黑硅与黑硅太阳电池的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,在当前光伏市场中,晶体硅太阳电池仍然占据着绝大部分份额。随着人类需求的增加,人们对晶体硅太阳电池光电转换效率的要求也越来越高。在众多提高太阳电池转换效率的方法中,降低硅片表面反射率是一种非常有效的方式,于是出现了黑硅这个概念。黑硅是一种在紫外至近红外波长范围内都具有极低反射率的材料,正是黑硅的这个特性使得其吸引了业界广泛的关注,同时黑硅的制备方法和性能也成为领域内的研究热点。
     本论文首先采用SF6和O2作为反应气体,通过反应离子刻蚀(Reactive ion etching, RIE)法在已制备金字塔的单晶硅表面上制备了黑硅结构。相对于现有的RIE工艺,本实验是在室温、不加脉冲偏压且没有掩膜的情况下进行的,研究了不同刻蚀参数对黑硅性能的影响规律,并结合RIE法制备黑硅结构的机理对所得实验结果进行了分析。研究结果表明,刻蚀功率、SF6和O2流量比(F SF6/FO2)以及刻蚀时间对所制备的黑硅的结构形貌、表面反射率以及少子寿命有着非常重要的影响。最终在刻蚀功率为150W、F SF6/FO2为18sccm/6sccm和刻蚀时间为20min的条件下制备出了在400-900nm范围内表面反射率为4.94%的单晶黑硅样品,同时该样品的少子寿命为8μs。
     但是,RIE法制备黑硅时需要在真空环境中进行,且RIE设备昂贵,制备周期长,所以该方法不是很适合低成本产业化生产。本文选用了工艺简单、制备周期短和低成本的金属辅助化学腐蚀(Metal-assisted chemical etching, MACE)法。在现有的MACE法中所采用的辅助金属都属于贵金属,如铂(Pt)和金(Au)等。因此,本文采用更廉价的金属Ni来作为辅助金属,研究了不同工艺参数对所制备的黑硅性能的影响,同时结合实验结果分析了Ni辅助化学腐蚀法制备黑硅结构的原理。研究结果表明,腐蚀温度、腐蚀液中H2O2浓度和腐蚀时间对黑硅的结构形貌、表面反射率和光致发光性能有着非常重要的影响,经过优化工艺参数,我们制备出了表面反射率为1.59%(400-900nm)的单晶黑硅。同时,由于Ni的电负性只有1.91,只比Si(1.90)大0.01,因此,在Ni辅助化学腐蚀硅的过程中,Ni纳米颗粒从Si中得电子的速度小于腐蚀液从Ni中得电子的速度,致使Ni本身的电子被夺去,最终导致Ni纳米颗粒在辅助腐蚀过程中消失。而Pt(2.28)和Au(2.54)的电负性比Si(1.90)大更多,因此Pt和Au从Si中得电子的速度要比Ni从Si中得电子的速度快,从而可以保证自身的电子不会失去。另外,结合实验结果可以分析出,Ni辅助化学腐蚀法制备黑硅结构的过程中,其腐蚀方向倾向于<111>方向。
     由于上述Ni纳米颗粒是采用磁控溅射法制备的,为了降低制备成本,本文尝试了采用化学法在硅片表面制备Ni纳米颗粒。但发现化学法制备的Ni极易成膜,很难形成纳米颗粒分布在硅片表面,且其与硅片的接触不是很好,导致后期腐蚀过程中Ni膜直接脱落,无法进行辅助腐蚀。因此,本着低成本产业化的目的,本文采用全化学法的Ag辅助化学腐蚀法制备了单晶黑硅结构,研究了不同工艺参数对黑硅性能的影响规律。实验结果表明,Ag颗粒沉积时间、腐蚀液中H2O2浓度、腐蚀温度和腐蚀时间对样品的结构形貌、表面反射率、光致发光性能有着极其重要的影响,并结合实验结果分析了不同腐蚀深度和不同腐蚀孔径的硅纳米结构的减反射原理。最终经过工艺参数的优化,制备出了在400nm至900nm波长范围内平均反射率为0.98%的单晶黑硅,且发现Ag纳米颗粒优先在金字塔的顶端和四条棱边处形核和长大。为了进一步降低成本和简化工艺,本文采用一步腐蚀法并将AgNO3浓度降低为原来1/200,最终制备了400nm至900nm范围内表面反射率为1.11%的黑硅结构。
     目前光伏市场上主要以多晶硅太阳电池为主,主要原因是其价格相对单晶硅较便宜。同时,在表面反射率方面,制绒后的单晶硅为13%,沉积完SiNx减反射膜后仅为4%,而制绒后的多晶硅的表面反射率则大于20%,沉积完SiNx减反射膜后仍有10%。因此,多晶硅的表面反射率的可降低空间更大,又由于其价格相对较便宜,所以本文采用全化学法的Ag辅助化学腐蚀法来制备多晶黑硅结构,同时,在Ag辅助化学腐蚀法制备黑硅电池的工艺中,由于该工艺制备的腐蚀孔洞的孔径偏小,以至于后期PECVD法沉积的SiNx薄膜不能完全沉积到腐蚀孔洞底部,致使腐蚀孔洞底部出现大量的裸硅表面,最终导致光生载流子在此处被复合。因此,本文采用稀释的NaOH溶液对多晶黑硅表面进行扩孔处理,以便于腐蚀孔洞底部能被彻底钝化。研究了NaOH扩孔时间对所制备的黑硅结构形貌以及光学性能的影响规律,最终采用Ag辅助化学腐蚀法制备的多晶黑硅作为衬底硅片制备了最高光电转换效率为18.03%的多晶黑硅太阳电池,其Voc、Jsc和FF分别为632mV、36.08mA/cm2和79.07%,该效率比传统的酸制绒多晶硅太阳电池要高0.64%。
As well known, the crystalline silicon solar cells take up most of photovoltaic market. Along withthe increasing requirement from human in the whole world, higher photoelectricity conversionefficiency of crystalline silicon solar cells is requested all the time. And, among all the ways forincreasing the efficiency, to reduce the reflectance of silicon surface is a much efficient one. Therefore,the concept of black silicon comes out. Black silicon is one kind of materials which can nearly absorball the light from ultraviolet to near-infrared, due to which the black silicon attracts extensive attentionfrom related fields. Also, the preparation methods and properties of black silicon become the hotresearching topics.
