不同取向单晶铜线制备及其冷拔变形组织研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实际中应用的细丝铜线都是由铜材经过多次拉拔得到的。即使是由OCC法制取的单晶铜线材,因初始直径较大,也需进行多次拉拔。铜线材在拉拔过程中,会产生剧烈的塑性形变,从而引起微观组织的巨大变化。单晶铜线材的初始取向对冷拔后铜线材的微观组织以及物理性能会有显著的影响。为了获得性能优良的铜线材,就要了解拉拔过程中不同初始取向对铜线材的微观组织的影响规律。本工作首先利用改进Bridgman法制取了不同初始取向的单晶铜材,再采用TEM和EBSD技术对不同初始取向经受不同变形量后单晶铜的冷拔组织进行研究,并采用维氏显微硬度计对经受不同形变量拉拔的铜线材的显微硬度进行了测量。
     实验结果表明,采用自行改进的高纯石墨布里奇曼改进型坩埚,在高真空条件下,温度控制在1450±5℃,在运行速度控制在2μm/s左右,可有效制备出不同取向的单晶铜试样。
     TEM分析结果表明,初始取向为<111>和<110>的单晶铜在真应变为0.94时,取向开始出现转动;当真应变大于0.94时,冷拔方向保持不变的微观组织特征是纵截面上位错胞沿线材的轴线方向拉长,而横截面上位错胞仍为等轴状;当真应变大于1.39时,冷拔单晶铜线材的位错胞尺寸不再随塑性变形量的增加而减小,而是达到某一个最小临界值;当真应变为1.96时,这两种取向的单晶体都有向<100>方向转动的趋势。
     EBSD分析结果表明,低应变下取向偏离区开始出现在试样表面。并且,随着试样真应变的增加,这样的区域逐渐由试样表面发展向试样中心区域。通过对较大真应变试样的观察表明,<111>织构较多地出现在试样中心区域,而<100>织构则是相对出现在试样表面居多。形变织构组分的稳定程度的顺序为<111>,<100>以及其它织构。在冷拔变形过程中,初始取向对形变织构的产生和分布比例有明显的影响。
     维氏显微硬度测试表明,未变形的<100>、<110>和<111>三种原始试样中,<110>取向的显微硬度值最大。随着真应变量的增加,初始取向为<100>和<110>单晶体显微硬度值的增加较快,当真应变大于1.96时,三种不同初始取向单晶铜试样的显微硬度值基本相同。
The ultra-fine copper wires actually used in practical application can usually be obtained after being cold drawn many times. The single crystal copper wire which produced by OCC method has relatived large initial diameter, and it also needs to be drawn several times.During drawing process, the deformed microstructure will be formed and have significant influence on the microstructure and physical properties of the copper wires after cold drawing. The initial orientation of single crystal copper wires will have a significant effect on the microstructure changes and physical properties. For getting good performances of copper wires, it is necessary to know the effect of the initial orientation of single copper wires on the microstructure evolution during drawing process. In the present work, the single-crystal copper samples with different initial orientations have been prepared by use of modified Bridgman crucible,the cold drawing microstructures of the single crystal copper samples with different initial orientations after different extent deformation have been studied by TEM and EBSD method. The micro hardness is performed by Vicker hardness tester measurements.
     The experimental results show that with the self-improved high-purity graphite Bridgman crucible and in the high vacuum condition, if the temperature is controlled at 1450±5℃, and the running speed is controled around 2μm/s, the single crystal copper samples with different initial orientation can be effectively prepared.
     The TEM results show that when the strains is 0.94, the initial orientation<111> and <110>single-crystal copper starting rotation of the orientation; when the strains are larger than 0.94, there are two kinds of microstructures. First is elongated dislocation cells in the longitudinal section and the second is equiaxed dislocation in the cross section. When the strains are larger than 1.39, the size of dislocation cells decreases as the strain increasing until they reach a critical minimum size. When the strain reaches to 1.96, the single crystal samples with initial orientitation<111> and<100> will have the trend to rotation of<100> direction.
