碱性含氟液对太阳电池用单晶硅的腐蚀机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳电池的发展至今有几十年了,晶体硅电池一直都是其市场主流,而高效率、低成本是其发展方向。腐蚀技术(即表面织构)是提高晶体硅电池转换效率的重要手段,但诸如金字塔的初始形成机制和腐蚀各向异性等问题仍未得到很好的解决。为了进一步了解腐蚀机理,本论文提出了NaOH/NH4F和NaOH/NH4F/Na2CO3两种腐蚀体系,与纯NaOH溶液进行对比分析研究。通过对表形貌、腐蚀速率和拉曼光谱等实验结果的分析研究,提出了腐蚀-聚合机理及其模型,解释了腐蚀过程中表形貌、腐蚀速率的变化以及其它一些腐蚀体系中出现的实验现象。
     纯NaOH溶液腐蚀所得的硅表面为金字塔结构,反射率最低。加入NH4F后,硅表面主要为较短小的山丘状小丘覆盖,反射率较高,一般为15-16%,腐蚀速率则明显降低且完全由它的浓度控制,OH-离子的影响非常微弱。再加入Na2CO3,表面小丘为长长的山链状,反射率比较接近纯NaOH溶液腐蚀(本文实验所得的最低值为12.85%),腐蚀速率比NaOH/NH4F体系的略低。为了进一步的深入研究,实验测定了三种腐蚀体系的拉曼光谱,结果发现这三种腐蚀体系和硅片表面硅酸盐的聚合都有明显变化,其聚合程度都是NaOH/NH4F/Na2CO3体系强于NaOH/NH4F体系,NaOH/NH4F体系又强于纯NaOH溶液,并且都没有Si-F键存在。
     基于这些实验结果,本文提出了腐蚀-聚合理论。这一理论认为硅腐蚀后的表形貌受产物硅酸盐聚合的影响,聚合所产生的氧化硅是金字塔、小山丘和山链形成的微掩膜。在碱性含氟溶液中,硅腐蚀的中间产物为SiHxFy(OH)z,它并不稳定,最终会变为硅酸盐。硅酸盐的聚合方式有三种:path1(亲核脱质子硅醇三Si-O-与中性硅酸盐物种的反应)、path2(Si-OH群的桥接反应)和path3(Si-F直接与Si-OH反应)。path1和path2聚合所形成的产物聚合度低,path3不仅能在硅酸盐浓度低时发生而且产物的聚合度还比较高。纯NaOH溶液聚合按path1和path2进行,所形成的微掩膜尺寸最小,表面小丘为金字塔。NaOH/NH4F体系三种聚合方式都发生,所形成的微掩膜尺寸较大,硅表面为条状小山丘覆盖。C032-离子虽也能促进聚合,但加入纯NaOH溶液只能增加金字塔的密度,而加入NaOH/NH4F体系与F-离子共同作用却能提高聚合度,使条状小山丘变成长长的山链。根据腐蚀过程中硅表面反应物H2O和OH-离子的浓度变化以及氧化硅掩膜的形成,腐蚀-聚合理论解释了本文三种腐蚀体系形成的表形貌差异。再结合腐蚀过程中表形貌引起的腐蚀速率变化,它还能解释一些其它实验现象,如金字塔崩顶和各种添加剂的影响等。
     基于腐蚀-聚合理论,本文建立了腐蚀-聚合原子模型。这一模型不仅解释了多种形状的小丘形成,还解释了它们形成的难易程度。金字塔是以一个氧化硅顶点为掩膜形成的小丘,其氧化物聚合度最低,最易于形成。(111)条状小丘以氧化硅密度最高、最不易形成的多个氧化硅顶点为掩膜,所以(111)条状小丘很难形成。六面小丘以氧化硅密度相对(111)条状小丘较低的多个顶点为掩膜,相对容易形成,本文NaOH/NH4F体系腐蚀出的小丘就近似这种形状。此外,氧化硅掩膜若中途形成在金字塔的(111)面上则会形成(110)面。若(111)面上氧化硅形成得很少,(110)面小得可忽略或是氧化硅形成在金字塔的棱上,那么金字塔(111)面的倾角变小,金字塔发生延展,这解释了金字塔的倾角小于理论值54.735°;若(111)面上氧化硅形成得很多,(110)面不可忽略,那么金字塔变成八面锥,这解释了八面锥的出现。
     腐蚀-聚合理论及其模型成功解释了金字塔初始形成以及腐蚀过程中表形貌变化、腐蚀速率变化等实验现象,成为Si表面腐蚀技术的理论组成部分,为高效率、低成本硅太阳电池的研究开发奠定了较好的理论基础。
Solar cells industry began to evolve for decades and crystalline silicon cells are the market mainstream, whose trend is high-efficiency and low-cost. Etching technology plays an important role in the increase of cell conversion efficiency whereas several questions such as initial growth of pyramid and etching anisotropy aren't answered clearly. In order to understand etching mechanism thoroughly, we proposed NaOH/NH4F and NaOH/NH4F/Na2CO3etching solutions and made a theoretical and experimental investigation in detail by comparison with pure NaOH. Owing to experimental result such as morphology, etch rate, Raman spectra and so on, etching-condensation mechanism and its atomistic model are put forward. And alteration of morphology and etch rate as well as some phenomena concerning other etching solutions are clearly explained.
