键合铜线性能及键合性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
键合铜线以其优良的力学性能、电学性能和低成本因素,在微电子封装上被逐步采用,但目前铜线的应用上由于其本身容易腐蚀(氧化)、键合工艺不成熟等原因,在大规模集成电路封装中的应用受到了限制,通过微合金化提高键合铜线性能是较为有效的方法,而提高铜线的抗氧化性、微合金元素对铜线键合性能的影响研究较为鲜见。本研究通过氧化称重实验,计算氧化增重率,绘制增重率-时间曲线研究了铜氧化动力学,分析了氧化机理。通过EDS和SEM分析铜表面原子能量和氧化膜形貌,研究了组织、纯度、晶粒尺寸和微合金元素等因素对铜氧化性能的影响。通过对高纯铜线和微合金铜线不同温度下力学性能和电学性能的差异及晶粒尺寸和组织结构的变化,研究了高纯铜线和微合金铜线再结晶温度/热影响区长度的差异及微合金元素对再结晶温度/热影响区长度的影响机理。在优化铜线性能的基础上,通过对高纯铜线和微合金铜线的性能及其键合质量、键合强度的分析,研究了微合金元素对键合铜线性能的影响,系统分析了铜线性能和键合参数对键合质量的影响,采用EDS对经过高温可靠性试验和高温蒸煮试验的Cu-Al界面成分及连接强度进行分析,研究了铜线键合的可靠性及失效机理。主要结论如下:
     1.通过对铜的氧化机理、铜表面不同能量的原子、氧化膜形貌分析研究,得出铜氧化的微观过程是铜中的自由电子逐渐向氧原子偏移,先生成铜和氧的非晶体,接着这种非晶组织继续被氧化并长大,最终氧原子得到铜原子的一个电子形成疏松的Cu_2O颗粒附着在铜基体上,当基体完全由Cu_2O膜覆盖后,Cu_2O继续被氧化成致密的CuO,而不是电子一次性被氧原子得到生成Cu_2O晶体或者CuO晶体。
     2.铜氧化具有明显的取向性,非密排的(100)晶面上界面能高、晶面原子堆垛相对疏松和原子尺度上粗糙,且氧化膜生长连续,氧化速率高于密排的(111)晶面。氧化膜对纯铜氧化速率的影响和氧化膜的附着性和致密性有关,氧化膜越致密且与基体附着性越好氧化速率越小。单晶铜(111)晶面氧化膜生长致密且附着性好,多晶铜氧化膜的致密性和附着性能次之。单晶铜(100)晶面氧化膜的致密性和附着性都较差,氧化速率大于多晶铜。高纯铜(100)晶面的氧化膜容易脱落,低纯铜(100)晶面的氧化膜与基体是机械钉扎结合方式,结合不紧密。晶粒细化使得铜表面(111)晶面的面积相对原来未细化时的面积增加,即能量较小的晶面原子所占的面积增大,氧化速率减小。
     3.高纯铜加入微量Sn,使键合铜线的晶粒尺寸均匀,增加了小能量晶面的面积,同时由于Sn原子与氧原子的亲和力大于铜原子与氧原子的亲和力,所生成的氧化Sn与氧化铜之间互不固溶,铜Sn合金在形成的氧化膜与铜基体的界面间和氧化亚铜之间生成了保护氧化层,提高了高纯铜的氧化性。
     4.位错周围的弹性应力场的交互作用使Sn原子在位错周围形成气团,对再结晶过程中的位错运动与重排起阻碍作用,抑制再结晶过程的形核,Sn原子与铜原子间的化学交互作用与弹性交互作用,引起高纯铜的晶格畸变,阻碍了再结晶过程中铜的晶界迁移,减少了纯铜的再结晶形核率和晶粒长大两个过程,从而抑制再结晶,提高了再结晶温度,减少了铜球的热影响区,热影响区长度由高纯铜线的150μm减少到微合金铜线的120μm。微合金铜线的熔断电流与熔断时间之间符合I3.49exp.10~30.61分布,置信区间为0<t<10~3;微合金铜线熔断电流与弧长之间符合l~30.066750.78613.25.2562分布,置信区间为0<l<5。
     5.微合金铜线中,微量元素Sn的存在更有利键合过程中位错密度的增加,而位错密度的增加是形成键合界面和有效连接强度的主要因素,因此微合金铜线的键合强度高于高纯铜线。微量元素Sn的加入,使同体积的金属晶粒个数越多,且晶粒的取向不同,增加了变形时的协同作用,降低了变形的不均匀性程度,使形变时同样的形变量可分散到更多的晶粒中,从而产生较均匀的形变,得到均匀的第一焊点形貌。微合金铜线的性能影响烧球后的HAZ长度,加工硬化状态的铜线内部存在高的位错密度和位错能,降低了其再结晶温度,热影响区长度增加了8.7%。
     6.超声功率是键合过程中的关键,过大的超声功率使键合区域变形严重产生明显的裂纹,并会引起键合附近区域严重的应力集中,致使器件使用过程中产生微裂纹;过大的超声功率还会破坏已经形成的键合区域导致键合强度下降,形成无连接或剥离的结果。而过小的超声功率不能为键合强度的形成提供足够的能量,形成无强度连接或脱落。键合过程中,键合压力的不当会导致弹坑缺陷。键合过程中铜球传递给铝焊盘的压力的最大位置均在劈刀嘴部所对应处,形成可靠连接,铝焊盘中部,所受压力比较小,铜球不能经历充分的塑性变形,在铝金属化焊盘上不能完全铺展开来,铝膜所受的挤压较轻,形成薄弱连接。
     7.铜球焊点在经过高温可靠性试验(High Temperature Storage)后,键合界面没有出现空洞和裂纹,形成了CuAl、Cu9Al4金属间化合物,球焊界面的连接强度增加,测试失效模式是铝层剥离,与高温存储试验前相同。焊点经过高温高湿试验(PressureCooking Test)后,强度降低,键合界面出现孔洞,Cu9Al4金属件化合物消失,对于Cu/Al键合界面来说,Cu活性相对于Al较低,在潮湿的环境中,卤素原子的加入使周围环境呈现弱酸性,具备了电化学腐蚀的条件,而Cu9Al4金属间化合物其IMC中Cu含量较高,其电化学势比Cu低且不容易形成保护层,容易被腐蚀,其反应式为:Cu~9Al_4+12Br~-=4AlBr_3+9Cu+12e~-,降低了器件的可靠性。
     本研究通过将对铜线氧化机理、氧化性能影响因素、微合金元素Sn对键合铜线性能的影响及铜线键合可靠性有了新的认识,对提高铜线性能,加快铜线在微电子行业的应用具有重要的理论意义。