     In this thesis, we first used reactive ion etching (RIE) method with sulfur hexafluoride (SF6) andoxygen (O2) as reactive gases to prepare the black silicon on pyramid-structured single-crystallinesilicon (sc-Si) surface. Comparing with the current RIE processes, the experiments in this study werecarried out at room temperature, without pulse bias voltage and without any mask before the etching.The effects of different etching parameters on the properties of black silicon were studied. Also, weanalyzed the obtained results according to the mechanism of RIE process. The research resultsshowed that the etching power, flow ratio of SF6and O2(F SF6/FO2) as well as the etching timepresented very important effects on the morphology, surface reflectance and minority carrier lifetimeof black silicon. Finally, under the etching power of150W,F SF6/FO2of18sccm/6sccm andetching time of20min, we obtained a black silicon sample with a surface reflectance of4.94%in thewavelength range of400-900nm and this sample showed a minority carrier lifetime of8μs.
     However, the RIE process needs to be carried out in vacuum environment. Besides, the price of aRIE facility is too expensive and it needs a long preparation period. In consideration of thesedisadvantages of RIE process for fabricating black silicon, it is not suitable for low-costindustrialization. Therefore, we selected the metal-assisted chemical etching (MACE) method toprepare the black silicon due to its simple process, short preparation period and low cost. However,the current used metals are all noble ones, such as platinum (Pt) and gold (Au). Therefore, in order tolower the cost of MACE process for fabricating black silicon, we used nickel (Ni) instead of Pt andAu as assisted-metal. The effects of different process parameters on the properties of black siliconwere studied and the formation mechanism of black silicon by Ni-assisted chemical etching was alsoinvestigated according to the experimental results. The results showed that the etching temperature,H2O2concentration and etching time presented important effects on the morphologies, surface reflectance and PL property of black silicon. After the optimization of process parameters, a blacksc-Si with a reflectance of1.59%from400nm to900nm was obtained. Besides, according to theexperimental results, we found that Ni could be etched off during the assisted etching process, whichindicated that the transfer rate of electrons from Si to Ni is slower than that from Ni to O-. The reasonfor this phenomenon is that the electronegativity of Ni is1.91, which is just a little higher than that ofsilicon (1.90) in contrast to the phenomena happened when using higher electronegativity metal likePt (2.28) or Au (2.54) as assist metals. Additionally, it was found that the etching direction tended to<111>.
     On the other side, the forementioned Ni nanoparticles (Ni NPs) were fabricated by magnetronsputtering method, which is not a low-cost one. Consequently, we used chemical method to fabricatethe Ni NPs. But only Ni thin film was formed by chemical method instead of nanoparticle shape andthe Ni film fell off easily from the silicon wafer. Therefore, in order to lower the preparation cost,silver (Ag) was chosen as the assisted metal for the fabrication of black silicon on pyramid-structuredsc-Si surface and the effects of different parameters on the properties of black silicon was investigated.The results showed that the morphologies, surface reflectance and photoluminescence (PL) propertyof black silicon were greatly affected by the deposition time of Ag nanoparticles, H2O2concentration,etching temperature and etching time. In addition, the anti-reflective mechanisms of siliconnanostructures with different etching depth and different etching diameter were investigated accordingto the experimental results. Finally, after the optimization of etching parameters, black sc-Si withreflectance of0.98%from400nm to900nm was obtained. In order to lower cost further and simplifythe preparation process, we used one-step etching process and reduced the AgNO3concentration to1/200of the original one. Finally, black sc-Si with reflectance of1.11%from400nm to900nm wasobtained.