     Si(100) surface etched in pure NaOH solution is covered with pyramids that leads to a lowest reflectance. After adding NH4F to pure NaOH solution, the shape of hillocks is similar to pyramid or ridge and reflectance is in a higher range of15-16%, but etch rate decreases rapidly with NH4F concentration and increases a little with NaOH concentration. After another reagent Na2CO3is added into the solution containing NaOH and NH4F, the ridges become so long as to look like mountain chain whereas reflectance is close to the value obtained from pure NaOH solution(the lowest experimental value is12.85%in this paper) and the etch rate is a little lower than that in NaOH/NH4F system.
     For a thorough investigation, Raman spectra of different etching solutions and silicon wafer surfaces were measured. It was found that condensation of Si-OH groups at the wafer surfaces and in etching solutions varied obviously as the same tendency. The degree of condensation is highest in NaOH/NH4F/Na2CO3system and it is lowest in pure NaOH solution. Moreover, no Si-F bond is formed.
     Based on these experimental results, etching-condensation mechanism is proposed. It is believed that the silicate products affect the Si(100) surface morphologies and silicon oxides are the masks of all hillocks including pyramids, ridges and mountain chains. In alkaline fluoride solutions, SiHxFy(OH)z is the intermediate product of silicon etching, but it isn't stable and should be eventually transformed into silicates. There are three paths of condensation:path1(attack of a nucleophilic deprotonated silanol on neutral silicate species), path2(condensation of Si-OH groups) and path3(polymerization of Si-F and Si-OH groups). The degree of condensation are lower by path1and path2, on the contrary, it is higher by path3. And path3should occur even if silicate concentration is very low. In pure NaOH solutions, silicon oxides are generated by path1and path2, consequently the degree of condensation is so low that the masks are smallest and pyramids are formed. In NaOH/NH4F system, three paths should take place and they result in the formation of bigger masks so that infinite ridges arise. CO32-ions only increase the pyramid population when they are added into pure NaOH solution, but in alkaline fluoride solution, they accelerate condensation in company with F" ions and an increase of condensation degree leads to the appearance of mountain chain.
     According to concentrations of H2O and OH-ions at the silicon surface and formation of oxide masks, three different surface morphologies have been explained by etching-condensation mechanism in this paper. If variation of etch rate resulting from surface morphologies is taken into account during the etching process, we can understand more phenomena such as softened pyramids loosing their tetragonal shape with defined triangular faces and effects of various additives.
     An atomistic model founded on etching-condensation mechanism is put forward systematically. It describes the formation of multifarious hillocks and reflects their difficulties in the growth process. A pyramid derives from an oxidized silicon atom and is easiest to come into being because of the minimum size of oxides. A long (111) hillock needs a mask composed of many tightest oxidized silicon atoms, so it is most difficult to emerge. For a long hillock with6planes, the density of those oxidized silicon atoms is lower than that of a long (111) hillock and it is possible to appear accordingly. The hillocks obtained in NaOH/NH4F system are similar to this shape. Furthermore,(110) planes should be formed if condensation occurs at (111) planes of a pyramid during etching process. On condition that oxides are located on the edge of the pyramid or formed (110) planes are too small to be ignored owing to a very small quantity of oxides produced at (111) planes, the angles between (111) and (100) planes should be slightly lower than the expected value54.735°. When oxides at (111) planes are so plenty that (110) planes are macroscopically visible, a pyramid with8planes should appear.
     By etching-condensation mechanism and its atomistic model, not only the question about initiator of pyramid has been answered but also lots of phenomena during etching process, such as alteration of morphology and etch rate, could be explained. It is an important supplement to theory of silicon etching and lay the foundation for developing low-cost and high-efficiency crystalline silicon solar cells.
