铜铝复合接触线银铜合金的组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为适应我国经济发展,电气化铁路在不断提速,因此对电气化铁路用的接触导线的要求也在不断提高,要求具有高温抗软化性能、高强、高导、高耐磨,抗疲劳等性能。
     本文针对电接触导线材料性能要求,以为我校自主研制开发的新型铜铝复合接触线早日市场化提供可靠的试验和理论依据为背景,对新型接触导线用银铜合金的耐高温抗软化性能、磨损性能、疲劳性能等方面进行系统的研究。研究表明:
     (1)通过对接触线用银铜合金软化再结晶的研究,测得银铜合金软化温度约为390℃,此时合金硬度为HB84.90;银铜合金再结晶温度范围在350~450℃之间。银铜合金退火过程中发生再结晶的激活能为77.68KJ·mol-1;合金在350,390℃退火时的再结晶完成时间分别约为414.4,167.7min。铜铝复合接触线的拉断力为47KN,软化后其拉断力下降了约20%。从断口形貌上看,铜铝断口上都分布着较多的深韧窝,均表现为韧性断裂。
     (2)钢铁摩擦副对接触导线的磨损要远远小于铜摩擦副对导线的磨损,相差一个数量级以上。在实验条件范围内,与钢铁对磨时最大的磨损量也不到40mg,而与铜摩擦副对磨时,在50N试验力下最大磨损为279mg,在100N试验力下磨损量接近了1000mg;摩擦系数随载荷的增加而降低,然后趋于稳定,随着滑动速度的增大,材料的摩擦系数逐渐减小;通过对磨损试样表面形貌的宏观和微观分析表明,磨损表面有大量的塑性变形迹象,滑动方向上有明显的犁沟和切削痕迹,其纹路与滑动方向一致。与钢铁对磨时,磨损表面有黑色氧化铜生成,在磨损初期发生磨粒磨损。随着时间的延长,部分银铜会粘着到钢铁摩擦副表面,磨损机制由磨粒磨损转变为粘着磨损。铜摩擦副的剥落坑和粘着块明显比钢铁摩擦副的大,其磨损机制为粘着磨损。
     (3)采用不同应变幅控制,对冷变形银铜合金进行室温低周疲劳试验研究表明:加工率为38%的银铜合金循环周期大于加工率为19%的银铜合金循环周期。增大变形量,提高加工率,不仅可以达到表面硬度的要求,而且疲劳寿命也略有提高。在低应变幅下,滞后回线细长而尖锐;随着应变幅的增加,滞后环面积也随之增大。扫描电镜下观察表明,疲劳试样断裂后存在三个明显疲劳特征区:疲劳核心区、疲劳裂纹扩展区、瞬断区。纵向剖面金相观察表明,裂纹分别起源于材料表面和内部的缺陷。试样的裂纹扩展存在穿晶和沿晶两种方式,其主要扩展方式为穿晶扩展。
In order to adapt our country’s economic development,electrified railway is continuously enhanced its speed.The contact lead,using in electrined railway,is been acquired having high-temperature softening resistant performance、higher strength、electivity、wear resistance、anti-fatigue properties and so on.
     According to the properties of electro-contact lead materials , to provide reliable experimental and theoretical basis for general adoption of market principle of new-style Cu cladding Al contact wire by our school independent research and development, the new contact wire of the high-temperature softening resistant performance、wear resistance、anti-fatigue properties are research on systems. Research showed that:
     (1)By softening recrystallization studies on Ag-Cu alloy,the softening temperature is about 390℃, at this time alloy hardness HB84.90.It has risen obviously than the copper contact wire. This is due to alloying elements in solid solution strengthening effect of silver;recrystallization temperature range of between 350~450℃by the investigation of microstructure evolution and kinetics analysis of static recrystallization.Based on the experiment data of Cu-Ag alloy annealing process,the activation energy was calculated to be about 77.68kJ·mol-1,and the time for recrystallization completion at350,390℃are 414.4,167.7min.The breaking load of the Cu cladding Al contacts wire is 47KN,which dropped approximately 20% after annealing 1h at 390℃.There are the fracture features characteristic of dimple in copper and aluminum.