     In the current photovoltaic market, multi-crystalline silicon (mc-Si) solar cell takes up more thansc-Si solar cell, which is due to the lower cost of mc-Si. Besides, in the aspect of surface reflectance,pyramid-structured sc-Si is13%and4%before and after the deposition of silicon nitride (SiNx) from400nm to900nm. However, the reflectance of acid-textured mc-Si wafer is higher than20%and itstill shows10%after the deposition of SiNx. Consequently, the surface reflectance of mc-Si can bereduced much more than that of sc-Si. Therefore, in consideration of the price and reflectance, weused Ag-assisted chemical etching method to fabricate the black mc-Si solar cell. However, there wasmuch non-well covered silicon surface which was not covered with SiNx layer due to the pores withsmall diameter by Ag-assisted etching. In other words, the non-well covered silicon surface was therecombination centers of carriers. As a result, dilute sodium hydroxide solution (NaOH) was used to widen the etched pores for a better passivation of the bottom of pores. The effects of NaOH treatmenttime on the morphologies and optical property were investigated. Finally, black mc-Si solar cells withbest conversion efficiency of18.03%were fabricated by Ag-assisted chemical etching method, ofwhich the Voc,Jsc and FF were632mV,36.08mA/cm2and79.07%, respectively.And, the efficiencyof18.03%is0.64%higher than that of the traditional mc-Si solar cell.
引文
[1][德]克劳特著,王宾,董新洲译.太阳能发电-光伏能源系统[M].北京:机械工业出版社,2008.
    [2] EPIA. Photovoltaic energy electricity from the sun [R]. Belgium: European PhotovoltaicIndustryAssociation,2009:3~16.
    [3] EPIA. Global market outlook for photovoltaics until2014[R]. Belgium: EuropeanPhotovoltaic IndustryAssociation,2010:5~6.
    [4]国家发改委/世行项目办公室上海交通大学太阳能研究所.太阳能光伏发电系统设计安装与维护手册[M].中国电力出版,1997:1~18.
    [5]杨德仁.太阳电池材料[M],北京:化学工业出版社,2006.
    [6] M. A. Green, S. R. Wenham, J. Zhao, et al. Recent improvements in silicon cell and moduleefficiency[A]. In:2lst IEEE PVSEC conference, Orlando, USA, May21-25,1990:207~210.
    [7] P. Max. Scientific autobiography and other papers [J]. American Journal of Physics,1950,18(2):117~118.
    [8] D. M. Chapin, C. S. Fuller, G. L. Pearson. A new silicon p-n junction photocell for convertingsolar radiation into electrical power[J]. Journal ofApplied Physics,1954,25(5):676~677.
    [9] R. Gremmelmeier. GaAs-photoelement[J]. Zeitschr. F. Naturforschung.1955,10a:501~502.
    [10] M. Wolf. Limitations and possibilities for improvements of photovoltaic solar energyconverters [J]. Proc. I. R. E,1960,48(7):1246~1263.
    [11] W. Shockley and H. J. Queisser. Detailed balance limit of efficiency of p-n junction solarcells[J]. Journal ofApplied Physics,1961,32(3):510~519.
    [12] D. E. Carlson, C. R. Wronski. Amorphous silicon solar cell[J]. Applied Physics Letters,1976,28(11):671~673.
    [13] B. Authier, L. Hill, M. Duban, et al. Optical simulation for a fixed spherical solar collector[J].Applied Optics,1979,18(18):3081~3089.
    [14] M. A. Green, Keith Emery, Yoshihiro Hishikawa, et al. Solar cell efficiency tables (version40)[J]. Progress in Photovoltaics,2012,20(5):606~614.
    [15] J. Zhao, A. Wang, Martin A. Green, F. Ferrazza. Novel19.8%efficient “honeycomb”textured multicrystalline and24.4%monocrystalline silicon solar cells[J]. Applied PhysicsLetters,1998,73(14):1991~1993.
    [16] O. Schultz, S. W. Glunz, G. P. Willeke. Multicrystalline silicon solar cells exceeding20%efficiency[J]. Progress in Photovoltaics: Research and Applications,2004,12(7):553~558.
    [17] M. A. Green. Third Generation Photovoltaics[A]. Advance Solar Energy Conversion, Berlin:2003.
    [18] G. F. Brown, J. Wu. Third generation photovoltaics[J]. Laser&Photonics Reviews,2009,3(4):394~405.
    [19] A. Yoshida, T. Agui, N. Katsuya, et al. Development of InGaP/GaAs/InGaAs inverted triplejunction solar cells for concentrator application[A].21th PVSEC, Japan:2011.
    [20][德]汉斯经特·瓦格曼著,叶开恒译.太阳能光伏技术[M].西安:西安交通大学出版社,2011.
    [21] S. Chaudhuri, A. Dhar, A. K. Pal. Studies of some wide band gap II-VI semiconductor basedp-n junctions[J]. Vacuum,1990,41(4):853~855.
