玉米秸秆为原料燃料乙醇制备的关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质纤维素是地球上最丰富、最廉价的可再生资源,被认为是最重要的乙醇生产的后续资源物质。但在以木质纤维素为原料进行乙醇制备方面仍存在原料预处理技术难、纤维素酶水解成本高和木糖尚无法被利用产酒精等问题,纤维素乙醇的价格尚无法与粮食乙醇竞争,解决纤维素乙醇制备过程中的关键技术已成为全世界共识。本论文针对目前制约木质纤维素物质生产乙醇的主要技术瓶颈,在原料预处理、纤维素降解菌群在纤维素酒精生产中的应用和木糖利用方面进行以下研究:
     根据微波加热的基本原理,结合预处理的目标和特点,将微波引入秸秆的预处理过程,对不同的吸波介质进行了比较和选择,确定水是对纤维素酶毒性最小、预处理效果较好且环保经济的吸波介质。优化出微波预处理玉米秸秆的工艺参数为液固比为58:1,微波功率为630 W,处理时间为5.5分钟,在该条件下,微波预处理玉米秸秆的酶解率可达到49.12%。应用原子力显微镜(AFM)观察微波水预处理前后的秸秆表面形貌,结合本研究中预处理前后秸秆成分的变化结果,发现微波预处理是利用水分子在秸秆表面“钻孔”从而增大秸秆与纤维素酶的接触面积,也使得纤维素酶容易进入秸秆内部进行水解从而达到提高酶解效率的目的。
     从自然环境中分离筛选出高效产酶且酶活稳定的纤维素降解菌株FLZ6和FLZ10,采用形态学、生理生化和微生物细胞膜脂肪酸特异性分析,鉴定FLZ6为地衣芽孢杆菌(Bacillus-licheniformis),FLZ10为毛壳菌(Chaetomium spp)。应用FLZ6和FLZ10构建纤维素降解菌群代替纤维素酶使用,进行同时糖化发酵(SSF)生产乙醇的研究,通过测定反应体系中的乙醇含量,对SSF工艺进行了优化,最终确定了SSF工艺的最佳条件为:反应温度37℃,初始pH 6.0,纤维素降解菌群和酵母菌的比例为1:1,反应时间36小时。在该条件下,获得了13.1 g/100 g秸秆的乙醇。
     从富含丰富的腐烂纤维素的土壤中分离筛选出一株木糖发酵酵母菌株FL-20-2。采用形态学、生理生化和分子生物学方法将这株菌鉴定为假丝酵母属中的热带假丝酵母(Candida tropicalis)。在确定最优发酵培养基组份(木糖50 g/L,酵母粉0.5 g/L,KH2PO4 2.5 g/L,MgSO4. 7H2O 0.4 g/L)的基础上,进行菌株代谢特性分析。发现FL20-2在以木糖为唯一碳源时,pH 5.5,温度35℃,接种量为10%的厌氧条件下培养96 h,乙醇产量最高,为其利用木糖生成乙醇理论产量的32.4%,此时伴有31.05 g/L的木糖醇生成。在以木糖和葡萄糖的混合糖为碳源时,相同发酵条件下,木糖和葡萄糖转化的乙醇产量分别为其理论产量的37.7%和79.2%,同时伴有30.2 g/L的木糖醇产生。采用纤维素降解菌群和热带假丝酵母混合,对经过微波预处理的玉米秸秆进行乙醇制备研究,在纤维素降解菌群和热带假丝酵母菌按体积比1:1,10%接种量,温度为40℃,时间84 h条件下,乙醇产量为17.9 g/100g玉米秸秆,同时伴有10.05 g/100 g玉米秸秆的木糖醇生成。
     通过对假丝酵母菌属(Candida sp.)木糖还原酶基因序列保守区域的分析,设计了一系列引物,以近平滑假丝酵母(Candida parapsilosis)的总RNA为模板,采用RACE(Rapid Amplification of cDNA Ends)的方法成功获取了Candida parapsilosis木糖还原酶基因,其开放阅读框长度为954 bp,使用Blastn程序进行检索后发现与白色假丝酵母(Candida albicans)的醛糖还原酶(aldose reductase ,XM715658)同源性最高,相似性为80%,通过进化关系分析认定本文发现了一种新的木糖还原酶基因,其登录号为:EF033247。选用巴斯德毕赤酵母表达载体pGAPZαA为载体,将获得的木糖还原酶基因开放阅读框克隆该表达载体pGAP启动子下,构建分泌型重组质粒,该重组质粒同源重组到毕赤酵母基因组上进行稳定表达,表达产物采用镍离子亲和层析柱进行纯化,得到约36-kDa蛋白条带。酶学性质的分析表明,重组蛋白具有较高的木糖催化效率(kcat/Km = 61 /mM/min)和不同于其它木糖还原酶的辅酶特性,其依赖于NADH的催化效率(kcat/Km = 41.5 /μM/min)大于依赖于NADPH的催化效率(kcat/Km = 2.2 /μM/ min)。
     本论文通过上述研究,基本确定了以玉米秸秆为原料进行乙醇制备的工艺过程,采用本论文的技术,可获得17.9 g乙醇/100g玉米秸秆这一较高的乙醇产量;同时通过对木糖利用关键酶-木糖还原酶的辅酶特性研究,有望解决木糖发酵乙醇途径中的辅酶不平衡问题,为提高木糖发酵生产酒精的产量,进而进一步增加玉米秸秆的乙醇产量奠定基础。
Lignocellulose is one of the most abundant and inexpensive renewable resources on the earth. Thus far, although the mechanisms and technologies that using lignocellulose in ethanol production have been recognized, many aspects including the pretreatment of raw material, decrease of enzyme costs and utilization of xylose still need to be further improved. Due to the high cost, the ethanol produced from Lignocellulose is less competitive with that produced from corn. So, it is widely realized that significant effort should be driven into the development of low-cost cellulosic ethanol.In this study, three factors including pretreatment of ligncellulose, utilization of cellulosic degradation community instead of enzyme and utilization of xylose addressed below were investigated.
