陆地棉遗传多样性与育种目标性状基因(QTL)的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花的种质资源十分广泛,这些种质具有丰富的遗传多样性。对陆地棉基础种质及其主要衍生品种遗传多样性进行研究,可以从育种起源上揭示我国棉花的遗传基础,了解现有种质的遗传背景和遗传多样性的状况,为育种家高效发掘种质资源重要性状基因打下基础。遗传学研究的一个基本目标即是将生物的表现型与基因型相联系.关联分析以群体结构非固定的自然群体为研究对象,以长期重组后保留下来的基因间的连锁不平衡为基础,在获得群体表型数据与基因型数据后,采用统计方法检测遗传多样性与性状可遗传变异之间的关联,具有简单、高效和省时等优点。
     本文在分析所选81个陆地棉品种遗传多样性的基础上,利用TASSEL软件分析棉花基因组内的连锁不平衡水平,之后利用关联分析的方法结合多年多点田间调查数据,进行表型变异对标记变异的回归分析,检测数量性状相关位点。同时利用四个衍生系的原始亲本构建作图群体分析发掘与农艺及品质性状相关的数量性状基因位点。
     对我国自育品种和国外引进种质进行性状差异的综合比较,可以看出在农艺性状方面,国内品种的单株铃数增加、衣分提高和籽指降低,同时单株铃数、衣分和籽指的变异系数有较显著的提高;在纤维品质的差异上,国内品种的各项指标均较引进品种有所改善,同时强度、马克隆值和伸长率的变异系数均有了提高。这说明半个多世纪以来,我国棉花育种有了较快的发展。利用分子标记技术分析所选国内外棉花品种的差异时,国内品种中检测的等位变异数目和基因多样性的跨度较大,但从平均值上看仍然偏低,说明我国自育棉花品种在基因组水平上的差异比较丰富,但是应用到生产中的变异较少,拓宽棉花遗传基础的工作仍相当艰巨。
     对国内长江流域和黄河流域两大棉花主产区品种的表型性状差异进行分析,结果表明,单就性状表现来说,长江流域的品种要好于黄河流域,如单株铃数较多、单铃重大、籽指较小、衣指和衣分高,但是长江流域品种的变异系数普遍较黄河流域的低。利用分子标记研究两大产区的棉花品种,两流域品种的等位变异数、基因多样性和多态性信息含量均相当。
     对不同系谱衍生系的多样性分析,可以看到金字棉衍生系在果枝数、株高、单铃重等产量性状上较其他衍生系的均值高,纤维长度、纤维强度和整齐度等品质性状上均值最高,且其在株高、单株铃数、单铃重和马克隆值等性状上的变异系数最大。福字棉衍生系在衣指和衣分性状上均值最大,变异系数亦为最大。岱字棉和斯字棉曾被我国育种家广泛应用于育种工作,并培育了较多的品种,检测的品种也较多,因此这两个系统的衍生系所具有的等位变异数要高于其他系统来源的棉种,但等位变异的比例较低,表现为基因多样性和多态性信息含量较低.
     利用关联分析考察多个性状大多数QTL的关联位点及其等位变异,首先需要了解棉花基因组内的连锁不平衡(LD)情况。用TASSEL软件分析可知,棉花基因组内位点间的LD水平较低,常异花的授粉方式和品种培育过程中频繁的杂交选择是主要原因。通过关联分析,检测到大量标记位点与农艺品质性状的相关性,并发掘出这些标记位点的优异等位变异,以及含有该等位变异的棉花品种,为棉花育种工作的开展提供有益信息;同时本研究也为开展下一步更加深入的工作打下了基础。
     斯字棉2B、福字棉6号、岱字棉15和中棉所7号均是我国棉花品种培育的核心亲本,用这四个材料构建一个四交作图群体及其F2:3家系,利用SSR标记和JoinMapV3.0软件构建了一张陆地棉四交群体品种间的分子标记遗传图谱。该图谱图谱总长1129.1cM、含有102个多态位点,覆盖率为22.6%,两多态位点间的平均遗传距离为11.1cM。由31个连锁群组成,其中30个连锁群被定位到15条染色体。利用MATQTLV5.0定位了19个与农艺性状相关的QTLs和5个纤维品质QTLs.其中1个衣分QTL可在两世代中检测到;另有一个果枝数QTL和一个衣指QTL的定位结果与关联分析结果相吻合,均有较好的稳定性。
     利用海岛棉遗传标准系3-79和优良的细胞遗传学材料——置换系18,结合本实验室构建的饱和棉花遗传图谱,完成开放花蕾隐性基因ob2在四倍体棉第13染染色体色体(A13)上的精细定位,将ob2基因定位于该染色体上BNL2449b和TMP01两位点之间,与它们的遗传距离分别是1.1cM和1.7cM。此前本实验室已经利用TM-1和Sub18两个材料配置的作图群体,完成了开放花蕾ob1基因在四倍体棉第18染色体(D13)上的定位。结合两实验结果,验证了早期学者关于开放花蕾基因(ob)的遗传特性的研究,同时也为进一步研究并利用该基因打下了坚实的基础。两张连锁图之间有着共同的标记位点BNL2652、NAU817、NAU1141和BNL2571,这也从基因组学的角度再次验证了四倍体棉的染色体组具有部分同源结构,来自A亚组的第13染色体(A13)和来自D亚组的第18染色体(D13)是一对部分同源染色体,两染色体具有相近的功能区域。
The germplasm resources of cotton have abundant genetic diversity. And genetic diversities are the basis of breeding excellent varieties. The research of genetic diversity about upland cotton and its offspring lines can reveal the genetic base of cotton in China on breeding origin, and help us to know the background and diversity of germplasm nowadays in use. And the research also can help breeders to mine important traits and use these good germplasm in high efficiency, and have great meaning of creating new germplasm. The goal of genetic research is to know the relationship between phonotype and genotype. Association mapping use natural population with unfixed population structure for research target, with the phonotype and genotype data obtained, we test the association between genetic diversity and heritable variation of traits use statistic method.