    [22] C. Zechner, P. Fath, G. Wlleke, et al. Numerical simulation studies of mechanically texturedhigh efficiency silicon solar cells[A]. Proceedings14th EC PVSEC, Spain:1997:69~72.
    [23] Y. Inomata, K. Fukui, K. Shirasawa. Surface texturing of large area multicrystalline siliconsolar cells using reactive ion etching method[J]. Solar Energy Materials and Solar Cells,1997,48(1):237~242.
    [24] J. H. Zhao, A. H. Wang, P. Campbell, et al. A19.8%efficient honeycomb multicrystallinesilicon solar cell with improved light trapping[J]. IEEE Transactions on Electron Devices,1999,46(10):1978~1983.
    [25] E. Vazsoni, K. Clercq, R. Einhaus, et al. Improved anisotropic etching process for industrialtexturing of silicon solar cells[J]. Solar Energy Materials and Solar Cells,1999,57(2):179~188.
    [26] S. W. Park, D. S. Kim S. H. Lee. New approach to isotropic texturing techniques onmulticrystalline silicon wafers[J]. Journal of Material Science Materials in Electronics,2001,12(11):619~622.
    [27] S. W. Park, J. Kim. Application of acid texturing to multicrystalline silicon wafers[J]. Journalof the Korean Physical Society,2003,43(3):423~426.
    [28] H. Ling, S. Wang. Quasineutral limit of a time-dependent drift-diffusion-Poisson model forp-n junction semiconductor devices[J]. Journal of Differential Equations,2006,225(2):411~439.
    [29] P. J. Anthony.Alteration of diffusion profiles in semiconductors due to p-n junctions[J]. SolidState Electronics,1982,25(12):1171~1177.
    [30] M. C. Wei, S. J. Chang, C. Y. Tsia, et al. SiNx deposited by in-line PECVD formulticrystalline silicon solar cells Solar Energy,2006,80(2):215~219.
    [31] B. Karunagaran, S. J. Chung, S. Velumani. Effect of rapid thermal annealing on the propertiesof PECVD SiNx thin films[J]. Materials Chemistry and Physics,2007,106(1):130~133.
    [32] C. H. Crouch, J. E. Carey, J. M. Warrender, et al. Comparison of structure and properties offemtosecond and nanosecond laser-structure silicon[J]. Applied Physics Letters,2004,84(11):1850~1852.
    [33] T. H. Her.Microstructuring of silicon with femtosecond laser pulses[J]. Applied PhysicsLetters,1998,73(1673):1~3
    [34] T. Kwon, K. N. Joo, S. W. Kim. Surface Metrology Of Silicon Wafers Using A FemtosecondPulse Laser[J]. Proceedings paper of SPIE,2008,7063:1~8.
    [35] D. Mills, K. W. Kolasinski. Laser-Etched Silicon Pillars And Their Porosification[J]. Journalof Vacuum Science&Technology A,2004,22(4):1647~1650.
    [36] T. Sarnet, M. Halbwax, R. Torres, P. Torres. Femtosecond Laser For Black Silicon AndPhotovoltaic Cells[J]. Proceedings paper of SPIE,2008,6881:1901~1915.
    [37] X. Bao, F. Liu, X. Zhou. Photovoltaic properties of black silicon microstructured byfemtosecond pulsed laser[J]. Optik,2012,123:1474~1477.
    [38] A. Y. Vorobyev, C. Guo. Direct creation of black silicon using femtosecond laser pulses[J].Applied Surface Science,2011,257(5):7291~7294.
    [39] M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I.Perichaud, S. Martinuzzi. Micro and nano-structuration of silicon by femtosecond laser:Application to silicon photovoltaic cells fabrication[J]. Thin Solid Films,2008,516(20):6791~6795.
    [40] D. V. Abramov, A. F. Galkin, M. N. Gerke, S. V. Zhirnova, E. L. Shamanskaya. FemtosecondLaser-Induced Formation of Surface Structures on Silicon and Glassy Carbon Surfaces[J].Physics Procedia,2011,12:24~28.
    [41] X. Wang, F. Chen, H. Liu, W. Liang, Q. Yang, J. Si, X. Hou. Femtosecond laser-inducedmesoporous structures on silicon surface[J]. Optics Communications,2011,284(11):317~321.
    [42] T. H. R. Crawford, H. K. Haugen. Sub-wavelength surface structures on silicon irradiated byfemtosecond laser pulses at1300and2100nm wavelengths[J]. Applied Surface Science,2007,253:4970~4977.
    [43] X. Bao, S. Liu, Y. Wang, L.Zhao. Enhanced light absorption of Ag lms deposited ontofemtosecond laser microstructured silicon[J]. Materials Letters,2011,65:1927~1930.
    [44] Q. Zhao, J. Qiu, C. Zhao, X. Jiang, C. Zhu. Formation of array microstructures on silicon bymultibeam interfered femtosecond laser pulses[J]. Applied Surface Science,2005,241(3):416~419.