     Based on mechanism of microwave, microwave is introduced into corn stover pretreatment. Several microwave absorbers were used and compared. Water is determined to be the best microwave absorber in pretreatment. By Design Expert software showed that the optimal operational parameters were: liquid to solid ratio 58:1, power of microwave 630 W, pretreatment time 5.5 min. Under this condition, the enzyme degradation percentage can be reached to 49.12%. Images obtained by AFM showed that micropores were formed on the surface of corn stover after pretreatment. Considered with results obtained above, Microwave pretreatment enlarged the interface between solids and enzyme due to the micro pores water molecule drilled, which also facilitates enzyme entrance into interiors of solids.
     Cellulosic degradation strains FLZ6 and FLZ10 were isolated from natural environment. Morphologic analysis, physiological-biochemical characterization and cell membrane fatty acid analysis revealed that the FLZ6 belongs to Bacillus-licheniformis, and the FLZ10 belongs to Chaetomium spp. FLZ6 and FLZ10 were chosed in Simultaneous sacchariferous fermentation (SSF) tests. By testing the ethanol production, the optimal parameters of SSF process were obtained as: temperature 37°C, original pH 6.0, the ratio of cellulose decomposing strains and yeast 1:1, retention time 36 h. Under this condition, the production rate was 13.1 g ethanol per 100 g corn stover.
     A xylose fermentive yeast FL-20-2 were isolated from humus soil.Using morphologic analysis, physiological-biochemical characterization and molecular biological methods, the yeast was identified as Candida tropicalis. The ethanol production rate was 32.4% of the theoretical percentage, accompanied with 31.05 g/L xylitol production with pH 5.5, temperature 35°C, inoculation percentage 10% and fermentation time 96 h. When xylose and glucose were mixed as carbon sources, the ethanol production rates were 37.7% and 79.2% of their theoretical rates respectively, with 30.2 g/L xylitol produced.
     A degenerate primers and other primers ware designed according to the result of homologous analysis of nucleotide sequences encoding XR of Candida sp. Gene of xylose reductase (XR) from Candida parapsilosis was amplified by RACE technology from the total RNA of Candida parapsilosis. The open reading frame of Candida parapsilosis xyl1 gene is 954bp. A BLAST search showed that this sequence contained homology with Candida albicans aldose reductase XM_715658 and the homologous rate was 80%. This gene should be a new XR gene(Genebank accession:EF033247). The open reading frame of xyl1 from Candida parapsilosis was inserted into the downstream of the alpha-mating factor signal of the P.pastoris expression vector pGAPZαA .Under the control of promoter pGAP (glyceraldehydes 3-phosphate dehydrogenase)the recombinant protein can secreted express into culture medium. The products were purified using nickel affinity chromatography and an approximate 36-kDa protein band was obtained. Enzyme character analysis indicated that the recombinant XR showed high catalytic efficiency (kcat/Km =61 mM-1 min-1) for D-xylose and showed unusual coenzyme specificity with greater catalytic efficiency with NADH-dependent (kcat/Km=41.5μM-1 min-1 ) than with NADPH-dependent (kcat/Km=2.2μM-1 min-1).
     Based on the research above, ethanol production process using corn stover was determined. Using this technology, a ethanol yield of 17.9 g ethanol/100 g corn stover had been achieved. Simultaneously, based on the research on the coenzyme characteristics of xylose reducase (key enzyme), it is promising that the problem of coenzyme imbalance during xylose fermentation can be solved, which could further increase the ethanol output from corn stover.