Copper bonding wire is popular performance in microelectronic packaging due to excellentproperties and low cost. But copper wire has been limited in advanced packaging because ofcorrosion (oxidation) and immature bonding technology. It is a effective method to improvecopper bonding wire properties through doping some other elements (micro-alloy). But onlylittle people do some research about doping little other elements to high purity copper andimproved oxidation properties.
     In this study, copper oxidation kinetics and oxidation mechanism were investigated byoxidation weighing experiment, and calculating the oxidation weight gain rate, drawingweightgain rate vs. time curve. The factors, such as structures, purity, grain size and micro alloyelement, to copper oxidation were investigated by analyzing atom energy of copper surfaceand oxidation film morphology by EDS and SEM. and recrystallization temperature/heataffected zone length and its mechanism were investigated by testing the mechanical andelectrical properties, grain size and organizational structure of high purity copper bondingwire and micro-alloy bonding wire at different temperatures. Based on optimized copperperformance,the factors of micro alloy to high purity copper wire were researched byanalyzing the bonding quality and bonding strength of high purity copper wire andmicro-alloy copper wire. Bonding quality was investigated by analyzing the different copperproperties and different bonding parameters. The ball bonding Cu-Al interface and strengthafter HTS and PCT were investigated by EDS and ball shear strength test and stitch pull test,and researched the reliability and failure mechanism of copper bonding wire. The mainconclusions as follows:
     1.Oxidation mechanism of copper, different energy atoms of copper surface andmorphology of the oxide film were analyzed, and draw a conclusion: the free electrons in thecopper is gradually shifted tooxygen atom in the microscopic process of copper oxidation,and reduce non-crystal compound with copper and oxygen, then thenon-crystal organizationbecome large due to further be oxidized. Then the oxygen atom gains an electron of thecopper atoms format porous Cu_2O particles and attached on a copper substrate.When thesubstrate is completely covered by the Cu_2O film, Cu_2O continues to be oxidized into denseCuO, rather than the oxygen atoms gain enough electronic and generate crystals of Cu_2O orCuO crystals.