    [45] H.W. Deckman, J. H. Dunsmuir. Natural lithography[J]. Applied Physics Letters,1982,41(1):377~378.
    [46] D. H. Macdonald, A. Cuevas, M. J. Kerr, et al. Texturing industrial multicrystalline siliconsolar cells[J]. Solar Energy,2004,76(1):277~283.
    [47] W. A. Nositschka, C. Beneking, O. Voigt, et al. Texturisation of multicrystalline siliconwafers for solar cells by reactive ion etching through colloidal masks[J]. Solar EnergyMaterials and Solar Cells,2003,76(2):155~166.
    [48] S. Winderbaum, F. Reinhold, Yun. Reactive ion etching (RIE) as a method for texturingpolycrystalline silicon solar cells[J]. Solar Energy Materials and Solar Cells,1997,46(8):239~248.
    [49] R. Gómez-Martínez, A. Sánchez, M. Duch, J. Esteve, J.A. Plaza. DRIE based technology for3D silicon barcodes fabrication[J]. Sensors and Actuators B,2011,154(2):181~184.
    [50] H. Dekkers, F. Duerinckx, J. Szlufcik. Silicon surface texturing by reactive ion etching[J].Opto-Electronics Review,2000,8(4):311~316.
    [51] K. Niira, H. Senta, H. Hakuma, et al. Thin film poly-Si solar cells using PECVD andCat-CVD with light confinement structure by RIE[J]. Solar Energy Materials and Solar Cells,2002,74(1):247~253.
    [52] D. S. Ruby, S. Zaidi, S. Narayanan, et al. RIE-texturing of industrial multicrystalline siliconsolar cells[J]. Journal of Solar Energy Engineering,2005,127(1):146~149.
    [53] J. Yooa, G. Yu, J. Yi. Large-area multicrystalline silicon solar cell fabrication using reactiveion etching (RIE)[J]. Solar Energy Materials and Solar Cells,2011,95(1):2~6.
    [54] W. A. Nositschkaa, O. Voigta, P. Manshandenb, et al. Texturisation of multicrystalline siliconsolar cells by RIE and plasma etching[J]. Solar Energy Materials and Solar Cells,2003,80:227~237.
    [55] J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, J. Yi. Blacksilicon layer formation for application in solar cells[J]. Solar Energy Materials and SolarCells,2006,90:3085~3093.
    [56]葛益娴,王鸣,戎华.硅的反应离子刻蚀工艺参数研究[J].南京师范大学学报(工程技术版),2006,6:79~82.
    [57]程正喜,郭育林,周嘉. SF6/O2气氛下Al对反应离子刻蚀Si的增强作用机理研究[J].微细加工技术,2007,1:56~59.
    [58] H. Jansen, M. D. Boer, H. Wensink, B. Kloeck, Miko Elwenspoek. The black silicon method.VIII. A study of the performance of etching silicon using SF6/O2-based chemistry withcryogenical wafer cooling and a high density ICP source[J]. Microelectronics Journal,2001,32(17):769~777.
    [59] L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, S. Franssila. Non-ReflectingSilicon and Polymer Surfaces by Plasma Etching and Replication[J]. Advanced Materials,2011,23:122~126.
    [60] M. Schnell, R. Ludemann, S. Schaefer. Plasma surface texturization for multicrystallinesilicon solar cells[C]. Conference Record of the Twenty-eighth IEEE Photovoltaic SpecialistsConference, New York: IEEE,2000:367~370.
    [61] R. Dussart, X. Mellhaoui, T. Tillocher, et al. Silicon columnar microstructures induced by anSF6/O2plasma[J]. Journal of Physics D: Applied. Physics,2005,38(18):3395~3402.
    [62] J. Yoo, I. Parm, U. Gangopadhyay, et al. Black silicon layer formation for application in solarcells[J]. Solar Energy Materials and Solar Cells,2006,90(18):3085~3093.
    [63] J. Yoo. Reactive ion etching (RIE) technique for application in crystalline silicon solarcells[J]. Solar Energy,2010,84:730~734.
    [64] Y. Xia, B. Liu, S. Zhong, C. Li. X-ray photoelectron spectroscopic studies of black silicon forsolar cell[J]. Journal of Electron Spectroscopy and Related Phenomena,2012,184:589~592.
    [65] S. Zhong, B. Liu, Y. Xia, J. Liu, J. Liu, Z. Shen, Z. Xu, C. Li. In uence of the texturingstructure on the properties of black silicon solar cell[J]. Solar Energy Materials and SolarCells,2013,108:200~204.
    [66]邵长金,何静,刘邦武,夏洋,李超波.黑硅材料的制备及其光学特性[J].发光学报,2012,33(12):1357~1361.