引文
1 A. J. Ragauskas, C. K. Williams, B. H. Davison, et al. The Path Forward for Biofuels and Biomaterials . Science. 2006, 311: 484~489
    2 J. A. Antonius. Alcoholic Fermentation of Cabon Sources in Biomass Hydrolysates by Saccharomyces cerevisiae: Current Status. Antonie van Leeuwenhoek. 2006, 90: 391~418
    3 C. Martin. Ethanol Production from Enzymatic Hydrolysates of Sugarcane Bagasse Using Recombinant Xylose-utilising Saccharomyces cerevisiae. Enzyme and Microbial Technology. 2002, 31: 274~282
    4苏毅.澳大利亚制糖业的副产品利用.广西轻工业. 1997, 3: 3~11
    5 Faostat. Food and Agriculture Organization of the United Nations (FAO). February 2007
    6中华人民共和国国家发展计划委员会.能源发展“十一五”规划[ EB /OL ]. (2007204210) [ 2007207218 ]. http: / /www. ndrc. gov. cn / zjgx/P 020070410516458967992. pdf
    7 C. Schell, C. Riley, G. R. Petersen. Pathways for Development of a Biorenewables Industry. Bioresource Technology. 2008, 99: 5160~5164
    8 A. Waltera, R. C. Frank, P. Dolzana. Perspectives on Fuel Ethanol Consumption and Trade. Biomass and Bioenergy. Available at www. sciencedirect.com
    9 L. T. Thu, S. H. Nguyen. Fuel Ethanol from Cane Molasses in Thailand: Environmental and Cost Performance. Energy Policy. 2008, 36: 1589~1599
    10 O. Scar, J. Sanchez, C. A. Cardona. Trends in Biotechnological Production of Fuel Ethanol from Different Feedstocks. Bioresource Technology. 2008, 99: 5270~5295
    11刘洪斌.燃料乙醇非粮化—我国发展纤维乙醇的挑战与对策.生物加工过程. 2008, 6: 7~11
    12中华人民共和国国家发展计划委员会.可再生能源中长期发展规划. http://www.china.com.cn.
    13杨长军,汪勤,张光岳.木质纤维素原料预处理技术研究进展.酿酒科技. 2008, 3: 85~89
    14孙智谋.世界各国木质纤维原料生物转化燃料乙醇的工业化进程.酿酒科技. 2007, 1: 91~94
    15刘洪凤.秸秆纤维性能.东华大学学报. 2002, 2(28): 123~127
    16邬义明.植物纤维化学.北京轻工业出版社, 1991: 52~55
    17 J. C. Preez. Process Parameters and Environmental Facters Affecting D-xylose Fermentation by Yeasts. Enzyme Microb Technol. 1994, 16(8): 943~955
    18 H. Betal. Biochemistry and Physiology of Xylose Fermenting Yeast. Enzyme Microb Technol. 1994, 16(8): 933~943
    19 L. O. Ingram. Enteric Bacterial Catalysts for Fuel Ethanol Production. Biotechnol Progress. 1999, 15(5): 27~92
    20 A. Eliasson , C. Christensson , C. F. Wahlbom , B. Hahn-H?gerdal Anaerobic Xylose Fermentation by Recombinant Saccharomyces cerevisiae Harbouring XYL1, XYL2 and XKS1 in Mineral Media Chemostat Cultivations. Appl Environ Microbiol. 2000, 66(6): 1~6
    21 T. W. Jeffries, N. Q. Shi. Genetic Engineering for Improved Xylose Fermentation by Yeasts. Adv Biochem Eng Biotechnol. 1999, 65(10): 17~61
    22 A . Eliasson. Xylulose Fermentation by Mutant and Wild-type Strains of Zygosaccharomyces and Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2000, 53(3): 76~82
    23 J. Weil, P. Westgate, J. Kohlmann, M. R. Ladisch. Cellulose Pretreatments of Lignocellulosic Substrates. Enzyme Microbial Technology. 1994, 16: 2~4
    24 R. J. Bothast, B.C.Saha. Ethanolproduction from Agricultural Biomass Substrates. Advances in Applied Microbiology. 1997, 44: 61~86
    25 Y. Sun, J. Cheng. Hydrolysis of Lignocellulosic Materials for Ethanol Production: a Review. Bioresource Technology. 2002, 83: 1~11
    26 N. Moiser, C. Wyman, B. Dale. Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass. Bioresour. 2005, 96: 673~686
    27 P. Béguin, J. Millet, J. P. Aubert. Cellulose Degradation by Clostridium thermocellum: From Manure to Molecular Biology. FEMS Microbiology Letters. 1992, 100: 523~528
    28 E. Yu, H. Vlasenko, J. M. Ding et al. Enzymatic Lydrolysis of Pretreated Rice Straw. Bioresource Technology. 1997, 59: 109~119