     2. Copper oxidation has a significant orientation. In the non-close-packed (100) planes,the interfacial energy is high, and the interfacial atoms stacking is relatively loose, and thoseare rough in atomic scale. And the copper oxidation film is continuous growth, the oxidationrate is higher than the close-packed (111) crystal surface. The adhesion and dense of oxidationfilm influence the oxidation rate of pure copper, the oxidation rate is slow when the oxide filmis more dense and matrix adhesion. Oxidation film of single crystal copper (111) crystalsurface is dense and good adhesion,and dense oxidation film and adhesion of polycrystallinecopper oxide film is followed. The density and adhesion of single crystal copper (100) crystalsurface is poor than single crystal copper (111) crystal surface and polycrystalline copper, andthe oxidation rate is larger than polycrystalline copper. The oxidation film of high puritysingle crystal copper (100) crystal surface is fall off easily, and oxidation film of low puritycopper (100) crystal surface is combination mechanical pinning with Cu substrate, and adhesion is poor.The area of copper surface (111) crystal surface is increased after grainrefinement, and crystal surface atom with smaller energy is increased, then the oxidation ratedecreases.
     3. When high purity copper is doped micro Sn, the affinity of Sn atoms to oxygen atomsare stronger than copper atoms to oxygen atoms, and SnO and CuO are non-solution, soCu-Sn alloy produced protect oxidation layer between oxidation and copper base and betweenCu_2O and Cu_2O, then the anti-oxidation property of high purity copper is improved.
     4. Chemical interaction and elastic interaction between Sn atoms and Cu atoms cause thelattice distortion of high purity copper, and micro Sn causes the total grain boundary energy tobe reduced, then the chance of recrystallization nucleation in high purity copper are reduced,and influence the nucleation action of copper recrystallization, and grain boundary migrationin recrystallization process are prevented. And recrystallization nucleation rate and graingrowth are reduced, so the recrystallization is prevented, and recrystallization temperature isimproved, the length of HAZ is reduced, and the high purity copper wire HAZ length is150um, then the micro alloy copper wire HAZ is120um. The fusing current and fusing timeof micro alloy copper wire fit I3.49exp.10~3+0.61, the confidence interval0     5. Trace Sn in high purity copper wire is more favorable to increase the dislocationdensity in the bonding process, the dislocation density increased is the main factors offormatting the bonding interface and effective connection, so bonding strength of micro alloycopper wire is excellent than high purity copper wire.The number of metal grain is larger inthe same volume due to dope micro Sn, and the grain orientation is different, so increasesynergy when deform, reduce inhomogeneity of deforming, so that the same deformation aredistributed to more grain when deforming, and get a uniform deformation, then the first bondis uniformed. The mechanical properties of micro-alloy copper wire influences the FAB HAZlength, and hardening state of copper wire, with a high dislocation density,dislocation canreduce the recrystallization temperature, so the HAZ length of hardening wire increased by8.7%.
     6. Ultrasonic power is the key to bonding process, excessive ultrasonic power cause thebond region deformed and deduced obvious cracks, and can cause serious stress concentrationat the near bonding region, resulting micro cracks in the device during performance.Excessive ultrasound power will destroy the bonded area that has been formed, and result indecreased bond strength, then form a insufficientconnection. But small ultrasonic power cannot provide sufficient energy to form a bonding strength, and form a non-strength connectionor bonding drop. In bonding processing, improper bonding force lead to crater defects. Inbonding processing, the location of max force that copper ball passed to aluminum pad locatearound the capillary edge, and form a reliability connection. In the middle of aluminum pad,the force is small, and copper ball does not enough plastic deformation, and form a weakconnection.
     7. Bonding interface do not find any voids and cracks after copper ball bonding HTS, andforms some IMC, such as CuAl and Cu9Al4, the bonding interface strength is increased, andfailure mode is aluminum stripping, and the same to no-HTS. Bonding interface find somevoids after PCT, and bonding strength decreased, IMC Cu9Al4disappear. To Cu/Al interface,Cu active phase is lower than Al. In humid environment, the surrounding environment presents weak acid because of halogen atoms, and forms an electrochemical corrosionconditions, and Cu content is prodid in IMC Cu_9Al_4, and its electrochemical potential is lowerthan Cu, and do not form a protect layer easily, and corrosion easily, the reaction isCu_9Al_4+12Br~-=4AlBr_3+9Cu+12e~-, and reduce the device reliability.
     This study will be a new understanding to copper oxidation mechanism, the factors ofoxidation, the factors of micro-alloying element Sn to the performance of bonding copperwire and copper wire bonding reliability. And this will improve the copper bonding wireperformance, speed up the application about copper bonding wire in the microelectronicsindustry, and has important theoretical significance.
引文
[1]伍隽,杨邦朝. IC封装材料市场分析[J].电子与封装,2002,(3):7-10.
    [2]中国电子学会生产技术学分会丛书编委会.微电子封装技术[M].合肥:中国科学技术大学出版社,2003.