引文
[1]赵争鸣,刘建政.太阳能光伏发电及其应用[M].北京:科学出版社,2005
    [2]2010~2015年中国太阳电池行业投资分析及前景预测报告[R].http://www.ocn.com.cn/
    [3]太阳电池行业概述[R].http://www.unbank.info/
    [4]新能源论坛揭示中国太阳电池产业实况[R].http://www.hc360.com/新闻分类/原创专区/
    [5]全球及中国太阳电池市场——节选自《《2012中国太阳电池行业发展前景及投资策略分析报告》[R]. http://www.chnci.com/print/4/110409/
    [6]太阳电池的研究进展-太阳能发电的优点及其应用[J].电子材料与电子技术,1999,1:59-62
    [7]蒋荣华,肖胞珍,杨卫东.化合物太阳电池与材料的研究进展[J].新材料产业,2004,126(5):38-42
    [8]深度解读:中国太阳电池产业[R].http://www.co188.com/行业资讯/行业脉动/
    [9]呈指数增长的中国太阳电池产业分析[R].http://ww w. cnsb.cn/商业资讯/市场分析/
    [10]中国半导体产业机遇之一:太阳电池[R].http://www.eefocus/
    [11]中国太阳电池产业展望:养精蓄锐实现[R].Grid Parity, http://www.opticsjournal.net/行业动态/
    [12]Martin A. Green, Keith Emery, Yoshihiro Hishikawa, et al. Solar cell efficiency tables (version 41)[J]. Progrss in Photovoltaics:Research and Applications,2013,21:1-11
    [13]向小龙,肖文波,周胜浩等.晶体硅太阳电池产业化技术现状与发展展望[J].http://www.chinabaike.com/z/yj/186950.html
    [14]郭志球,胡芸菲,沈辉等.晶体硅太阳电池制备工艺进展[J].新能源及工艺,2005,3:20-24
    [15]刘祖明,李文慧,廖华等.晶体硅太阳电池制造技术新进展[A].第八届光伏会议论文集[C].深圳:中国轻工杂志社,2004
    [16]王海燕.硅基太阳电池陷光材料及陷光结构的研究[D].郑州:郑州大学,2005
    [17]吕红杰.单晶硅太阳电池表面陷光微结构的制备与性能研究[D].南京:南京航空航天大学,2012
    [18]肖俊峰.晶体硅太阳电池表面陷光结构的研究[D].浙江:浙江大学,2010
    [19]梁磊,徐琴芳,忽满利.晶体硅太阳电池表面纳米线阵列减反射特性研究[J].物理学报,2013,62(3):037301
    [20]王晓娜.基于双结构超低表面反射率单晶硅太阳电池制备的研究[D].大连:大连理工大学,2012
    [21]Xuewen Geng, Zhe Qi, Meicheng Li, et al. Fabrication of antireflective layers on silicon using metal-assisted chemical etching with in situ deposition of silver nanoparticle catalysts[J]. Solar Energy Materials & Solar Cells,2012,103:98-107
    [22]谷硕实.晶体硅纳米模板与纳米绒面的制备[D].浙江:浙江大学,2012
    [23]Hongjie Lv, Honglie Shen, Ye Jiang, et al. Porous-pyramids structured silicon surface with low reflectance over a broad band by electrochemical etching[J]. Applied Surface Science,2012,258: 5451-5454
    [24]Anastassios Mavrokefalos, Sang Eon Han, Selcuk Yerci, et al. Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications[J]. Nano Letter,2012,12: 2792-2796
    [25]Chia-Hua Chang, Peichen Yu, Min-Hsiang Hsu, et al. Combined micro-and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics[J]. Nanotechnology,2011, 22
    [26]Daisuke Niinobe, Hiroaki Morikawa, Shuichi Hiza, et al. Large-size multi-crystalline silicon solar cells with honeycomb textured surface and point-contacted rear toward industrial production[J]. Solar Energy Materials & Solar Cells,2011,95:49-52
    [27]A. Alkaya, R. Kaplan, H. Canbolat, et al. A comparison of fill factor and recombination losses in amorphous silicon solar cells on ZnO and SnO2[J]. Renewable Energy,2009,34:1595-1599
    [28]黄小龙,崔海昱,邓菊莲等.硅基太阳电池表面织构的研究进展[J].太阳能,2009,2:20-23
    [29]Y.Nishimoto, K.Namba. Investigation of texturization for crystalline silicon solar cells with sodium carbonate solutions[J]. Solar Energy Materials & Solar Cells,2000,61:393-402
    [30]B. Vallejo, M. Gonzalez-Manas, J. Martinez-Lopez, et al. On the texturization of monocrystalline silicon with sodium carbonate solutions[J]. Solar Energy,2007,81:565-569
    [31]N. Marrero, B. Gonzalez-Diaz, R. Guerrero-Lemus, et al. Optimization of sodium carbonate texturization on large-area crystalline silicon solar cells[J]. Solar Energy Materials & Solar Cells,2007, 91:1943-1947
    [32]席珍强,杨德仁,吴丹等.单晶硅太阳电池的表面织构化[J].太阳能学报,2002,23(3):285-289
    [33]杨勇,杨志平,励旭东等.硅酸钠在单晶硅太阳电池表面织构化中的作用[A].第八届光伏会议论文集[C],深圳:中国轻工杂志社,2004
    [34]王晓燕.单晶硅太阳电池制绒研究[D].上海:上海师范大学,2012