    29 J. Szczodrak, J. Fiedurek. Technology for Conversion of Lignocellulosic Biomass to Ethanol. Biomass and Bioenergy. 1996, 10: 367~375
    30 M. Warembourg, D. Leroy. Microwave Pretreatment of Sections to Improve the Immunocytochemical Detection of Progesterone Receptors in The Guinea Pig Hypothalamus. Journal of Neuroscience Methods. 2000, 104: 27~34
    31 L. Guo, X. M. Li, X. Bo. Impacts of Sterilization, Microwave and Ultrasonication Pretreatment on Hydrogen Producing using Waste Sludge. Bioresource Technology. Available online 11 September 2007
    32 B. Nanthakumar, C.A. Pickles, S. Kelebek. Microwave Pretreatment of a Double Refractory Gold Ore. Minerals Engineering. 2007, 20(11): 1109~1119
    33 J. Azuma, F. Tanaka, T. Koshijima. Enhancement of Enzymatic Susceptibility of Lignocellulosic Wastes by Microwave Irradiation. Ferm Technol. 1984, 62(4): 77~84
    34 P. Kitchaiya, P. Intanakul, M. Krairish. Ehancement of Enzymatic Hydrolysis of Lignocellulosic Wastes by Microwave Pretreatment under Atmospheric Pressure. Wood Chem Technol. 2003, 23(2): 217~225
    35 S. d. Zhu, Y. X. Wu, Z. N. Yu. et al. Comparison of Three Microwave/Chemical Pretreatment Processes for Enzymatic Hydrolysis of Rice Straw. Biosystems Engineering. 2006, 93 (3): 279~283
    36 S. d. Zhu, Y. X. Wu, Z. N. Yu. et al. Production of Ethanol from Microwave Assisted Alkali Pretreated Wheat Straw. Process Biochemistry. 2006, 41 (4): 869~873
    37 N. Mosier. Optimization of pH Controlled Liquid Hot Water Pretreatment of Corn Stover. Bioresource Technology. 2005, 96: 1986~1993
    38 G. Excoffier, B. Toussaint, M.R. Vignon. Saccharification of Steam Exploded Poplar Wood. Biotechnol Bioeng. 1991, 38: 1308~1317
    39 C. G. Liu, C. E. Wyman. Partial Flow of Compressed-Hot Water Through Corn Stover to Enhance Hemicellulose Sugar Recovery and Enzymatic Digestibility of Cellulose. Bioresource Technology. 2005, 96: 1978~1985
    40 A. Emmel. Fractionation of Eucalyptus Grandis Chips by Dilute Acid-Catalysed Steam Explosion. Bioresource Technology. 2003, 86: 105~115
    41 K. A. Gray, L. S. Zhao, M. Emptage. Bioethanol. Current Opinion inChemical Biology. 2006, 10: 141~146
    42刘家健,陆怡.预处理对纤维素酶降解影响的研究.林产化学与工业. 1995, 15(3): 67~71
    43 N. Curreli, M. Agelli, B. Pisu. Complete and Efficient Enzymic Hydrolysis of Pretreated Wheat Straw. Process Biochemistry. 2002, 37: 937~941
    44唐赢中,康健雄,黄利群.纤维素类物质糖化技术.武汉城市建设学院学报. 1995, 12(4): 54~57
    45于斌,齐鲁.木质纤维素生产燃料乙醇的研究现状.化工进展. 2006, 25: 244~249
    46 E. Y. Vlasenko, H. Ding, J. M. Labavit, et al. Enzymatic Hydrolysis of Pretreated Rice Straw. Bioresource Technology. 1997, 59: 109~119
    47 R. Ptengerdy, G. Szakacs. Bioconversion of Lignocellulose in Solid Substrate Fermentation. Biochemical Engineering Journal. 2003, 13: 169~179
    48 M. Kaylen, L. Donald, V. Dyne. Economic Feasibility of Producing Ethanol from Lignocellulosic Feedstocks. Bioresource Technology. 2000, 72(4): 19~32
    49 M . Takagi, S. Abe, S. Suzuki, G. H. Emert. A Method for Production of Ethanol Directly from Cellulose using Cellulase and Yeast. Proceedings of Bioconversion Symposium. 1977, 5: 51~71
    50 C. E. Wyman. Ethanol from Lignocellulosic Biomass Technology Economics and Opportunities. Bioresour Technol. 1994, 50: 3~16
    51杜秉海,曲音波,高培基.纤维废渣固态酒精发酵及纤维素-淀粉共发酵的研究.食品与发酵工业. 1995, 5: 58~61
    52 Y. Z. Zheng, H. M. Lin, G. T. Tsao. Pretreatment for Cellulose Hydrolysis by Carbon Dioxide Explosion. Biotechnol Prog. 1998, 14: 890~896
    53 Z. W. Wu, W. X. Y. Lee. Nonisothermal Simultaneous Saccharification and Fermentation for Direct Conversion of Lighcellulosic Biomass to Ethanol. Appl Biochem Biotechnol. 1992, 34: 639~649