     (2)Steel friction pair of the contact wire wear is much less than the friction pairs of copper wire wear, it is an order of magnitude difference between them. In the context of experimental conditions,the wear and tear is not to 40mg with steel friction,but the wear and tear is to 279mg in the 50N test and close to 1000mg in the 100N test with copper friction. The friction coefficient decreases with the increase in load, and then stabilized. With the sliding velocity increases, the friction coefficient gradually reduced;through the Cu-Ag alloy contact wire wear surface morphology of the macro-and micro-analysis showed that the worn surface of the plastic deformation of a large number of signs of sliding direction, a clear furrow and cutting traces its lines in the same direction with the slide, When with steel and iron to rubbing, wears the surface to have the black oxide of copper production, has the abrasive in the attrition initial period to wear, along with the time extension, the partial silver copper will be stuck to the steel and iron friction subtabulation surface, wears the mechanism to transform by the abrasive attrition into the adhesive wear. Spalling pits and adhesive blocks with copper friction were significantly bigger than the steel friction .
     (3)By using different strain rate control, deformation of the cold silver alloy of copper at room temperature for low cycle fatigue test results showed that: 38% rate of silver-copper alloy processing cycle than the 19% rate of silver-copper alloy processing cycle;With the response rate of increase, behind the Central area also increased; as the cycle times of increased stress Has been gradually reduced, resulting in fatigue softening;sample after the break there are three obvious characteristics of fatigue: the source of crack, crack zone, blink off area; silver-copper alloy has a crack along the grain and grain wear in two ways, with the expansion of grain and grain boundary to expand into each other, that the sample crack grain wear expansion-oriented.
引文
[1]刘平,贾淑果,赵冬梅等.高速电气化铁路用铜合金接触线的研究进展[J].材料导报,2004,6(4):32~35
    [2]牛玉英,宋宝韫,刘元文.银铜合金接触线新工艺的研究[J].中国铁道科学,2005,26(5):99~103
    [3]李明茂.适用于高速电气化铁路的铜合金接触线[J].有色金属加工,2005,34(3):30~32
    [4]傅俊武.刚性与柔性接触网若干功能差异及标准的探论[J].电气化铁道.2007,6:41~42
    [5]郭美华.铜合金线材载流摩擦磨损性能研究[D].兰州理工大学, 2007
    [6]刘平,赵冬梅,田保红.高性能铜合金及其加工技术[M].北京:冶金工业出版社,2005
    [7]黄崇祺.轮轨高速电气化铁路接触网用接触线的生产现状及发展趋势[J].电线电缆,1999,6: 2~7
    [8]赵大军,唐丽,管桂生.我国电气化铁道用接触线的现状和发展趋势[J].铁道机车车辆,2008,28(5):74~77
    [9]运新兵,宋宝韫,刘元文等.电气化铁路用铜包钢接触线制造技术[J].有色金属,2002,(54):22~24
    [10]雷静果,刘平,井晓天等.高速铁路接触线用时效强化铜合金的发展[J].金属热处理,2005,30(3):1~5
    [11]黄崇祺.中国电力牵引用接触线(电车线)的发展[J].中国铁道科学, 2003,24(5): 61~65
    [12]邓强.城市轨道交通刚性接触网[J].都市快轨交通, 2006,19(5):89~91
    [13]吴朋越,谢水生,黄国杰.高速列车用铜合金接触线用材料及其加工工艺[J].稀有金属, 2004,30(5):203~207
    [14]刘辉.连铸连轧法取代传统上引法生产高速电气化铁路用铜银合金接触线的研究[D].昆明理工大学, 2002
    [15]钟毅.连续挤压技术及其应用[M].北京:冶金工业出版社,2004
    [16]谢建新.材料加工新技术[M].北京:冶金工业出版社,2005
    [17] V. N. Li, A. I. Kondrat'ev, E. V. Muromtseva. S. N. Khimukhin Testing of the Microstructure of Aerial Contact Wires by the Acoustic Method[J].Russian Journal of Nondestructive Testing 2003,39(12):919~924