     The EBSD results show that at low strains, the region where the drawn direction deviate from initial orientation to other crystal directions starts to appear at the surface of the samples, and with the strains increasing, the region will spread from the surface to the center; It is observed from the serial drawing process that<111> fiber texture component parallel to the drawn direction is in the centre of the samples and<100> fiber textent compoment is in the surface. The stabilility of deformation texture components is in the order of<111>,<100>and other texture. In the cold-drawing deformation process, the initial orientation of the samples will have an evident effect on the proportion of the deformation texture generation and distribution.
     The Vickers hardness measurement results show that among<100>,<110> and <111>three kinds of the original sample, the sample with<110> initial orientation has the largest micro-hardness values. As the strain increases, the sample with<100>and<110> will have relatively fast increase of the Vickers hardness value. When the strains are larger than 1.96, the microhardness values of the samples with all the three initial orientation will be basically in a same level.
引文
[1]A. Ohno, Continuous Casting of Single Crystal Ingots by the O.C.C process[J].Journals of Metals.1986 (38):14.
    [2]大野笃美.OCC Processにょる新素材の开[J].轻金属,1989,39(10):735.
    [3]范新会.单晶连铸技术研究[D].博士学位论文.西安:西北工业大学,1997
    [4]黎沃光.热型连续铸造法的原理及应用[J].铸造,1996.12:39-44
    [5]丁雨田,许广济,郭法文等.热型连铸单晶铜的性能[J].中国有色金属学报.2003(13)5:1071
    [6]何国,李建国,傅恒志.凝固过程中的界面各向异性[J].物理,1994,23(12):724-727
    [7]H. Soda, A. Mclean, Z. Wang, G. Motoyasu, A New Method for Continuous Casting of Particulate Reinforced Metal Matrix Composite Wires[J]. Journal of Materials Science.30(1995) 5438.
    [8]Driver J H, Skalli A.A theoretical and Experimental Study of The Plastic Deformation of F.C.C. Crystals in Plane Strain Compression [J]. Phil.Mag,1984,49:505-524.
    [9]陈建,严文,王雪艳,等.单晶铜线材在冷拔过程中形成的亚结构[J].稀有金属材料与工程,2007,36(11):1896-1900.
    [10]J. Chen, R. G. Ding, Dependence of Texture Evolution on Initial Orientation in Cold Drawn Single Crystal Copper[J].X. H. Fan et al. J Mater Sci
    [11]胡志良,严文,陈建,范新会.热型连铸过程微观组织的数值模拟[J].兵器材料科学与工程,2004,27(1):10-15.
    [12]N. Inakazu, Y. Kaneno, H. Inoue, Fiber Texture Formation and Mechanical Properties in Drawn Fine Copper Wire[J].Materials Science Forum.1994 (157-162):715.
    [13]K. Rajan, R. Petkie, Crystallographic Evolution of Microstructure in Thin Film Processing. Part II. Grain boundary structure [J]. Materials Science and Engineering A.1998 (257):185.
    [14]B. Jakobsen, H. F. Poulsen, U. Lienert, et al.Investigation of The Deformation Structure in an Aluminium Magnesium Alloy by High Angular Resolution Three-dimensional X-ray Diffraction. Science [J].2006 (312):889.
    [15]X. Huang, EBSD and TEM Characterization of Ultrafine Grained High Purity Aluminum Produced by Accumulative Roll-bonding [J]. Journal of Material Science.2007 (42):577
    [16]刘庆,黄晓旭,蔡大勇.多晶与单晶铜塑性变形行为的相关性[J].中国有色金属学报,2001,11(S2):110-113
    [17]Li B L, Godfrey A, Meng Q C, Liu Q, Hansen N. Microstructural Evolution of IF-steel During Cold Rolling[J]. Acta Mater.2004(52):1069
    [18]X. Huang, N. Hansen, Grain Orientation Dependence of Microstructure in Aluminum Deformed in Tension[J].Scripta Materialia.1997 (37):1.
    [19]X. Huang, N. Hansen, Structure and strength After Large Strain Deformation[J], Materials Science and Engineering A.2004 (387-389):186.
    [20]S. Li, S. He, A. V. Bael, P. V. Houtte, Residual Stress Determination In Cold Drawn Steel Wire by FEM Simulation and X-ray Diffraction [J], Materials Science Forum.2004 (408-412):439.
    [21]H. Park, D.N.Lee, Synthesis Uptake of CuO Hollow Microsphere and CuAlO_2 Nanoflower [J]. Materials Science forum.2004 (408-412):637.