    [35]孙林峰.单晶硅太阳电池表面制绒新方法研究[D].浙江:浙江大学,2010
    [36]古货生.单晶硅太阳电池制绒新技术研究[D].浙江:浙江大学,2011
    [37]M A Gosalvez, K Sato, A S Foster, et al. An atomistic introduction to anisotropic etching[J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING,2007,17:S1-S26
    [38]赵富鑫,魏彦章.太阳电池及其应用[M].北京:国防工业出版社,1985
    [39]司俊杰,马斌.10% TMAH硅湿法腐蚀技术的研究[J].微细加工技术,2004,3:39-44
    [40]董玮,陈维友,刘彩霞等.(100)硅片的各向异性腐蚀及微反射镜的制作[J].光子学报,2002,31(Z2):151-154
    [41]沈辉,柳锡运.太阳电池单晶硅表面织构化正交试验[J].华南理工大学学报(自然科学版),2006,34(10):11-14
    [42]Theo Baum, David J. Schiffrin. Kinetic isotopic effects in the anisotropic etching of p-Si (100) in alkaline solutions[J]. Journal of Electroanalytical Chemistry,1997,436:239-244
    [43]Miguel A.Gosalvez. Atomistic modeling of anisotropic etching of crystalline silicon[D]. Finland: Laboratory of Physics Helsinki University of Technology,2003
    [44]王涓,孙岳明,黄庆安等.单晶硅各向异性湿法腐蚀理论的研究进展[J].化工时刊,2004,18(6):1-4,24
    [45]M.A. Gosalvez, A.S. Foster, R.M. Nieminen. Atomistic simulations of surface coverage effects in anisotropic wet chemical etching of crystalline silicon[J]. Applied Surface Science,2002,202:160-182
    [46]John J. Kelly, Harold G.G. Philipsen. Anisotropy in the wet-etching of semiconductors [J]. Current Opinion in Solid State and Materials Science,2005,9:84-90
    [47]Don L. Kendall. On etching very narrow grooves in silicon[J]. Applied Physics Letters,1975, 26(4):195-198
    [48]Jan M. Lysko. Anisotropic etching of the silicon crystal-surface free energy model[J]. Materials Science in Semiconductor Processing,2003,6:235-241
    [49]H.Camon, Z.Moktadir. Atomic scale simulation of silicon etched in aqueous KOH solution[J]. Sensors and Actuators A,1995,46-47:27-29
    [50]姜岩峰,黄庆安,吴文刚等.硅各向异性腐蚀模型及其模拟进展[J].仪器仪表学报,2003,24(1):81-85
    [51]H. Seidel, L. Csepregi, A. Heuberge, et al. Anisotropic Etching of Crystalline Silicon in Alkaline Solutions I. Orientation Dependence and Behavior of Passivation Layers[J]. Journal of The Electrochemical Society,1990,137(11):3612-3626
    [52]姜岩峰,黄庆安,吴文刚等.在KOH中各向异性腐蚀的物理模型[J].半导体学报,2002,23(4):434-439
    [53]O. J. Glembocki, E. D. Palik, G. R. de Guel, et al. Hydration Model for the Molarity Dependence of the Etch Rate of Si in Aqueous Alkali Hydroxides[J]. Journal of The Electrochemical Society,1991, 138(4):1055-1063
    [54]李和委,焦智贤.硅的湿法化学腐蚀理论[J].半导体情报,1997,34(2):28-33
    [55]M. P. Suarez, D. A. Mirabella, C. M. Aldao. Dynamics of hillocks formation during wet etching[J]. Journal of Molecular Catalysis A:Chemical,2008,281:230-236
    [56]M. P. Suarez, D. A. Mirabella, C. M. Aldao. Formation of pyramidal etch hillocks in a Kossel crystal[J]. Surface Science,2005,599:221-229
    [57]M. Elwenspoek. On the Mechanism of Anisotropic Etching of Silicon[J]. Journal of The Electrochemical Society,1993,140(7):2075-2080
    [58]郭志球,柳锡,沈辉等.各向同性腐蚀法制备多晶硅绒面[J].材料科学与工程学报,2007,25(1):95-98
    [59]王涛,王正志.多晶硅太阳电池的酸腐蚀绒面技术[J].电源技术,2006,130(12):1020-1022
    [60]P. K. Basu, H. Dhasmana, D. Varandani, et al. A cost-effective alkaline multicrystalline silicon surface polishing solution with improved smoothness [J]. Solar Energy Materials & Solar Cells,2009, 93(10):1743-1748
    [61]赵百川,孟凡英,崔容强.多晶硅太阳电池表面化学织构工艺[J].太阳能学报,2002,23(6):759-762
    [62]Kyunghae Kim, S.K. Dhungel, Sungwook Jung, et al. Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication[J]. Solar Energy Materials & Solar Cells,2008,92:960-968