    [18] Giuseppe Bucca, Andrea Collina. A Procedure for the Wear Prediction of Collector Strip and Contact Wire in Pantograph-ccatenary System[J]. Wear.2008,05:1~14
    [19] Raabe D,Miyake K,Takahara H.Processing microstucture and properties of ternary high-strength Cu-Cr-Ag in situ composites[J].Master Sci Eng A.2000,291:186~197
    [20]刘喜波,董企铭,刘平等.接触线用Cu-Ag-Cr合金的抗软化性和再结晶研究[J].铸造技术, 2004, 25(9):713~715
    [21]刘喜波.高强高导高耐磨接触线用Cu-Ag-Cr(Ce)合金组织和性能研究[D].河南科技大学, 2005
    [22]刘勇.接触线用稀土微合金化高强高导Cu-Cr-Zr合金时效析出特性研究[D].西安理工大学,2007
    [23]重有色金属材料加工手册编写组.重有色金属材料加工手册[M].北京:冶金工业出版社,1980
    [24]杨斌,周火清,曾鉴.铜铝复合接触线[P].中国专利:200620129365.5,2007-10-10
    [25]葛列里克SS.金属和合金的再结晶[M].北京:冶金工业出版社,1985
    [26] F.Wagner,N.Bozzolo,O.Van Landuyt,T.Grosdidier.In:Evolution of recryrstalization texture and microstructure in low alloyed titanium sheets[J].Acta Mater,2002,(50):1245~1259
    [27] Ding R,Guo Z X..Coupled quantitative slmulation of microstructural evolution and Plastic flow during dynamic reerystallization[J].Acta Mater.,2001,49:3163~3175
    [28] Jae-Hyung Cho, K. H. Oh, A. D. Rollett. Investigation of recrystallization and grain growth of copper and gold bonding wires[J]. Metallurgical and Materials Transactions A. 2006,37(10):3085~3097
    [29]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社, 1994
    [30] Suresh K. Donthu, Mehul M. Activation energy determination for recrystallization in electroplated-copper films using differential scanning calorimetry[J]. Journal of Electronic Materials. 2003,32(6):531~534
    [31] Hansen N.Reply to"the microstructure of deformed metals"by M.Hatherly[J].Scripta Metall, 1992, 27(11):1457~1458
    [32] Doherty R D,Hughes D A,Numphreys F J E A. Current issues in recrystallization.a review[J]. Mater Sci Engi,238A,1997:219~274
    [33] Humphreys F J,H.Recrystallization and related annealing phenomena[J].Oxford:Pergamon Press,1995
    [34]电气化铁道用铜及铜合金接触线TB/T2809-2005,中华人民共和国铁道行业标准[S].北京:中国铁道出版社,2005
    [35]徐长征,王庆娟,黄美权等.冷变形Cu-0.36Cr(wt%)合金的抗软化性能和再结晶行为[J].金属热处理,2007,5(5):38~42
    [36]蒋树农.高纯多晶铝动态再结晶的实验研究[D].中南大学,2004
    [37] O. A. Ustinov, L. P. Sukhanov, V. F. Gorbunov. Water-free technology for nitride fuel regeneration using recrystallization processes[J]. Atomic Energy.2006,101(3):687~689
    [38] Fei-Yi Hung, Truan-Sheng Lui, Li-Hui Chen. Recrystallization and fracture characteristics of thin copper wire[J]. Journal of Materials Science.2007,42(14):5476~5483
    [39] A.R. Eivani, H. Ahmed, J. Zhou. Correlation between Electrical Resistivity, Particle Dissolution, Precipitation of Dispersoids, and Recrystallization Behavior of AA7020 Aluminum Alloy[J]. Metallurgical and Materials Transactions A. 2009,40(10):2435~2447
    [40]彭伟平,彭彩虹,李培杰.AZ31B镁合金再结晶过程动力学[J].中国有色金属学报,2006,16(10):1724~1729
    [41]窦晓峰,鹿守理,赵辉.Q235低碳钢静态再结晶模型的建立[J].北京科技大学学报,1999,21(1):20~22
    [42]徐光,徐楚韶,赵嘉蓉.Ti-IF钢多道次变形静态再结晶研究[J].钢铁钒钛,2005,26(4):39~42
    [43]刘天模,刘宇,卢利伟等.冷锻AZ31镁合金再结晶过程动力学[J].材料工程,2009,2:47~50