    [3] M. Sheaffer, R. Chylak, J. peters. Using copper materials in semiconductor packaging.www.kns.com/news.html.
    [4]徐毓龙,周晓华,徐玉成.集成电路铜连线技术[J].物理,1999,(6):364-367.
    [5]曹颜顺,郑晓华,李向明.新的铜球焊线的研究[J].电子工艺技术,1992,(1):5.
    [6] K. Toyozawa, K. Fujita, S. Minamida, et al.. Development of copper wire bondingapplication technology. Electronic Components&Technology Conference, May1990,1:762-767.
    [7] Chylak B,Kumar S,Perlberg G.Optimizing the wire bonding process for35μmultra-fine-pitch packages[C].Proceedings of SEMICON Singapore2001Technical Symposium,Singapore,2001.
    [8]L. T. Nguyen and F. J. Lim. Wire sweep during molding of integrated circuit. ElectronicComponents&Technology Conference, May1990,1:777-785.
    [9]Lee Levine等.铜球键合技术[J].微电子学,1987,17,(4):60-62.
    [10] S. Murali, N. Srikanth, C.J. Vath. III. Study on thermosonic ball bonding of copper andgold wires. Proceedings of SEMICON Conference, Singapore,6-9May2002, pp.127-136.
    [11] I. M. Cohen, K. Ramakrishna, P. S. Ayyaswamy. An Experimental Study of BallFormation Processes with Aluminum and Copper. Experimental Thermal and FluidScience,1989,12(1):51-64.
    [12] T.W. Ellis, L. Levine, R. Wicen, L. Ainouz.Copper wire bonding. Proceedings ofSEMICON Conference, Singapore,8-11May2000, pp.44-48.
    [13] T. Tran, L. Yong, B. Williams, S. Chen, A. Chen. Fine pitchprobing and wirebonding andreliability of aluminumcapped copper bond pads. Int J Microelectron ElectronicPackaging2000,23(3):332–338.
    [14] H. S. Chang, J. X. Pom, K.C. Hsieh, et al.. Intermetallic Growth of Wire-bond at175°CHigh Temperature Aging. Journal of Electronic Materials,2001,30(9):1171-1176.
    [15] H. J. Kim, J. S. Cho, Y. J. Park, J. Lee, and K. W. Paik. Effects of Pd Addition on AuStud Bumps/Al Pads Interfacial Reactions and Bond Reliability.Journal of ElectronicMaterials, Vol.33(2004), No.10, pp.1210-1218.
    [16]王鑫,范新会,严文,李炳.铜单晶线材静态及动态拉伸试验的研究[J].铸造技术,2004(11):848-850.
    [17]张鸿,谢建新,任克刚,覃强,王自东.退火温度对单向纤维晶纯铜丝材组织性能影响[J].北京科技大学学报,2003(3):237-240.
    [18]陈建等.冷拔<110>单晶铜的形变织构和微观组织演变[J].中国科学:技术科学,2011(7):896-905.
    [19]E. P. P. Saraswati, D. Theint, H. M. Stephan, et al.. High temperature storage (HTS)performance of copper ball bonding wires. Proceedings of the7thElectronic PackagingTechnology Conference, Singapore,2005:602-607.
    [20] Summary of MKE’s catalog. www.mke.co.kr/english/.
    [21] G. G.Harman.Wire bonding in microelectronics [J].McGraw-Hill,New York,1989.
    [22]K. W. Lam, H. M. Ho, S. Stoukatch, et al.. Fine pitch copper wire bonding on copperbond pad process optimization. Proceedings of the4thInternational Symposium-ElectronicMaterials and Packaging, Dec.2002,4-6:63-68.
    [23] Summary of ASM’s catalog. www.asmpacific.com/asmpt.
    [24]L. A. Lim, J. Castaneda, S. Shirakawa. Fine pitch copper wire bonding process andmaterials study. www.kns.com/news.html.
    [25] Introduction of ASM’s catalog. www.asmpacific.com/asmpt.
    [26]李薰,骆继勳.铜在200-900的氧化[J].金属学报,1965,8(3):311-319.
    [27]Khoviv A M, Nazarenko I N and Churikov A A. An Ellipsometric Study of the Oxidationof Thin Copper Films in Oxygen[J]. Inorganic Materials,2001,37(5):473-475.
    [28]Zhu Y., Mimura K.and Isshiki M. Oxidation Mechanism of Cu2O to CuO at600-1050[J]. Oxidation of Metals,2004,62(314):208-222.
    [29]Sanchez M., Rams J, Urena A. Oxidation Mechanisms of Copper and Nickel CoatedCarbon Fibers[J]. Oxid Met,2008,69(5/6):327-341.