    [63]D. H. Macdonald, A. Cuevas, M. J. Kerr, et al. Texturing industrial multicrystalline silicon solar cells[J]. Solar Energy,2004,76:277-283
    [64]谢荣国,席珍强,马向阳.用化学腐蚀制备多孔硅太阳电池减反射膜的研究[J].材料科学与工程,2002,20(4):507-509,567
    [65]L. Schirone, G. Sotgiu, F.P.Califano. Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells[J]. Thin Solid Films,1997,297:296-298
    [66]刘祖明,苏里曼. K.特拉奥雷,王书荣等.多孔硅多晶硅太阳电池研究[J].云南师范大学学报,2001,21(4):13-16
    [67]Xiaoge Gregory Zhang. Electrochemistry of Silicon and Its Oxide[M]. New York:Kluwer Academic/Plenum Publishers,2001
    [68]R. W. Tjerkstra. Isotropic etching of silicon in fluoride containing solutions as a tool for micromaching[D]. Enschede:Universiteit Twente,1999
    [69]李静,吴孙桃,叶建辉等.湿法腐蚀后硅表面形态微结构的研究[J].纳米材料与结构,2003,13:19-22
    [70]Sang-Eun Bae, Jung-Hyun Yoon, Chi-Woo J. Lee, et al. In situ EC-STM studies of n-Si(111):H in 40% NH4F solution at pH 10[J]. Electrochimica Acta,2008,53:6178-6183
    [71]R. Houbertz, U. Memmert, R. J. Behm. On the potential-dependent etching of Si(111) in aqueous NH4F solution[J]. Surface Science,1998,396:198-211
    [72]A. Slimani, A. Iratni, J.-N. Chazalviel, et al. Experimental study of macropore formation in p-type silicon in a fluoride solution and the transition between macropore formation and electropolishing[J]. Electrochimica Acta,2009,54:3139-3144
    [73]Volker Lehmann. Electrochemistry of Silicon:Instrumentation, Science, Materials and Applications[M]. Germany:Wiley-VCH Verlag GmbH,2002
    [74]许彦旗,汪义川,季静佳等.关于单晶硅各向异性腐蚀理论的讨论[A].21世纪太阳能新技术[C].上海:21世纪太阳能新技术,2003:34-38
    [75]陆晓东,伦淑娴,周涛.超薄晶硅太阳电池的上表面陷光结构研究(Ⅰ)[J].光电子·激光,2012,23(11):2066-2073
    [76]邱明波,黄因慧,刘志东等.硅片绒面形貌影响光线反射的数值研究[J].光学学报,2008,28(12):2394-2399
    [77]Edward S. Kolesar, Jr., Victor M. Bright,et al. Optical reflectance reduction of textured silicon surfaces coated with an antireflective thin film[J]. Thin Solid Films,1996,290-291:23-29
    [78]P.K. Singh, R. Kumar, M. Lal, et al. Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions[J]. Solar Energy Materials & Solar Cells,2001,70:103-113
    [79]查超麟,刘祖明,刘剑虹等.多晶硅酸腐蚀表面织构的研究[J].太阳能学报,2003,增刊:1-4
    [80]刘超,卢庆韦,许欣翔等.太阳电池用晶体硅片绒面制备的研究[A].2007中国可再生能源产业论坛太阳能技术论文集[C].深圳:万方数据电子出版社,2007
    [81]E. Vazsonyi, K. De Clercq, R. Einhaus, et al. Improved anisotropic etching process for industrial texturing of silicon solar cells[J]. Solar Energy Materials & Solar Cells,1999,57:179-188
    [82]大连理工大学无机化学教研室.无机化学[M].北京:高等教育出版社,2001
    [83]I. Zubel, M. Kramkowska. Development of etch hillocks on different Si(hkl) planes in silicon anisotropic etching[J]. Surface Science,2008,602:1712-1721
    [84]Irena Zubel. Silicon anisotropic etching in alkaline solutions Ⅱ On the influence of anisotropy on the smoothness of etched surfaces[J]. Sensors and Actuators A,1998,70:260-268
    [85]Irena Zubel. Silicon anisotropic etching in alkaline solutions Ⅲ:On the possibility of spatial structures forming in the course of Si(100) anisotropic etching in KOH and KOH+ IPA solutions[J]. Sensors and Actuators,2000,84:116-125
    [86]Irena Zubel, Irena Barycka, Kamilla Kotowska, et al. Silicon anisotropic etching in alkaline solutions IV The effect of organic and inorganic agents on silicon anisotropic etching process[J]. Sensors and Actuators A,2001,87:163-171
    [87]Irena Zubel. The influence of atomic configuration of (hkl) planes on adsorption processes associated with anisotropic etching of silicon[J]. Sensors and Actuators A,2001,94:76-86