    [22]Ohno A. Casting of Near Net Shape Products [J]. The Metallurgical Society,1988, 177-184.
    [23]本保元次郎,大野笃美,茂木辙一.镜面铸块の连壳铸造に间する研究[J].铸物,1987,59(1):670-675.
    [24]Soda H, Mclean A. Shen J. Development of Net-Shape Cast A luminiumyttrium Alloy Wires and Their Solidification Structures [J].Jounal of Materials Science.1997,32:1841-1847.
    [25]Motoyasu G, Soda H. Mcleans A, Shinizu T. Al-CuA12 Eutectic Structure in Unidirectbnally Solidified Rods by the Continuous Casting Process [J]. Journal of Materials Scince Letters,1997(16):566-588.
    [26]刘海明,范新会,严文.单晶铝线材在变形与加热过程中的组织性能变化[J].西安工业学院学报,2000,20(4):290-295.
    [27]范新会,魏朋义,李建国,等.单晶连铸技术原理及试验研究[J].中国有色金属学报,1996,6(4):106-109.
    [28]范新会,严文.单晶连铸技术研究进展及其应用前景[J].西安工业学院学报,1999,19(4):300-303.
    [29]许振明,李建国,傅恒志.OCC技术的研究现状及其进展[J].特种铸造及有色合金,1999(1):32-35.
    [30]陈建,严文,范新会,等.小直径金属线材单晶化技术原理及工艺[J].西安工业学院学报,2004,24(3):280-283.
    [31]李炳,王鑫,范新会等.小直径长单晶铜线材的制备[J].热加工工艺,2005,(11):19-22.
    [32]丁雨田,许广济,郭法文,等.热型连铸单晶铜的性能[J].中国有色报,2003,13(5):1071-1076.
    [33]张亚宁,严文,陈建,等.塑性变形对单晶铜线材导电性影响的研究[J].西安工业学院学报,2005,25(2):150-152.
    [34]李瑞麟.线材在音响系统中的作用与应用[J].音响技术杂志,2000,5:32-36.
    [36]Ohno A. Casting of Near Net Shape Products. The Metallurgical Society,1988,177-184.
    [37]许振明,李丽,李建国等.连续铸造铜单晶的晶体取向与竞争生长[J].人工晶体学报,1999,28(2):188-192
    [38]李巍,陈建,严文等.拉拔单晶铜线材形变织构的研究[J].兵器材料科学与工程.2008.A辑
    [39]陈建,严文,范新会等.单晶铜线材在冷拉拔变形过程中的组织化[J].中国科学.E辑
    [40]R.A.劳迪斯.单晶生长[M].北京:科学出版社,1979
    [41]HKL Technology Group.2003 EBSD Applications Catalogue[C], Denmark:HKL Technology,2003.
    [42]David P Field, David J Dingley. Microstructure Mapping of Interconnects by Orientation Imaging Microscopy [J].Journal of Mlectronic Material,1996,25:1767-1771.
    [43]Dorte J Jensen, Application of Orientation Mapping by Scanning and Transmission Electron Microscopy [J].Ultramicroscopy,1997,67:25-34
    [44]Balasundaram A, Gokhale A M. Quantitative Characterization of Spatial Arrangement of Shrinkage and Gas (Air) Pores in Cast Magnesium Alloys [J].Materials Characterization,2001,46:419-426.
    [45]文九巴,陈家光.Link OPAL系统中断口解理面位向电子背散射衍射测定方法[J].电子显微学报,1998,17(6):763.
    [46]高峰,海超.电子背散射衍射在钢铁材料领域的应用[J].本钢技术,2005,(5):8-11.
    [47]张寿禄.电子背散射衍射技术及其应用[J].电子显微学报,2002,21(5):703-704.
    [48]黄晓旭,蔡大勇,刘庆,等.背散射电子衍射与透射电镜在单晶铝形变组织研究中的应用[J].电子显微学报,2002,21(4):449-454.
    [49]黄文长,冯继军.EBSD分析技术及其在材料科学研究中的应用[J].汽车工艺与材料,2004(1):18-20.
    [50]李俊萌.我国铜加工业现状与发展趋势[J].世界有色金属,2005(2):24.
    [51]赵干,倪锋,魏世忠,等.热型连铸技术在单晶铜生产中的应用状况[J].铸造设备研究,2006(4).