    54李佐虎,岑沛霖.纤维素酒精的分散、耦合、并行系统.生物技术通报. 1999, 4:27~29
    55 J. Zaldivar, J. Nielsen, L. Oslsson. Fuel Ethanol Production from Lignocelluloses: a Challenge for Metabolic Engineering and Process Integration. Appl Microbiol Biotechnol. 2001, 56: 17~34
    56 J. B. Rodney, N. Nancy, S. D. Bruce. Fermentations with New Recombinant Organisms. Biotechnol Prog. 1999, 15: 867~875
    57 W. Mikael, X. M. Bao. Ethanol Fermentation of Xylose with Saccharomyces cerevisiae Harboring the Thermo Thermophilus xylA Gene, which Expressan Active Xylose (Glucose) Isomerase. Appl Environ Microbiol. 1996, 62: 4648~4651
    58 H. Hagerdal, H. Skoog. Biochemistry and Physiology of Xylose Fermentation by Yeasts. Enzyme Microb Technol. 1994, 16(11): 933~943
    59 E. C. Chan, P. Ueng, L. F. Chen. D-xylose Fermentation Ethanol by Schizosaccharo mycespombe Colened with Xylose Isomerase Gene. Biotcchnol Lett. 1986, 4: 231~234
    60徐勇,范一民,勇强等.木糖发酵重组菌研究进展.中国生物工程杂志. 2004, 24(6): 58~63
    61 M. Zhang, C. Eddy, K. Deanda, et al. Metabolic Engineering of a Pentose Metabolism Pathwayin Ethanologenic Zymomonas mobilis. Science. 1995, 267: 240~243
    62 K. Ohta, D. S. Beall, J. P. Meija, et al. Fermentation of Sweet Whey by Recombinant Escheichia coli KOL1. Appl Environ Microbiol. 1991, 57: 893~900
    63 B. Brau, H. Sham, M. Zhang. Cloning and Expression of the Structural Gene for Pyruvate Decarboxylase of Zymomonas mobilis in Escherichia coli. Arch Microbiol. 1986, 144: 296~301
    64 S. Takuma, N. Nakashima, M. Tantirungkij, et al. Isolation of a Xylose Reductase Gene of Pichia stipitis and its Expression in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 1991, 28~29: 327~340
    65 R. Amore, P. Kotter, C. Kuester, M. Ciriacy, et al. Cloning and Expression in Saccharomyces cerevisiae of the NADPH-Dependent Xylose Reductase Encoding Gene XYL1 from the Xylose-Assimilating Yeast Pichia stipitis. Gene. Appl. Biochem. Biotechnol. 1991, 109: 89~98
    66 J. Hallbom, M. Walfridsson, U. Airaksinen, et al. Xylitol Production by Ercombinant Saccharomyces cerevisiae. Bio Technology. 1991, 9: 1090~1095
    67 M. Rizzi, P. Erlemann, H. Dellweg. Xylose Fermentation by Yeast,Purification and Kinetic Studies of Xylose Reductase from Pichia stipitis. Appl Microbiol Biotechnol. 1988, 29: 148~154
    68 P. A. Bihco, P. L. Runnals, J. D. Cunninggham. Induction of Xylose Reductase and Xylitol Dehydrogenase Activities in Pachysolen tannophilus and Pichia stipitis on Mixed Surgars. Appl Environ Microbiol. 1988, 54: 50~54
    69 P. Kotter, R. Amore, C. P. Hollenberg. Isolation and Characterization of the Pichia stipitis Xylitol Dehydrogenase Gene, XYL2, and Construction of a Xylose-Utilizing Saccharomyces cerevisiae. Proc Natl Acad. 1990, 84: 2585~2589
    70 P. Kotter. Xylose Fermentation by Saccharo cerevisiae. Appl Microbiol Biotechnol. 1993, 38: 776~783
    71 M. E. Ligthelm, B. A. Prior, J. C. Preez The Oxygen Requirements of Yeasts for The Fermentation of D-xylose and D-glucose to Ethanol. Appl Microbiol Biotechnol. 1988, 28: 63~68
    72侯进,沈煜,鲍晓明.酿酒酵母木糖代谢工程中辅酶工程的研究进展.中国生物工程杂志. 2006, 26(2): 89~94
    73 J. K. Lee, B. S. Koo, and S. Y. Kim. Cloning and Characterization of the xyl1 Gene, Encoding an NADH-Preferring Xylose Reductase from Candida parapsilosis, and Its Functional Expression in Candida tropicalis. Applied And Environmental Micbilolgy. 2003, 69: 6179~6188
    74 A. Rene, W. Martin, P. H. Cornelis. The Fermentation of Xylose-an Analysis of the Expression of Bacillus and Actinoplanes Xylose Isomerase Genes in Yeast. Appl Microbiol Biotechnol. 1989, 30: 351~357