    [88]Wen-June Cho, Wei-Kuo Chin, Ching-Tung Kuo. Effects of alcoholic moderators on anisotropic etching of silicon in aqueous potassium hydroxide solutions[J]. Sensors and Actuators A,2004,116: 357-368
    [89]K. Biswas, S. Kal. Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon[J]. Microelectronics Journal,2006,37:519-525
    [90]I. Zubel, M. Kramkowska. Etch rates and morphology of silicon (hkl) surfaces etched in KOH and KOH saturated with isopropanol solutions[J]. Sensors and Actuators A,2004,115:549-556
    [91]I. A. Shah, W. J. P. van Enckevort, E. Vlieg. Absolute etch rates in alkaline etching of silicon (111)[J]. Sensors and Actuators A,2010,164:154-160
    [92]Irena Zubel, Malgorzata Kramkowska. The effect of alcohol additives on etching characteristics in KOH solutions[J]. Sensors and Actuators A,2002,101:255-261
    [93]U. Gangopadhyay, Kyunghae Kim, Ajoy Kandol, et al. Role of hydrazine monohydrate during texturization of large-area crystalline silicon solar cell fabrication[J]. Solar Energy Materials & Solar Cells,2006,90:3094-3101
    [94]Chii-Rong Yang, Po-Ying Chen, Yuang-Cherng Chiou, et al. Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution[J]. Sensors and Actuators A, 2005,119:263-270
    [95]Chii-Rong Yang, Po-Ying Chen, Cheng-Hao Yang, et al. Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions[J]. Sensors and Actuators A,2005, 119:271-281
    [96]Jing Chen, Litian Liu, Zhijian Li, et al. Study of anisotropic etching of (100) Si with ultrasonic agitation[J]. Sensors and Actuators A,2002,96:152-156
    [97]Jung M. Kim, Young K. Kim. The enhancement of homogeneity in the textured structure of silicon crystal by using ultrasonic wave in the caustic etching process[J]. Solar Energy Materials & Solar Cells 2004,81:239-247
    [98]Carmen Moldovan, Rodica Iosub, Dan Dascalu, et al. Anisotropic etching of silicon in a complexant redox alkaline system[J]. Sensors and Actuators B,1999,58:438-449
    [99]H. Seidel, L. Csepregi, A. Heuberger, et al. Anisotropic Etching of Crystalline Silicon in Alkaline Solutions Ⅱ. Influence of Dopants[J]. Journal of The Electrochemical Society,1990,137(11): 3626-3632
    [100]刘志刚.多晶硅太阳电池新腐蚀液的研究及其应用[D].上海:上海交通大学,2006
    [101]安静,孙铁囤,刘志刚等.硅片在HF/HNO3/H2O体系中的腐蚀速度[J].太阳能学报,2008,29(3):319-323
    [102]Solubility table[DB]. http://en.wikipedia.Org/wiki/
    [103]P. Allongu, V. Kielin, H. Gerischer. Etching mechanism and atomic structure of H-Si(111) surfaces prepared in NH4F[J]. Electrochimica Acta,1995,40(10):1353-1360
    [104]拉曼光谱[DB].http://baike.baidu.com/view/
    [105]E. D. Palik, H. F. Gray, P. B. Klein. A Raman Study of Etching Silicon in Aqueous KOH[J]. Journal of The Electrochemical Society,1983,130(4):956-959
    [106]Istvan Halasz, Mukesh Agarwal, Runbo Li, et al. Monitoring the structure of water soluble silicates[J]. Catalysis Today,2007,126:196-202
    [107]Istvan Halasz, Mukesh Agarwal, Runbo Li, et al. What can vibrational spectroscopy tell about the structure of dissolved sodium silicates?[J]. Microporous and Mesoporous Materials,2010,135:74-81
    [108]B. G. Parkinson, D. Holland, M. E. Smith, et al. Quantitative measurement of Q3 species in silicate and borosilicate glasses using Raman spectroscopy[J]. Journal of Non-Crystalline Solids,2008, 354:1936-1942
    [109]Bjorn O. Mysen. Solution mechanisms of silicate in aqueous fluid and H2O in coexisting silicate melts determined in-situ at high pressure and high temperature [J]. Geochimica et Cosmochimica Acta, 2009,73:5748-5763
