.2008(09):1555-7
    [77]孙萍,徐岭,赵伟明等.纳米球刻蚀法制备的二维有序的CdS纳米阵列及其光学性质的研究[J].物理学报.2008(03):1951-5
    [78]李卫,徐岭,孙萍等.基于直接胶体晶体刻蚀技术的高度有序纳米硅阵列的尺寸及形貌控制[J].物理学报.2007(07):4242-6
    [79]黄丽清,潘华强,王军等.多孔氧化铝膜上自组织生长Sn纳米点阵列的研究[J].物理学报.2007(11):6712-6
    [80]白安琪,胡迪,丁武昌等.用PAA模板法实现硅基纳米孔阵列结构[J].物理学报.2009(07):4997-5001
    [81]赵暕,陈涌海,王占国,等.基于图形衬底的InAs/GaAs量子点和量子环液滴外延[J].半导体学报.2008(10):2003-8
    [82]唐刚.表面界面粗化生长动力学标度性质的理论研究[D]:北京师范大学;2001.
    [83] Politi P, Villain J. Ehrlich-Schwoebel instability in molecular-beam epitaxy: Aminimal model[J]. Physical Review B.1996,54(7):5114
    [84]夏辉.材料非线性生长动力学性质的理论研究[D]:中国矿业大学;2012.
    [85] Pal S, Landau D. The Edwards–Wilkinson model revisited: large-scale simulationsof dynamic scaling in2+1dimensions[J]. Physica A: Statistical Mechanics and itsApplications.1999,267(3):406-13
    [86] Pal S, Landau D. Monte Carlo simulation and dynamic scaling of surfaces in MBEgrowth[J]. Physical Review B.1994,49(15):10597
    [87] Kardar M, Parisi G, Zhang Y-C. Dynamic scaling of growing interfaces[J]. PhysicalReview Letters.1986,56(9):889
    [88] Habenicht S, Lieb KP, Bolse W, et al. Ion beam erosion of graphite surfaces studiedby STM: Ripples, self-affine roughening and near-surface damage accumulation[J].Nuclear Instruments and Methods in Physics Research Section B: BeamInteractions with Materials and Atoms.2000,161-163:958-62
    [89] Nicolaenko B, Scheurer B, Temam R. Some global dynamical properties of theKuramoto-Sivashinsky equations: nonlinear stability and attractors[J]. Physica D:Nonlinear Phenomena.1985,16(2):155-83
    [90] Kudryashov N. Exact solutions of the generalized Kuramoto-Sivashinskyequation[J]. Physics Letters A.1990,147(5):287-91
    [91] Fulga F, Nicolau DV. Simulation of the nanostructuring of surfaces under ion-beambombardment[J]. Microelectronic Engineering.87(5-8):1455-7
    [92] Kim T, Ghim C-M, Kim H, et al. Kinetic roughening of ion-sputtered Pd (001)surface: beyond the Kuramoto-Sivashinsky model[J]. Physical review letters.2004,92(24):246104
    [93] Castro M, Cuerno R, Vazquez L, et al. Self-organized ordering of nanostructuresproduced by ion-beam sputtering[J]. Physical review letters.2005,94(1):016102
    [94] Sigmund P. Mechanisms and theory of physical sputtering by particle impact[J].Nuclear Instruments and Methods in Physics Research Section B: BeamInteractions with Materials and Atoms.1987,27(1):1-20
    [95] Sigmund P. A mechanism of surface micro-roughening by ion bombardment[J].Journal of Materials Science.1973,8(11):1545-53
    [96] Cuerno R, Barabási A-L. Dynamic scaling of ion-sputtered surfaces[J]. Physicalreview letters.1995,74(23):4746
    [97] Bradley RM, Harper JM. Theory of ripple topography induced by ionbombardment[J]. Journal of Vacuum Science&Technology A.1988,6(4):2390-5
    [98] Makeev MA, Cuerno R, Barabasi A-L. Morphology of ion-sputtered surfaces[J].Nuclear Instruments and Methods in Physics Research Section B: BeamInteractions with Materials and Atoms.2002,197(3-4):185-227
    [99] Park S, Kahng B, Jeong H, et al. Dynamics of ripple formation in sputter erosion:nonlinear phenomena[J]. Physical review letters.1999,83(17):3486
    [100] Sigmund P. Theory of sputtering. I. Sputtering yield of amorphous andpolycrystalline targets[J]. Physical review.1969,184(2):383
    [101] MacLaren S, Baker J, Finnegan N, et al. Surface roughness development duringsputtering of GaAs and InP: Evidence for the role of surface diffusion in rippleformation and sputter cone development[J]. Journal of Vacuum Science&Technology A.1992,10(3):468-76
    [102] Rost M, Krug J. Anisotropic Kuramoto-Sivashinsky equation for surface growthand erosion[J]. Physical review letters.1995,75(21):3894
    [103] Bobek T, Facsko S, Kurz H,et al. Temporal evolution of dot patterns during ionsputtering[J]. Physical Review B.2003,68(8):085324
    [104] Frost F, Ziberi B, Hoche T, et al. The shape and ordering of self-organizednanostructures by ion sputtering[J]. Nuclear Instruments and Methods in PhysicsResearch Section B: Beam Interactions with Materials and Atoms.2004,216:9-19
    [105] Ziberi B, Frost F, Rauschenbach B, et al. Highly ordered self-organized dotpatterns on Si surfaces by low-energy ion-beam erosion[J]. Applied Physics Letters.2005,87(3)
    [106] Yuba Y, Hazama S, Gamo K. Nanostructure fabrication of InP by low energy ionbeams[J]. Nuclear Instruments and Methods in Physics Research Section B: BeamInteractions with Materials and Atoms.2003,206:648-52
    [107] Biermanns A, Pietsch U, Grenzer J, et al. X-ray scattering and diffraction from ionbeam induced ripples in crystalline silicon[J]. Journal of Applied Physics.2008,104(4):044312--5
    [108] Ziberi B, Frost F, Rauschenbach B. Self-organized dot patterns on Si surfacesduring noble gas ion beam erosion[J]. Surface Science.2006,600(18):3757-61
    [109] Mu oz-García J, Gago R, Vázquez L, et al. Observation and modeling ofinterrupted pattern coarsening: surface nanostructuring by ion erosion[J]. Physicalreview letters.2010,104(2):026101
    [110] Mu oz-García J, Vázquez L, Cuerno R, et al. Self-organized surfacenanopatterning by ion beam sputtering. Toward Functional Nanomaterials:Springer;2009. p.323-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700