    [52]范新会,魏朋义,李建国,等.工艺参数对单晶连铸线材表面质量的影响[J].中国有色金属学报,1997,7(1):134-137.
    [53]哈宽富.金属力学性质的微观理论[M].北京:科学出版社,1991.
    [54]Liu Q. A Simple and Rapid Method for Determining Orientations and Disorientations of Crystalline Specimen in TEM [J]. Ultramicroscopy,1995,60:81.
    [55]Hansen N, Huang X. Microstructure and Flow Stress of Polycrystalline and Single Crystals [J]. Acta Mat,1998,46:1827-1836.
    [56]MAO Weimin (毛为民), ZHANG Xinming (张新明).Quantitative Texture Analysis of Crystalline Materials(晶体材料织构定量分析) [M]. Beijing:Metallurgical Industry Press, 1995.225-278.
    [57]范新会,魏朋义,等.铝单晶线材连续铸造工艺及其性能[J].材料工程,1997,9:38-40.
    [58]范新会,严文,等.单晶铜线材在制备过程中的晶粒演化[J].西安工业学院学报,2006,26(1):068.
    [59]Chen Jian,Yan Wen, Wang Xue-yan, et al. Microstructure Evolution of Single Crystal Copper Wires in Cold Drawing[J]. Sci China Ser E-Tech Sci,2007,50(6):736-748.
    [60]J. Chen, W. Yan, et al. Dislocation Boundaries in Drawn Single Crystal Copper Wires Produced by Ohno Continuous Casting[J]. Journal of Materials Science,2009:1909-1917.
    [61]M. Kumar, A. J. Schwartz, et al. Correlating Observations of Deformation Microstructures by TEM and Automated EBSD Techniques [J]. Materials Science and Engineering,2001, A (309-310):78-81.
    [62]严文,陈建,等.塑性变形单晶铜线材织构的研究[J].西安工业学院学报:2006,26(1):64-67.
    [63]P. Wanger, O. Engler. Formation of Cu-type Sear Bands and Theirs Influence on Deformations and Textures of Rolled F.C.C{112}<111> Single Crystals[J]. Acta Metall. Mater. 1995,.43(10):799-3812.
    [64]C.M. Kuo, C.H. Lin, Y.C. Huang. Plastic Deformation Mechanism of Pure Copper at Low Homologous Temperatures [J]. Materials Science and Engineering.2005,A (369):360-368.
    [65]R.A. Laudise. The Growth of Single Crystals [M]. Prentice-Hall, Inc,1970:190-204.
    [66]傅恒志,郭景杰,等.先进材料定向凝固[M].北京:科学出版社,2008:490-524.
    [67]黄孝瑛,透射电子显微学[M].上海:上海科学技术出版社,1987:89.
    [68]张国栋,刘俊成,李佼.坩埚内壁对Bridgman法生长CdZnTe晶体热应力的影响[J].金属学报:2007,43(10):1071-1076.
    [69]Chang Y J, Shume A J, Bassim M N. Materials Science and Engineering [J],1988,103 A: L1
    [70]Shume A J, Chang Y J, Bassim M N. Materials Science and Engineering [J],1989,108 A: 241
    [71]Li B L, Godfrey A, Meng Q C, Liu Q, Hansen N. Acta Materialia[J],2004,52:1069
    [72]Hansen N. Mater Sci Techn [J],1990,6:1039
    [73]Kuhlmann-wilsdorf D. Materials Science and Engineering [J],1989,113 A:1
    [74]Liu Q and Hansen N. Microstructural Study of Deformation in Grain Boundary Region During Plastic Deformation of Polycrystalline Aluminium[J]. Mater Sci Eng A 1997,234-236:672
    [75]Godfrey A and Hughes D A. Determination of Boundary Area and Spacing in Prismatic Structures with Application to Dislocation Boundaries [J]. Mater Char.2002,48:89
    [76]Seefeldt M, Delannay L, Peeters B. A Disclination-based Model for Grain Subdivision-mater [J]. Sci Eng,2001, A 319-192
    [77]Barlow C Y, Bay B and Hansen N. A Comparative Investigation of Surface Relief Structures and Dislocation Microstructure in Cold-rolled Aluminum [J]. Phil Mag A,1985,253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700