    [67] B. Kim, D. Lee, S. Kim, G. An, K. Lee, N. Myung, Y. Choa. Silicon Solar Cell withNanoporous Structure Formed on a Textured Surface [J]. Journal of American CeramicSociety,2009,92(10):2415~2417.
    [68] Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, U. Gosele. Oxidation Rate Effect on theDirection of Metal-Assisted Chemical and Electrochemical Etching of Silicon [J]. Journal ofPhysics Chemistry C,2010,114:10683~10690.
    [69]马蕾蕾.多孔硅“黑硅”的研究[D]:复旦大学,2007.
    [70]刘光友,谭兴文,姚金才等.电化学制备薄黑硅抗反射膜[J].物理学报,2008,57(1):514~518.
    [71]姜晶,吴志明,王涛等.革命性的新材料——黑硅[J].材料导报,2010,7:122~126.
    [72] H. Lv, H. Shen, Y. Jiang, C. Gao, H. Zhao, J. Yuan. Porous-pyramids structured siliconsurface with low re ectance over a broadband by electrochemical etching[J]. Applied SurfaceScience,2012,258:5451~5454.
    [73]蒋晔,沈鸿烈,岳之浩,王威,吕红杰.黑硅与黑硅太阳电池的研究进展[J].人工晶体学报,2012,41(增刊):1~7.
    [74]王威,沈鸿烈,吕红杰,岳之浩.多孔复合微结构的制备与减反射性能[J].南京航空航天大学学报,2013,45(1):147~151.
    [75]王威,沈鸿烈,吕红杰,岳之浩.多层纳米微结构的制备与陷光机理研究[J].电子器件,2013,36(1):1~4.
    [76] C. Chartier, S. Bastide, C. Lévy-Clément. Metal-assisted chemical etching of silicon inHF-H2O2[J]. Electrochimica Acta,2008,53(17):5509~5516.
    [77] M. Rabab. El-Sherif, A. Shaaban, et al. Metal-assisted etching of p-silicon-Pore formationand characterization[J]. Journal ofAlloys and Compounds,2011,509(10):4122~4126.
    [78] X. Geng, Z. Qi, M. Li, et al. Fabrication of antireflective layers on silicon usingmetal-assisted chemical etching with in situ deposition of silver nanoparticle catalysts[J].Solar Energy Materials and Solar Cells,2012,103(6):98~107.
    [79] X. Li. Metal assisted chemical etching for high aspect ratio nanostructures: A review ofcharacteristics and applications in photovoltaics[J]. Current Opinion in Solid State andMaterials Science,2012,16(2):71~81.
    [80] X. Sun, R. Tao, L. Lin, et al. Fabrication and characterization of polycrystalline siliconnanowires with silver-assistance by electroless deposition[J]. Applied Surface Science,2011,257(9):3861~3866.
    [81] J. Kim, Y. Kim, S. Choi, W. Lee. Curved silicon nanowireswith ribbon-like cross sections bymetal-assisted chemical etching[J]. ACS Nano,2011,5(6):5242~5248.
    [82] H. Chen, H. Wang, X. Zhang, C. Lee, S. Lee. Wafer-scale synthesis of single-crystal zigzagsilicon nanowire arrays with controlled turning angles[J]. Nano Letters,2010,10(3):864~868.
    [83] S. Shiu, S. Hung, H. Syu, C. Lin. Fabrication of silicon nanostructured thin lm and itstransfer from bulk wafers onto alien substrates[J]. Journal of Electrochemistry Society,2011,158: D95.
    [84] K. Peng, Y. Xu, Y. Wu, Y. Yan, S. Lee, J. Zhu. Aligned single crystalline Si nanowire arraysfor photovoltaic applications[J]. Small,2005,1(11):1062~1067.
    [85] N. Geyer, Z. Huang, B. Fuhrmann, S. Grimm, M. Reiche, T. K. Nguyen-Duc, et al. Sub-20nm Si/Ge superlattice nanowires by metal-assisted etching[J]. Nano Letters,2009,9(9):3106~3110.
    [86] D. Lee, Y. Kim, G. Doerk, I. Laboriante, R. Maboudian. Strategies for controlling Sinanowire formation during Au-assisted electroless etching[J]. Journal of Materials Chemistry,2011,21:10359.
    [87] A. I. Hochbaum, D. Gargas, Y. J. Hwang, P. Yang. Single crystalline mesoporous siliconnanowires[J]. Nano Letters,2009,9(10):3550~3554.
    [88] Y. Qu, L. Liao, Y. Li, H. Zhang, Y. Huang, X. Duan. Electrically conductive and opticallyactive porous silicon nanowires[J]. Nano Letters,2011,9(12):4539~4543.
    [89] A. Wolfsteller, N. Geyer, T-K Nguyen-Duc, K. P. Das, N. D. Zakharov, M. Reiche, et al.Comparison of the top-down and bottom-up approach to fabricate nanowire-basedsilicon/germanium heterostructures[J]. Thin Solid Films,2010,518(9):2555~2561.