    [30]Hembree G G, J.M.Cowleyand M.A.Otooni. The Oxidation of Copper Studied by ElctronScattering Techniques[J]. Oxidation of Metals,1979,13(4):331-351.
    [31]罗宇峰,钟澄,张莉,严学俭,李劲,蒋益明.纳米铜薄膜氧化反应动力学规律研究[J].化学学报,2007,65(15):1521-1526.
    [32]Z. Feng, C. R. Marks and A. Barkatt. Oxidation-Rate Excursions during the Oxidation ofCopper in Gaseous Environments at Moderate Temperatures[J]. Oxidation of Metals,2003,60(5/6):393-408.
    [33]T. N. Rhodin, Jr. Low Temperature Oxidation of Copper. I.Physical Mechanism. Journalof the American Chemical Society,1950,72(11):5102-5106.
    [34]M. Sanchez.J, Rams. A. Urena. Oxidation Mechanisms of Copper and Nickel CoatedCarbon Fibers[J]. Oxid Met,2008,69:327-341.
    [35]YongFu ZHU, Kouji Mimura, Jae-Won Llim, et al.. Brief Review of Oxidation Kineticsof Copper at350to1050. Metallurgical and materials transactions: A,2006,37(4):1231-1237.
    [36]李美栓,辛丽,钱余海等.氧化膜应力研究进展[J].腐蚀科学与防护技术,1999,11(5):300-305.
    [37]J. H.Stout, D. A. Shores, M.E. Armacanqui. Stresses and cracking of oxide scales M ater.Materials Science and Engineering: A,1989,120:193-197.
    [38]J. J.Barnes, J. G.Goedjen, A.David. AModel for stress generation and relief inoxide-Metal systems during a temperature change. Oxidation of Metals,1989,32(5/6):449-469.
    [39]M.Schutze. Stresses and decohesion of oxide scales.Materials Science and Technology,1988,5:407-414.
    [40]H. E.Evans, R. C.Lobb. Conditions for the initiation of oxide-scale cracking andspallation. Corrosion Science,1984,24(3):209-222.
    [41]A.Rahmel, M.Schutze. Mechanical aspects of the rare-earth effect. Oxidation of Metals,1992,38(3/4):255-266.
    [42]G. G. Hembree,J.M.Cowleyand M.A.Otooni. The Oxidation of Copper Studied byElctron Scattering Techniques[J]. Oxidation of Metals,1979,13(4):331-351.
    [43]V. V. Belousov. Mechanisms of Accelerated Oxidation of Copper in the Presence ofMolten Oxides[J]. Oxid Met,2007,67:235-250.
    [44]V. V. Belousov. Kinetics and mechanism of catastrophic copper oxidation. Protection ofMetals,1994,30(6):599-606.
    [45]V. V. Belousov. Kinetics and mechanism of high-temperature oxidation of coppercovered by bismuth thin films. Oxidation of Metals,1992,38(3/4):289-298
    [46] I. M. Cohen, P. S. Ayyaswamy. Ball Formation Process in Aluminum Bonding Wire.Solid State Technology,1985,28(12):89-92.
    [47] I. Qin, I. M. Cohen, P. S. Ayyaswamy. Ball Size and HAZ as Functions of EFOParameters for Gold Bonding Wire. Advances in Electronic Packaging,1997,19(1):391-398.
    [48]Dong liu, et al., Effect of Heat Affected Zone on the Mechanical Properties of CopperBonding Wire.2011Electronic Components and Technology Conference.
    [49] Z. W. Zhong, H. M. Ho, Y. C. Tan, et al.. Study of Factors Affecting theHardness of BallBonds in Copper Wire Bonding. MicroelectronicEngineering,2007,84:368-384.
    [50] T. W. Ellis, L. Lebine, R. Wicen, et al.. Copper wire bonding. Proceedings of SEMICONConference, Singapore, May,2000:44-48.
    [51]F.Li, H.Ding, Z.Lin. Parameters Sensitivity analysis for Force Control in Gold WireBonding Process[J]. Proceedings of the Sixth International Conference on Fluid PowerTransmission and Control,2005:748-753.
    [52]J. Qi, N. C. Hung, M. Li, et al.. Effects of process parameters on bondability in ultrasonicball bonding[J]. Scripta Materialia,2006(54):293-297.
    [53]隆志力,韩雷,钟掘等.不同温度对热超声键合工艺连接强度的影响[J].焊接学报,2005,26(5):23-26.
    [54] J. H. Li, L. G. Liu, L. H. Deng, et al.. Interfacial microstructures and thermodynamics ofthermosonic Cu-wire bonding[J]. IEEE Electron Device Letters,2011(32):1-3.