    75 G. J. Dumsday, K. Jones, N. B. Pamment. Recombinant Organisms for Ethanol Production from Hemicellulosic Hydrolyzates a Review of Recent Progress. Aust Biotechnol. 1997, 7: 285~295
    76 M. Gardonyi, H. H. Barbel. The Streptomyces Rubiginosus Xylose Isomerase is Misfolded when Expressed in Saccharomyces cerevisiae. Enzyme and Microbial Technology. 2003, 32: 252~259
    77刘小琳,江宁,贺鹏等.酿酒酵母菌共表达XYLA和XKS1发酵木糖生产酒精.科学通报. 2004, 50(7): 653~658
    78 S. F. Chang, N. W. Y. Ho. Cloning the Yeast Xylulokinase Gene for the Improvement of Xylose Fermentation. Appl Biochem Biotechnol. 1988, 17: 313~318
    79 J. Helena, Y. Shiyuan, B. Hahn, et al. Xylulose and Glucose Fermentation by Saccharomyces cerevisiae in Chemostat Culture. Appl Microbiol Biotechnol. 1996, 3: 1705~1709
    80 A. Eliasson, E. Boles, B. Hahn, et al. Xylulose Fermentation by Mutant and Wild-type Strains of Zygosaccharomyces and Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2000, 53: 376~382
    81 R. Peter, H. Mervi, P. Merja. The Role of Xylulokinase in Saccharomyces cerevisiae Xylulose Catabolism. FEMS Microbiology Letters. 2000, 190: 39~43
    82赵新刚.洗涤用碱性纤维素酶及其产生菌的分离方法.微生物学通报1999, 26(1): 63~65
    83 L. Hankin, S. L. Anagnostakis. Solid Medium Containing Carboxymethyl Cellulose to Detect CX Cellulase Activity of Microorganisms. Gen Microbiol. 1977, 98: 105~109
    84叶姜瑜.一种纤维素分解菌鉴别培养基.微生物通报. 1997, 24(4): 251~252
    85 C. W. Hendrick, J. D. Dolye, B. A. Hugley. New Solid Medium for Enumerating Celluloseutilizing Bacteria in Soil. Applied and Environmental Microbiology. 1995, 61(5): 2016~2019
    86 M. Walfridsson, J. Hallborn, M. Penttilla, et al. Xylose-Metabolizing Saccharomyces cerevisiae Strains Overexpressing the TKLI and TALL Genes Encoding the Pentose Phosphate Pathway Enzymes Transketolase and Transaldolase. Appl Environ Microbiol. 1995, 61: 4184~4190
    87东秀珠,蔡妙英.常见细菌系统鉴定手册.科学出版社. 2001
    88胡瑞卿.酵母菌的特征和鉴定手册.青岛海洋大学出版社. 1991
    89 J. Sambrook, D. W Russell. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harboratory Press. 2002, 256~289
    90 L. M. Prescott, J. P. Harley, D. A. Llein. Microbiology. McGraw~Hill Companies. 2002, 12: 278~298
    91 Y. Sun, J. Cheng. Hydrolysis of Lignocellulosic Materials for EthanolProduction: a Review. Bioresource Technology. 2002, 83: 1~11
    92杨伯伦,贺拥军.微波加热在化学反应中的应用进展.现代化工. 2001, 21(4): 8~13
    93王继业,许赤兵,宋会花等.微波加热在无机固相反应中的应用.河北师范大学学报(自然科学版). 2004, 28(4): 396~400
    94 W. C. Lee, S. Yusof, N. S. A. Hamid, et al. Optimizing Conditions for Hotwater Extraction of Banana Juice using Response Surface Methodology(RSM). Journal of Food Engineering. 2006, 75 (4): 473~479
    95 A. Vohra, T. Satyanarayana. Statistical Optimization of the Medium Components by Response Surface Methodology to Enhance Phytase Production by Pichia anomala. Process Biochemistry. 2002, 37(9): 999~1004
    96 H. N. Sin, S. Yusof, N. Sheikh, et al. Optimization of Hotwater Extraction for Sapodilla Juice using Response Surface Methodology. Journal of Food Engineering. 2006, 74 (3): 352~358
    97 R. L. Mason, R. F. Gunst, J. Hess. Statistical Design and Analysis of Experimentswith Applications to Engineering and Science. JohnWi2 ley and Sons Inc1 . Hoboken N J. 2003
    98 T. Jeoh, F.A. Agblevor. Characterization and Fermentation of Steam Exploded Cotton Gin Waste. Biomass and Bioenergy. 2001, 21: 109~120
    99 J. D. McMillan. Hemicellulose Conversion to Ethanol. In: Wyman, C.E. (Ed.), Handbook on Bioethanol: Production and Utilization. 1996, 287~313.
    100安宏.纤维素水解制取燃料酒精的试验研究.浙江大学硕士学位论文. 2005: 5~32.