    [90] X. Wang, K. L. Pey, W. K. Choi, C. KF. Ho, E. Fitzgerald, D. Antoniadis. Arrayed Si/SiGenanowire and heterostructure formations via Au-assisted wet chemical etching method[J].Electrochemistry Solid State Letters,2009,12(5): K37.
    [91] D. J. Diaz, T. L. Williamson, I. Adesida, P. W. Bohn, R. J. Molnar. Morphology andluminescence of porous GaN generated via Pt-assisted electroless etching[J]. Journal ofVacuum Science Technology B: Microelectronic Nanometer Structure,2002,20:2375~2379.
    [92] T. L. Rittenhouse, P. W. Bohn, I. Adesida. Structural and spectroscopic characterization ofporous silicon carbide formed by Pt-assisted electroless chemical etching[J]. Solid StateCommunication,2003,126(5):245~250.
    [93] H. Asoh, F. Arai, S. Ono. Effect of noble metal catalyst species on the morphology ofmacroporous silicon formed by metal-assisted chemical etching[J]. Electrochimica Acta,2009,54(22):5142~5148.
    [94] V. Kapaklis, A. Georgiopoulos, P. Poulopoulos, C. Politis. Patterning of porous silicon bymetal-assisted chemical etching under open circuit potential conditions[J]. Physica E2007,38(1):44~49.
    [95] S. Chattopadhyay, P. W. Bohn. Surfactant-induced modulation of light emission in poroussilicon produced by metal-assisted electroless etching[J]. Analytical Chemistry,2006,78(17):6058~6064.
    [96] H. J. Choi, S. Baek, H. S. Jang, S. B. Kim, B. Y. Oh, J. H. Kim. Optimization ofmetal-assisted chemical etching process in fabrication of p-type silicon wire arrays[J].CurrentApplied Physics,2011,11(1): S25~29.
    [97] C. I. Yeo, Y. M. Song, S. J. Jang, Y. T. Lee. Wafer-scale broadband antire ective siliconfabricated by metal-assisted chemical etching using spin-coating Ag ink[J]. Optical Express,2011,19(5):A1109~1116.
    [98] K. Peng, Y. Yan, S. Gao, J. Zhu. Dendrite assisted growth of silicon nanowires in electrolessmetal deposition[J]. Advanced Functional Materials,2003,13(2):127~132.
    [99] H. Tou k. Oxidizing agent concentration effect on metal-assisted electroless etchingmechanism in HF-oxidizing agent-H2O solutions[J]. Applied Surface Science,2007,253(9):4156~4160.
    [100] R. Chaoui, B. Mahmoudi, A. Y. Si. Porous silicon antire ection layer for solar cells usingmetal assisted chemical etching[J]. Physics State Solid (a),2008,205(7):1724~1728.
    [101] X. Li, P. W. Bohn. Metal-assisted chemical etching in HF/H2O2produces porous silicon[J],Applied Physics Letters,2000,77(16):2572~2574.
    [102] K. Peng, A. Lu, R. Zhang, S. Lee. Motility of Metal Nanoparticles in Silicon and InducedAnisotropic Silicon Etching[J].Advanced Functional Materials,2008,18:3026~3035.
    [103] X. Li, P. W. Bohn, Metal-assisted chemical etching in HF/H2O2produces porous silicon[J].Applied Physics Letters,2000,77(16):2572~2574.
    [104] Y. Harada, X. L. Li, P. W. Bohn, et al. Catalytic amplification of the soft lithographicpatterning of Si nonelectrochemical orthogonal fabrication of photoluminescent porous Sipixel arrays[J]. Journal of American Chemistry Society,2001,123(36):8709~8717.
    [105] D. Qi, N. Lu, H. Xu, et al. Simple approach to wafer-scale self-cleaning antireflectivesilicon surfaces[J]. Langmuir,2009,25(14):7769~7772.
    [106] H. Yuan, V. E. Yost, M. R. Page, et al. Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and designrules[J]. Applied Physics Letters,2009,95(12):123501(1~3).
    [107] H. Yuan, V. E. Yost, M. R. Page, et al. Efficient black silicon solar cells with nanoporousanti-reflection made in a single-step liquid etch[C].34th IEEE Photovoltaic SpecialistsConference, New York: IEEE,2009,1-3:1508-1512.
    [108] T. Fatima, M. R. Page, M. Howard, et al.17.1%-Efficient Multi-Scale-Textured BlackSilicon Solar Cells without Dielectric Antireflection Coating[C].37th IEEE PhotovoltaicSpecialists Conference, Washington: IEEE,2011:1~4.
    [109] Y. Cao, A. Liua, H. Li, et al. Fabrication of silicon wafer with ultra low re ectance bychemical etching method[J]. Applied Surface Science,2011,257:7411~7414.
    [110] J. Oh, H. Yuan, M. Howard. An18.2%-efficient black-silicon solar cell achieved throughcontrol of carrier recombination in nanostructures[J]. Nature nanotechnology,2012, DOI:10.1038/NNANO.2012.166.1.