    [55] J. A. Schey. Introduction to manufacturing processes.3rded. NewYork, NY, McGrawHill,2000.
    [56]C.J. Hang, et al.. Effect of electronic flame offparameters on copper bonding wire:Free-air balldeformability, heat affected zone length, heat affectedzone breaking force,Microelectronic Engineering,86(2009):2094-2103.
    [57] J. L. Chen, Y. C. Lin. A New Approach in Free Air Ball Formation Process ParametersAnalysis. IEEE Transactions on Electronics Packaging Manufacturing,2000,23(2):116-122.
    [58] S. Kumar, F. Wulff, K. Dittmer. Degradation of small ball bonds dueto intermetallicphase growth. SEMICON Conference, Held inSingapore,2000May.
    [59] Larbi Ainouz, Muller Feindraht AG, Thalwil. The use of copper wire as an alternativeinterconnection material in advanced semiconductor packaging. KnS Report, Issue11,Number2,1999.
    [60] J. Tan, B. H. Toh, H. M. Ho. Modelling of free air ball for copper wire bonding.Proceedings of6Th Electronics Packaging Technology Conference,2004:711-717.
    [61] I. M. Cohen, L. J. Huang, P. S. Ayyaswamy. Melting and Solidification of Thin Wires: AClass of Phase-change Problems with A Mobile Interface-II. Experimental confirmation.International Journal of Heat Mass Transfer,1995,38(9):1647-1659.
    [62]MingDou Ker, JengJie Deng. Fully process compatible layout design on bond pad toimprove wire bond reliability in CMOS Ics. IEEE Trasactions on Components andPackaging Technologies. Vol.25,No.2,June2002, pp.309-315.
    [63] K. Atsumi, T. Ando, M. Kobayashi, O. Usuda. Ball bondingtechnique for copper wire.Proc IEEE Elec Comp36thConf, Seattle, Washington,1986,312-317.
    [64] H. M. Ho, J. Tan, Y. C. Tan, et al.. Modelling energy transfer to copper wire for bondingin an inert environment. Proceedings of the7thElectronic Packaging TechnologyConference, Singapore, December2005:292-297.
    [65] Larbi Ainouz, Muller Feindraht AG, Thalwil. The use of copper wire as an alternativeinterconnection material in advanced semiconductor packaging. KnS Report, Issue11,Number2,1999.
    [66] E. Ricci, R. Novakovic. Wetting and Surface Tension Measurements on Gold Alloys.Gold Bulletin.2001,34(2):41-49.
    [67] A. Pequegnat, etal.. Effect of gas type and flow rate on Cu free air ball formation inthermosonic wire bonding, Microelectronics Reliability,51(2011):43-52.
    [68] A. Pequegnat, H.J. Kim, M. Mayer, Y. Zhou, J. Persic, J.T. Moon. Effect of gas type andflow rate on Cu free air ball formation in thermosonicwire bonding. MicroelectronicsReliability,51(2011):43-52.
    [69]C.Hang, C.Wang, M.Shi, X.Wu, H.Wang. Study of copper free air ball in thermosoniccopper ball bonding. Proceedings of IEEE6thinternational conference on electronicspackaging technology,2005, pp.414-418.
    [70] S. Ramminger, P. Turkes, G. Wachutka. Crack Mechanism in Wire Bonding Joints.Microelectronics Reliability,1998,38:1301-1305.
    [71] G. G. Harman, C. A. Cannon. The Microelectronic Wire Bond Pull Test-How to Use It,How to Abuse It. IEEE Transactions on Components Hybrids and ManufacturingTechnology,1978, CHMT-1(3):203-210.
    [72] Z. N. Liang, F. G. Kuper, M. S. Chen. A Concept to Relate Wire Bonding Parameters toBondability and Ball Bond Reliability. Microelectronics Reliability,1998,38:1287-1291.
    [73]I. Lum, H. Huang, B. H. Chang, M. Mayer, D. Du, Y. Zhou. Effects ofsuperimposedultrasound on deformation of gold. J Appl Phys2009,105:024905-5.
    [74] W. J. Tomlinson, R. V. Winkle, L. A. Blackmore. Effect of Heat Treatment on the ShearStrength and Fracture Modes of Copper Wire Thermosonic Ball Bonds to Al-1%Si DeviceMetallization. IEEE Transactions on Components, Hybrids, and ManufacturingTechnology,1990,13(3):587-591.
    [75] H. Xu, et al.. Intermetallic phase transformations in Au-Al wire bonds. Intermetallics,19(2011)1808-1816.