    [110]Daniel Lapadatu, Robert Puers. On the anodic passivation of silicon in aqueous KOH solutions[J]. Sensors and Actuators A,1997,60:191-196
    [111]Le T. T. Tuyen, Ngo T. T. Tam, Nguyen H. Quang, et al. Study on hydrogen reactivity with surface chemical species of nanocrystalline porous silicon[J]. Materials Science and Engineering C,2001,15: 133-135
    [112]J. Wang, H. Tu, Q. Zhou, et al. In situ Raman spectroscopy study on silicon surface in NH4OH/H2O2 and HC1/H2O2 aqueous solutions[J]. Microelectronic Engineering,2001,56:221-225
    [113]Jing Wang, Hailing Tu, Wuxin Zhu, et al. A comparative Raman spectroscopy study on silicon surface in HF, HF:H2O2 and HF:NH4F aqueous solutions[J]. Materials Science and Engineering B,2000, 72:193-196
    [114]Isabelle Martinez, Carmen Sanchez-Valle, Isabelle Daniel, et al. High-pressure and high-temperature Raman spectroscopy of carbonate ions in aqueous solution[J]. Chemical Geology,2004, 207:47-58
    [115]Jia Wu, Haifei Zheng. Quantitative measurement of the concentration of sodium carbonate in the system of Na2CO3-H2O by Raman spectroscopy[J]. Chemical Geology,2010,273:267-271
    [116]M. Aghaie, E. Samaie. Non-ideality and ion-pairing in saturated aqueous solution of sodium fluoride at 25℃[J]. Journal of Molecular Liquids,2006,126:72-74
    [117]Daniel R. Neuville. Viscosity, structure and mixing in (Ca, Na) silicate melts[J]. Chemical Geology,2006,229:28-41
    [118]硅酸[DB].http://baike.baidu.com/view/10062.htm
    [119]K. Osseo-Asure. Etching Kinetics of Silicon Dioxide in Aqueous Fluoride Solutions:A Surface Complexation Model[J]. Journal of Electroanalytical Chemistry 1996,143(4):1339-1447
    [120]Joel Nino G Bugayong. Electrochemical etching of isolated structures in p-type silicon[D]. Los Banos:University of the Philippines,2004
    [121]Hirokazu Fukidome, Teruhisa Ohno, Michio Matsumura. Analysis of silicon surface in connection with its unique electrochemical and etching behavior[J]. Journal of Electroanalytical Chemistry,1997, 144(2):679-682
    [122]G. S. Higashi, Y. J. Chabal, G. W. Trucks, et al. Ideal hydrogen termination of the Si(111) surface[J]. Applied Physics Letters,1990,56:826-828
    [123]王俊中,魏昶,姜琪.氟硅酸性质[J].昆明理工大学学报,2001,26(3):93-96
    [124]Hironori Kaji, Kazuki Nakanishi, Naohiro Soga. Formation of porous gel morphology by phase separation in gelling alkoxy-derived silica. Affinity between silica polymers and solvent[J]. Journal of Non-Crystalline Solids,1995,181:16-26
    [125]Hironori Kaji, Kazuki Nakanishi, Naohiro Soga. Polymerization-Induced Phase Separation in Silica Sol-Gel Systems Containing Formamide[J]. Journal of Sol-Gel Science & Technology,1993,1: 35-46
    [126]张生.二氧化硅水溶物种与热力学性质[J].世界地质,1997,16(2):16-22
    [127]Arijit Mitra, J. Donald Rimstidt. Solubility and dissolution rate of silica in acid fluoride solutions[J]. Geochimica et Cosmochimica Acta,2009,73:7045-7059
    [128]S. Jenkins, S.R. Kirk, M. Persson, et al. The role of hydrogen bonding in nanocolloidal amorphous silica particles in electrolyte solutions[J]. Journal of Colloid and Interface Science,2009, 339:351-361
    [129]Michio Matsumur, Hirokazu Fukidome. Enhanced Etching Rate of Silicon in Fluoride Containing Solutions at pH 6.4[J]. Journal of Electroanalytical Chemistry 1996,143(8):2683-2686