    [111]刘志平,赵谡玲,徐征,刘金虎,李栋才. PECVD沉积氮化硅膜的工艺研究[J].太阳能学报,2011,1(32):54~59.
    [112]王晓泉,汪雷,席珍强,徐进,崔灿,杨德怀. PECVD沉积氮化硅薄膜性质研究[J].太阳能学报,2004,3(25):342~344.
    [113] J. F. Lelievre, Y. Rozier, A. Bernaudeau, et al. Surface and bulk passivation of silicon byLF-PECVD hydrogenated silicon nitride SiNx:H[C].15th international photovoltaic scienceand engineering conference. Shanghai, China,2005,4(124).
    [114] V. E. Cosslett. Fifty years of instrumental development of the electron microscope[J].Advances in Optical and Electron Microscopy,1987,10(3):215~267.
    [115]姚骏恩.电子显微镜的现状与展望[J].电子显微学报,1998,17(6):767~776.
    [116]苏成志,曹国华,徐洪吉.积分球出射照度与入射光束几何性质关系分析[J].激光与红外,2010,40(2):195~199.
    [117] V. A. Soléa, E. Papillona, M. Cottea, et al. A multiplatform code for the analysis ofenergy-dispersive X-ray fluorescence spectra[J]. Spectrochimica Acta Part B,2007,62(1):63~68.
    [118] Y. Sahina, A. Karabuluta, G. Budaka. A practical method for the analysis of overlappedpeaks in energy dispersive X-ray spectra[J]. Applied Spectroscopy Reviews,1996,31(3):333~345.
    [119] H. J. Hovel. Scanned photoluminescence of semiconductors[J]. Semiconductor Science andTechnology,1992,7(1):1008-1012.
    [120] H. B. Bebb, E.W. Williams. Photoluminescence I: Theory[J]. Semiconductors andSemimetals,1972,8(5):181~320.
    [121] Yanming Bi, Xiaodong Su, Shuai Zou, Yu Xin, Zhihua Dai, Jie Huang, Xusheng Wang,Linjun Zhang. Plasma-etching fabrication and properties of black silicon by using sputteredsilver nanoparticles as micromasks[J], Thin Solid Films,2012,521:176~180.
    [122] V. Svrcek, A. Slaoui, J. C. Muller. Silicon nanocrystals as light converter for solar cells[J].Thin Solid Films,2004,384:451~452.
    [123] F. Voigt, V. Sivakov, V. Gerliz, G. H. Bauer, B. Hoffmann, G. Z. Radnoczi, B. Pecz, S.Christiansen. Photoluminescence of samples produced by electroless wet chemical etching:Between silicon nanowires and porous structures[J]. Physics Status Solidi A,2011,208(4):893~899.
    [124] Y. Li, M. Pan, A. S. Pang, et al. The application of electroluminescence imaging to detectionthe hidden defects in siliconsolar cells[J]. Chinese Journal of Luminescence,2011,32(4):378~382.
    [125] J. H. Kim, K. A. Jeon, S. Y. Lee. Formation mechanism and optical properties ofnanocrystalline silicon in silicon oxide[J]. Applied Physics Letters,2005,98(1):014303(1-3).
    [126] L. B. Zhu. The Research on Preparation and Photoluminescence of Porous SiliconFabricated by Non-acid Hydrothermal Method[D]. Changsha: Hunan University,2006.
    [127] P. J rg, K. Thomas, S. Mike, F. Michael. Black luminescent silicon[J], Physics Status SolidiC,2011,8(3):1021~1026.
    [128] Q. Lü, J. Wang, C. Liang, L. Zhao, Z. Jiang. Strong infrared photoluminescence from blacksilicon made with femtosecond laser irradiation[J]. Optics letters,2013,38(8):1274~1276.
    [129]吕红杰,沈鸿烈,沈洲,刘斌,李斌斌.太阳电池用单晶Si表面的织构化研究[J].电子器件,2011,34(5):498~502.
    [130] L. Zhang, H. Shen, Z. Yue, W. Wang, Y. Jiang. Preparation of low re ective microstructureat multicrystal siliconsurface by ferric nitrate etching[J]. Applied Surface Science,2013,280:446~449.
    [131]张力典,沈鸿烈,岳之浩,王威,蒋晔.低反射率多晶硅绒面的湿法制备研究[J].电子器件,2013,36(3):285~289.
    [132]张力典,沈鸿烈,岳之浩.多晶硅减反射复合结构的制备与性能[J].光学学报,2013,33(6):0631002.
    [133] Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov,X. Du. Nanostructure Formation and Passivation of Large-Area Black Silicon for Solar CellApplications[J]. small,2012,8(9):1392~1397.
    [134] Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer, U. Gosele. OrderedArrays of Vertically Aligned [110] Silicon Nanowires by Suppressing theCrystallographically Preferred <100> Etching Directions[J]. Nano Letters,2009,9(7):2519~2525.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700