    101卢雪梅,马登波,高培基.纤维素酶活的测定.纤维素科学与技术. 1994, 2(4): 24~28
    102中国科学院微生物研究所细菌分类组.一般细菌常用鉴定方法.科学出版社. 1978, 35~38
    103杨运清.生物统计学.哈尔滨工程大学出版社. 1996, 99~101
    104 R. E. Buchanan, N. E. Gibbons. Translated by the Translation Group of Institute of Microbiology Academia Sinica. Bergeys Manual of Determinative Bacteriology(8th) Beijing: Science Press. 1984
    105 L. F. Martins, D. Kolling, M. Camassola . Comparison of Penicillium echinulatum and Trichoderma reesei Cellulases in Relation to their Activityagainst Various Cellulosic Substrates. Bioresource Technology. 2008, 99: 1417~1424
    106 Q. Z. Zhang, W. M. Cai. Enzymatic Sydrolysis of Alkali-pretreated Rice Straw by Trichoderma reesei ZM4-F3. Biomass and Bioenergy. Available at www.sciencedirect.com
    107 S. O. Kotchoni, O. O. Shonukan. Regulatory Mutations Affecting the Synthesis of Cellulase in Bacillus pumilus. World Journal of Microbiology & Biotechnology. 2002, 18: 487~491
    108 J. P. Siegel, A. R. Smith, R. J. Novak. Cellular Fatty Acid Analysis of Isolates of Bacillus thuringiensis Serovar Kurstaki, strain HD-1. Biol Control 2000, 17: 82~91
    109燕红,杨谦.地衣芽孢杆菌对麦麸降解作用的研究.林产化学与工业. 2007, 4: 97~102
    110 M. Kenneth, S.Q. Liu, S. R. Hughes. Cloning and Characterization of a Recombinant Family 5 Endoglucanase from Bacillus licheniformis Strain B-41361. Process Biochemistry. 2007, 42: 1150~1154
    111 A. Archana and T. Satyanarayana. Xylanase Production by Thermophilic Bacillus licheniformis A99 in Solid-state Fermentation. Enzyme and Microbial Technology. 1997, 21: 12~17
    112肖春玲,徐常新.微生物纤维素酶的应用研究.微生物学杂志, 2002, 22 (2): 33~35
    113刘守安,李多川,俄世瑾等.嗜热毛壳菌纤维素酶(CBHⅡ) cDNA的克隆及在毕赤酵母中的表达.生物工程学报. 2005, 6: 892~900
    114 B. Palmalola , P. C. Borska, M. Galbe. Ethanol Production from Non-starch Carbohydrates of Wheat Bran. Bioresource Technology. 2005, 96: 843~850
    115 B. C. Saha. Production, Purification and Properties of Endoglucanase from a Newly Isolated Strain of Mucor circinelloides. Process Biochemistry. 2004, 39: 1871~1876
    116 D. J. C. Preez. Process Parameters and Environmental Facters Affecting D-xylose Fermentation by Yeasts. Enzyme Microb Technol. 1994, 16 (8): 943~955
    117 L. G. Hugh, R. Joyce. Continuous Fermentation Studies with Xylose-utilizing Recombinant zymomonas mobilis. Applied Biochemistry and Biotechnology.2000, 84-86: 295~309
    118 G. A. Gorry and G.O. Barnett. Experience with a Model of Sequential Diagnosis. Computers and Biomedical Research. 1968, 1: 490~507.
    119 Kurtzman, C. P. and Robnett, C. J. Identification of Clinically Important Ascomycetous Yeasts Based on Nucleotide Divergence in 5′end of the Large-subunit (26S) Ribosomal DNA Gene. Clin Microbiol. 1997, 35: 1216~1223
    120韩学凤,张鹏,易欣欣.农作物秸秆的综合利用.北京农学院学报. 2003, 18(3): 226~230
    121 S. Kim, B. E. Dale. Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy. 2004, 26, 361~375
    122 K. L. Kavanagh, M. Klimacek, B. Nidetzky, et al. Structure of Xylose Reductase Bound to NAD+ and the Basis for Single and Dual Co-substrate Specificity in Family 2 Aldo-keto Reductases. Biochem. 2003, 373: 319~326
    123 E. N. Yablochkova, O. I. Bolotnikova, N. P. Mikhailova, et al. Specific Features of Fermentation of D-xylose and D-glucose by Xylose-assimilating Yeasts. Appl Biochemistry and Microbiology. 2003, 39: 265~269
    124 T. Granstr?m, A. Aristidou, M. Leisola. Metabolic Flux Analysis of Candida tropicalis Growing on Xylose in an Oxygen-limited Chemostat. Metabolic Engineering. 2002, 4: 248~256
    125 S. J. Yong, W. J. Thomas. Stoichiometric Network Constraints on Xylose Metabolism by Recombinant Saccharomyces cerevisiae. Metabolic Engineering. 2004, 6: 229~238