    [130]S. Chandrasekaran, J. Check, S. Sundararajan. The effect of anisotropic wet etching on the surface roughness parameters and micro/nanoscale friction behavior of Si(100) surfaces[J]. Sensors and Actuators A,2005,121:121-130
    [131]Ismail Ali Shah, Surface morphology of Si(111) in alkaling etching solution[D]. Nijmegen: Radboud University of Nijmegen,2011
    [132]Ismail A. Shah, Benjamin M. A. van der Wolf, Willem J. P. van Enckevort, et al. Wet chemical etching of silicon (111):Etch pit analysis by the Lichtfigur method[J]. Journal of Crystal Growth,2009, 311:1371-1377
    [133]Srinivasa R. Raghavan, H. J. Walls, Saad A. Khan. Rheology of Silica Dispersions in Organic Liquids:New Evidence for Solvation Forces Dictated by Hydrogen Bonding[J]. Langmuir,2000,16: 7920-7930
    [134]刘君,熊党生.羟基对高含量氧化硅分散体系流变性能的影响[J].硅酸盐学报,2010,38(5):908-912
    [135]胡满成,翟全国,高世扬等.Cs2SO4-C2H5OH-H2O三元体系30℃和50℃的平衡溶解度研究[J].无机化学学报,2002,18(7):701-704
    [136]秦丙昌,张贺飞,陈传战.溴乙烷与氢氧化钠或氢氧化钾乙醇溶液反应的研究[J].实验与创新思维,2002,6:13-15
    [137]柳敬元,林崇熙.乙醇与浓碱水的分层现象[J].大学化学,2003,18(3):54-56
    [138]李明华,高世扬,夏树屏.Rb2SO4-C2H5OH-H2O三元体系的溶解度研究[J].稀有金属,2003,27(2):238-241
    [139]胡满成,孟梅,高世扬.CsCl-C2H5OH-H2O三元体系多温下平衡溶解度的研究[J].高等学校化学学报,2002,23(7):1219-1222
    [140]曾毅波,王凌云,谷丹丹等.超声技术在硅湿法腐蚀中的应用[J].光学精密工程,2009,17:166-171
    [141]陈勇.硅各向异性腐蚀的计算机模拟[J].重庆工学院学报,2007,21(2):26-28,41
    [142]G. J. Pietsch, G. S. Higashi, Y. J. Chabal. Chemomechanical polishing of silicon:Surface termination and mechanism of removal [J]. Applied Physics Letters,1994,64(23):3115-3117
    [143]M Elwenspoek. Stationary hillocks on etching silicon[J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING,1999,9:180-185
    [144]李静,昊孙桃,叶建辉等.氟化物溶液腐蚀后硅表面形态的STM与XPS研究[J].厦门大学学报(自然科学版),2003,42(5):591-595
    [145]李静,吴孙桃,叶建辉等.Si(111)湿法腐蚀后表面形态的FTIR研究[J].固体电子学研究与进展,2003,23(2):145-148,182
    [146]P. Dumas, Y. J. Chabal, P. Jakob. Morphology of hydrogen-terminated Si(111) and Si(100) upon etching in HF and buffered-HF solutions surfaces[J]. Surface science,1992,269-270:867-878
    [147]P. Jakob, Y. J. Chabal. Chemical etching of vicinal Si (111):Dependence of the surface structure and the hydrogen termination on the pH of the etching solutions[J]. The Journal of Chemical Physics. 1991,95:2897-2909
    [148]Rikard A. Wind, Melissa A. Hines. Macroscopic etch anisotropies and microscopic reaction mechanisms:a micromachined structure for the rapid assay of etchant anisotropy[J]. Surface Science, 2000,460:21-38
    [149]Henning Schroder, Ernst Obermeier, Anton Horn, et al. Convex Corner Undercutting of (100) Silicon in Anisotropic KOH Etching:The New Step-Flow Model of 3-D Structuring and First Simulation Results[J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS,2001,10(1): 88-97
    [150]Marvin A. Albao, Feng-Chuan Chuang, J.W. Evans. Kinetic Monte Carlo simulation of an atomistic model for oxide island formation and step pinning during etching by oxygen of vicinal Si(100)[J]. Thin Solid Films,2009,517:1949-1957
    [151]E.Fornies, C. Zaldo, J. M. Albella. Control of random texture of monocrystalline silicon cells by angle-resolved optical reflectance[J]. Solar Energy Materials & Solar Cells,2005,87:583-593
    [152]Simeon C. Baker-Finch, Keith R. Mclntosh. Reflection distributions of textured monocrystalline silicon:implications for silicon solar cells[J]. Progress in Photovoltaics:Research and Applications, 2012,20(1):51-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700