    [44]秦庆东.Mg2Si/Al复合材料组织于性能的研究[D].吉林大学,2008
    [45]钱继锋.新型耐磨铜基合金的研制及其耐磨性的研究[D].太原理工大学,2002
    [46] Roylance BJ,Williams JA,Dwyer-Joyce R.Wear debris and associated wear phenomena-fundamental research and practice,Proceedings of the Institution of Mechanical Engineers,Journal of Engineering Tribology[J]. 2000:214:79~105
    [47]郭美华.铜合金线材干滑动摩擦磨损行为的研究[J].试验研究,2007,144(12):21~22
    [48]郭美华.铜银合金线材载流摩擦磨损行为研究[J].有色金属加工,2008,37(2):41~45
    [49]丁雨田,郭美华,许广济等.单晶铜线材载流摩擦磨损行为研究[J].铸造技术,2006,27(12):1390~1394
    [50]徐春国.铜合金导线材料的滑动摩擦磨损性能研究[D].兰州理工大学,2005
    [51]董讷.电接触理论在电力机车受电弓滑板中的应用研究[D].辽宁工程技术大学,2006
    [52]李鹏.载流摩擦磨损试验机的研制及滑板材料摩擦磨损和载流性能研究[D].武汉材料保护研究所,2007
    [53]车建明.C/Cu复合材料的磨损特性及耐磨损设计准则的研究[D].天津大学,1996
    [54]温诗铸.摩擦学原理[M].清华大学出版社,1990
    [55] Podsiadlo P,Stachowiak GW.Scale-invariant analysis of wear particle surface morphologyⅠ:Theoretical background,computer implementation and technique testing,Wear[J]. 2000,242:160~179
    [56] Podsiadlo P,Stachowiak GW.Scale-invariant analysis of wear particle surface morphologyⅡ:Fractaldimension,Wear[J]. 2000,242:180~188
    [57] Podsiadlo P,Stachowiak GW.Scale-invariant analysis of wear particle surface morphologyⅢ:Pattern recongtiion,Wear[J].2000,242:189~201
    [58] Hiroki Nagasawa. Wear mechanism of copper alloy wire sliding against iron-base strip under electric current Wear, 1998, 216(2):179~183
    [59] Poggie. Robert A. Wert, James J. Effects of surface oxidation and segregation on the adhesion wear behavior of aluminum-bronze alloys Journal of Adhension Science and Technology 1994,8(1):11~28
    [60] H.米格兰比.材料的塑性变形与断裂[M].北京:科学出版社,1998
    [61]王中光.材料的疲劳[M].北京:国防工业学出版社,1999
    [62]王跃臣.镍基高温合金热机械疲劳行为及微观机制研究[D].中国科学院金属研究所,2004
    [63]李娜,童小燕,姚磊江.纯铜低周疲劳中的温度响应与微观形貌变化[J].材料科学与工程学报,2006,24(5):754~757
    [64]孙超.N18合金低周疲劳行为研究[D].西华大学,2006
    [65]张辉.汽轮机中压主气阀低周疲劳寿命分析[D].华中科技大学,2006
    [66]万毅,邓斌,李会杰,田志军等.接触线的疲劳可靠性[J].西南交通大学学报, 2006,41(2):214~217
    [67] F.O. Riemelmoser,R. Pippan,H.P. Stuwe. An Argument for a Cycle-by-CyclePropagation of Fatigue Cracks at Small Stress Intensity Ranges[J].Acta. Mater, 1998,46:1793~1799
    [68] J.C.McMillan , R.M.N.Pelloux. Fatigue Crack Propagation underProgrammed and Random Loads[J].Fatigue Crack Propagation, 1997,7:505~535
    [69]王吉会.材料力学性能[M].天津:天津大学出版社,2006
    [70] low-fatigue properties of a nimonic PE-16 superalloy,Metal[J].1994,25 :159~171
    [71] XIAO Lin,GU Haicheng;Low cycle fatigue properties and microscopic deformation structure of Zircaloy-4 in recyrstallized and srtess-relieved conditions[J].Nucl.mater.1999,265:213~217
    [72] P.Vizeaino,A.D.Banchik etc;Solubility of hydrogen in zircaloy-4:irradiation indueed increase and thermal recoveyr[J].Jounral of nuclear material.2002:96~106
    [73]上海交通大学金属断口分析编写组.金属断口分析[M].北京:国防工业出版社,1979
    [74]邓少奎.2E12高强耐疲劳铝合金轧制工艺和疲劳性能研究[D].燕山大学,2007
    [75]智莹.热挤压AZ31镁合金低周疲劳行为研究[D].沈阳工业大学,2009
    [76]崔约贤,王长利.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社,1998
    [77]何如.高速列车铝合金焊接接头疲劳性能研究[D].北京交通大学,2008
    [78]王泓.材料疲劳裂纹扩展和断裂定量规律研究[D].西北工业大学,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700