    [76] C. W.Tan, A. R.Daud, M. A.Yarmo. Corrosion study at Cu-Al interface inmicroelectronics packaging. Appl Surf Sci2002,1,91-97.
    [77] N. Srikanth, S. Murali, Y. M. Wong, et al.. Critical Study of Thermosonic Copper BallBonding. Thin Solid Films,2004,463:339-345.
    [78] C. W. Tan, A. R. Daud. Bond Pad Cratering Study by Reliability Tests. Journal ofMaterials Science: Materials in Electronics,2002,13:309-314.
    [79] C. D. Breach, F. Wulff, C. W. Tok. An Unusual Mechanical Failure Mode in GoldBallbonds at50μm Pitch due to Degradation at the Au-Au4Al Interface during Ageing inAir at175°C. Microelectronics Reliability,2006,46:543-557.
    [80] I. M. Cohen, K. Ramakrishna, P. S. Ayyaswamy. An Experimental Study of BallFormation Processes with Aluminum and Copper. Experimental Thermal and FluidScience,1989,12(1):51-64.
    [81] H. J. Kim, J. Y. Lee, K. W. Paik, et al.. Effects of Cu/Al Intermetallic Compound onCopper Wire and Aluminum Pad Bondability. IEEE Transactions on components andpackaging technology,2003,26(2):367-371.
    [82] H. Xu, C. Liu, V. V. Silberschmidt, H. Wang. Effects of process parameters onbondabilityin thermosonic copper ball bonding. Proceedings of58thelectronic components andtechnology conference. Lake Buena Vista, FL, USA,2008, pp.1424-1430.
    [83] S. Murali, N. Srikanth, J. Charles, VathIII. An Analysis of Intermetallics Formation ofGold and Copper Ball Bonding on The rmal Aging[J]. Materials Research Bulletin,2003,38(2):637-646.
    [84] M. Drozdov, G. Gur, Z. Atzmon, W. D. Kaplan. Detailed investigation of ultrasonicAl-Cuwire-bonds: II. Microstructural evolution during annealing. JMater Sci2008,43(18):6038-6048.
    [85] M. Sheaffer, L. R. Levine, B. Schlain. Optimizing the Wire-bonding Process for CopperBall Bonding, Using Classic Experimental Designs. IEEE Transactions on Components,Hybrids, and Manufacturing Technology.1987,10(3):321-326.
    [86]孙跃,胡津.金属腐蚀与控制[M].哈尔滨大学出版社,2003.164-165.
    [87]Cabrera,N.,Mott,N.F.:Rept.Progr.Phys.,1948-49,12,163.
    [88]胡忠鲠.现代化学基础[M].高等教育出版社,2000.381.
    [89]印永嘉,奚正楷.物理化学简明教程[M].高等教育出版社,1992.14.
    [90]姚连增.晶体生长基础[M].中国科学技术大学出版社,1995.317-319.
    [91]黄昆,原著.韩汝琪,改编.固体物理学[M].高等教育出版社,1988.67.
    [92]汪复兴.金属物理[M].机械工业出版社,1981.18-25.
    [93]万钧,申三国,范希庆. Cu表面弛豫和自扩散机制的修正嵌入原子法模拟[J].物理学报,1997,46(6):1161-1167.
    [94]蓝田,徐飞岳.晶体表面弛豫和重构的规律与机理[J].原子与分子物理学报,1995,12(4):438-450.
    [95]邵文柱,宋磊,崔玉胜,等.铜-金刚石复合体大气氧化动力学研究[J].材料科学与工艺,1998,6(4):50-54.
    [96]李铁藩.金属晶界在高温氧化中的作用[J],中国腐蚀与防护学报,2002,20(3):180-183.
    [97]V. V. Belousov. Mechanisms of Accelerated Oxidation of Copper in the Presence ofMolten Oxides[J]. Oxid Met,2007:67:235-250.
    [98]徐淑华,张云芝,关若男,李日升,于赢大.铜氧化过程中其表面“非晶膜”的AES和HREM分析[J].华南理工大学学报,2000,28(8):55-60.
    [99]李柄,严文,王鑫,范新会.单晶铜线材表面氧化研究[J].西安工业大学学报,2007,27(5):456-459.
    [100][英]U. R.艾万斯著,华保定译.金属的腐蚀与氧化[M].北京:机械工业出版社,1976.
    [101]Bollmann.W.. Crystal Defects and Crystalline Interface. Springer Verlag, BerLin,1970,125.
    [102]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994,36-63.
    [103]Lucke, K.,Stuwe, H. P.. Recovery and Recrystallization of Metals. Interscience Wiley,1963,171.