    126 M. Klimacek, F. W?hrer, L. Kathryn, et al. Altering Dimer Contacts in Xylose Reductase from Candida tenuis by Site-directed Mutagenesis: Structural and Functional Properties of R180A Mutant. Chemico-Biological Interactions. 2003, 143: 523~532
    127段金秀等.杜氏盐藻CDPK基因的克隆及其序列的分析.草业科学. 2006, 23(9): 51~55
    128 T. Jones, N. A. Federspiel, H. Chibana, et al. The Diploid Genome Sequence of Candida albicans. Proc Natl Acad. 2004, 11: 29~34
    129 S. I. Yokoyama, Y. Kinoshita, T. Suzuki, et al. Cloning and Sequencing of two D-xylose Reductase Genes (xyrA and xyrB) from Candida tropicalis.Ferment Bioeng. 1995, 80:603~605
    130 C. Handumrongkul, D. P. Ma, Silva J. L. Silva. Cloning and Expression of Candida guilliermondii Xylose Reductase Gene (xyl1) in Pichia pastoris. Ferment Bioeng. 1998, 49:399~404
    131 H. Jornvall, B. Persson, M. Krook, et al. Short-chain Dehydrogenases/ Reductases (SDR). Biochemistry. 1995, 34: 6003~6013
    132 B. H?cker, A. Habenicht, M. Kiess, et al. Xylose Utilization: Cloning and Characterization of the Xylose Reductase from Candida tenuis. Biol Chem. 1999, 380: 1395~1403
    133 K. M. Bohren, C. E. Grimshaw, C. J. Lai, et al. Tyrosine-48 is the Proton Donor and Histidine-110 Directs Substrate Stereochemical Selectivity in the Reduction Reaction of Human Aldose Reductase: Enzyme Kinetics and Crystal Structure of the Y48H Mutant Enzyme. Biochemistry. 1994, 33: 2021~2032
    134 R. Kratzer, K. L. Kavanagh, D. K. Wilson, et al. Studies of the Enzymic Mechanism of Candida tenuis Xylose Reductase (AKR2B5): X-ray Structure and Catalytic Reaction Profile for the H113A Mutant. Biochemistry. 2004, 43: 4944~4954
    135欧阳立明,张惠展,张嗣良等.巴斯德毕赤酵母的基因表达系统研究进展.生物化学与生物物理进展. 2000, 27(2): 151~154
    136 H. R. Waterham, M. E. Digan, P. J. Koutz, et al. Isolation of the Pichia pastoris Glyceraldehydes-3-phosphate Dehydrogenase Gene and Regulation and use of its Prometer. Gene. 1997, 186: 37~44
    137 S. Yokoyama, T. Suzuki, K. Kawai, et al. Purification, Characterization and Structure Analysis of NADPH Dependent D-Xylose Reductases from Candida tropicalis. Ferment Bioeng. 1995, 79: 217~223
    138 G. Ditzelmuller, C. P. Kubicek, W. Wohrer, et al. Xylose Metabolism in Pachysolen tannophilus: Purification and Properties of Xylose Reductase. Microbiol. 1984, 30: 1330~1336
    139 W. Neuhauser, D. Haltrich, K. D. Kulbe, et al. NAD(P)H Dependent Aldose Reductase from the Xylose-assimilating Yeast Candida tenuis. Isolation, Characterization and Biochemical Properties of the Enzyme. Biochem. 1997, 326: 683~692
    
    140 B. Nidetzky, K. Bruggler, R. Kratzer, et al. Multiple Forms of Xylose Reductase in Candida intermedia: Comparison of their Functional Properties using Quantitative Structure-activity Relationships, Steady-state Kinetic Analysis, and pH Studies. Agric Food Chem. 2003, 51: 7930~7935
    141 V. Cornelis, V. K. Ronald, F. Johannes, et al. Properties of the NAD(P)H- dependent Xylose Reductase from the Xylose Fermenting Yeast Pichia stipitis. Biochem. 1985, 226: 669~677
    142 A. Kuhn, Z. C. Van, T. A. Van, Et al. Purification and Partial Characterization of an Aldo-keto Reductase from Saccharomyces cerevisiae. Appl Environ Microbiol. 1995, 61: 1580~1585
    143 S. Leitgeb, B. Petschacher, D.K. Wilson, et al. Fine Tuning of Coenzyme Specity in Family 2 Aldo–keto Reductases Revealed by Crystal Structures of the Lys-274–> Arg Mutant of Candida tenuis Xylose Reductase (AKR2B5) Bound to NAD+ and NADP+. FEBS Lett. 2005, 579: 763~767
    144 M. A. Marti-Renom, A. Stuart, A. Fiser, et al. Annu. Rev Biophys Biomol Struct. 2000, 29: 291~302
    145 FRED [docking program]. Version 1.2.9., Openeyes Scientific Software Inc., Santa Fe, NM, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700