    [104][苏]S. S.葛列里克著,仝键民.金属和合金的再结晶[M].北京:机械工业出版社,1985,349-360.
    [105]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994,73-78.
    [106]周如松编.金属物理[M].北京:高等教育出版社,1992.
    [107]Lucke, K.,Stuwe, H. P.. Acta Met.19(1970),1087.
    [108]H. Saiki, Y. Marumo, H. Nishitake, et al.. Deformation analysis of Au wire bonding[J].Journal of Materials Processing Technology,2006(177):709-712.
    [109]S. Murali, N. Srikanth, J.Charles. Grains deformation substructures and slip bandsobserved in thermosonic copper ball bonding[J]. Materials Characterization,2003(50):39-50.
    [110]田春霞.电子封装用导电丝材料及发展[J].稀有金属,2003,27(6):782-787.
    [111]Holger Gaul, M. Schneider, Ramelow, et al.. Analysis of the friction processes inultrasonic wedge/wedge-bonding[J]. Microsyst Technol,2009(15):771-775.
    [112]宋登元,宗晓萍,孙荣霞等.集成电路铜互连线及相关问题的研究[J].半导体技术,2001,(2):29-32.
    [113]陈新,李军辉,谭建平.芯片封装中铜丝焊接性能分析[J].电子机械工程,2004,(5):18-22.
    [114]J. H.Li, J. A.Duan, L.Han, et al.. Microstructural characteristics of Au/Al bondedinterfaces[J]. Materials Characterization,2007,58:103-107.
    [115]肖纪美.合金能量学.上海:上海科技出版社,1985.
    [116]束德林主编.金属力学性能.北京:机械工业出版社,1987.
    [117] N. F.Mott and F. R. N.Nabarro. Report of a conference on strength of solids,1.1948.
    [118] M. A.Jaswan, W. G.Henry and A. G. V.Roynor. Proc, Phys, Soc., B64,177,1961.
    [119]A. B. Lidard. Phil, Mag.,5,1171,1960.
    [120]A.Seeger,Defects in crystalline solid,328-391,1955.
    [121]黄昆.固体物理学[M].北京:高等教育出版社,1988.
    [122] W.A.Harrison.Pseudo Ptentials in the Theory of Metals. Benjamin,1966.
    [123] J. H. Li, L. Han, J. Zhong.Observations on HRTEM features of thermosonic flip chipbonding interface. Materials Chemistry and Physics,2007,106(2-3):457-460.
    [124] C. Raskin, Proceedings of the WAI International Technical Conference,Italy,1997.
    [125]C. J. Hang, C. Q. Wang,Y. H. Tian. Effect of ultrasonic power and bonding force on thebonding strength of copper ball bonds. China Welding,2007,16(3):46-50.
    [126] M. B. Peterson, W. O.Winer. Wear control handbook. New York, ASME,1980.
    [127]H. Xu, et al.. Effect of bonding duration and substrate temperature in copper ballbonding on aluminium pads: A TEM study of interfacial evolution. MicroelectronicsReliability,51(2011)113-118.
    [128] H. T. G. Hentzell, R. D.Thompson, K. N.Tu. Interdiffusion in copper–aluminum thinfilm bilayers. I. Structure and kinetics of sequential compound formation. J Appl Phys1983,54(12):692,3-8.
    [129]R. A.Hamm, J. M.Vandenberg. A study of the initial growth kinetics of thecopperaluminum thin-film interface reaction by in-situ x-ray diffraction and Rutherfordbackscattering analysis. J Appl Phys1984,56(2):3-9.
    [130] R.Pretorius, C. C. Theron, A. C. Vantomme, J. C.Mayer. Compound phase formation inthin film structures. Crit Rev Solid State Mater Sci1999,24:1-62.
    [131] W.Zhou, L.Liu, B.Li, Q.Song, P.Wu. Structural, elastic and electronic properties ofAl-Cu intermetallics from first-principles calculations. J Elect Mater2008,38(2):356-64.
    [132] Jiunn Chen, et al.. Investigation of growth behavior of Al-Cu intermetallic compoundsin Cuwire bonding. Microelectronics Reliability,51(2011),125-129.
    [133] J. P.Perdew, K.Burke, M. Ernzerhof. Generalized gradient approximation made simple.Phys Rev Lett,1996,77(18):3865-3868.
    [134]G.Kresse, J.Joubert. From ultrasoft pseudopotentials to the projector augmented-wavemethod. Phys Rev B,1999,59(3):1758-75.
    [135] G.Kresse, J.Hafner. A binitio molecular dynamics for liquid metals. Phys Rev B1993,47(1):558-561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700