     In this research, on the base of analyzing the genetic diversity of 81 upland cottons, we used software TASSEL analyzed the LD level in cotton genome. And then combined with the traits and the markers data, we detected the quantity traits loci. We also constructed a four-way cross population to detect the QTLs concerned with yield and quality traits.
     In this paper, we compared the difference of traits between varieties domestic and introduced. We found that the domestic varieties have better representation in agronomic traits, such as the increase of NB (number of bolls per plant), LP (lint percentage), and the decrease of SI (seed index). And also, the variation coefficients increased in NB, LP, and SI. Domestic varieties also have better representation in many aspects of fiber quality, and the variation coefficients increased in FS (fiber strength), FM (fiber micronaire reading), and FE (fiber elongation). It shows that, for more than half a century, cotton breeding in China has developed quickly. When use molecular marker technique to analyze the difference between domestic and overseas varieties, we found that, domestic varieties have more alleles and big span of gene diversity, but the mean value is still low, indicate that though domestic varieties have many variation in genome level, but the variation is less applied to production, it's still difficult to broaden the genetic basis of cotton.
     When analyzing the phenotypic difference of varieties between Yangtze River and Yellow River Basin, two main producing areas of cotton in our country. We found, varieties from Yangtze River is better if solely on the traits performance, such as more bolls per plant, big bolls, small seed index, high lint percentage and lint index. But the variation coefficients are lower. When analyze with molecular marker technique, the number of alleles, genetic diversity index and PIC value have no significant difference.
     When analysis the difference between varieties based on the pedigree, we see that the Kings have high mean value in plant branch, plant high, boll weight, fiber length, fiber strength and fiber uniformity ratio, and biggest variation coefficients in number of bolls per plant, boll weight and fiber micronaire reading. The Fosters have the biggest mean value and variation coefficients in lint index and lint percentage. The DPLs and Stonevilles had been used as parents in breeding wildly, and have bred many varieties. So the two pedigree sources have more alleles than others, but low in gene diversity and PIC value.
     In our research, in order to use association mapping to test association sites and alleles of several traits, we need to know the LD in cotton genome. With the help of software TASSEL, we see low level of LD in cotton genome, cross-pollination and frequent hybridization and selection in breeding is the main reason. We detected numerous associations between marker sites and agronomic or quality traits. After that, we tried to find out alleles with good variation of different markers, and the typical variety with these alleles. It will provide useful messages for cotton breeding, and for further research.
     Stoneville 2B, Foster 6, DPL 15 and CRI7 are core parents in cotton breeding in China. We constructed a four-way cross segregated population and its F2:3 inbreed lines with these varieties. A linkage map was developed for the four-way cross with SSR markers and JoinMap V3.0 software. The map covered 1129.1cM, and with 102 mapped loci, which was approximately 22.6% of the total recombination length of the cotton genome. The average distance between loci was 11.1cM. The map comprised 31 linkage groups, and these groups were assigned to 15 chromosomes. In the four-way cross population,19 QTLs concerned with agronomic traits and 5 QTLs with fiber quality were detected with MapQTL V5.0. And a QTL concerned with LP (lint percentage,%) was detected both in F2 and F2:3 generations, and is of value for MAS (Marker-assisted selection).
     In this paper, we used the G. barbadense genetic standard,3-79, and the good cytogenetics material, Sub.18. Combined with cotton genetic map constructed by our lab, we achieved to fine mapping the ob2 gene in chromosome 13 (A13) of tetraploid cotton, located this gene between two loci, BNL2449b and TMP01, the genetic distance is 1.1 cM and 1.7cM, separately. Former research in our lab had finished the mapping of the ob1 gene with the standard Upland stock, TM-1 and Sub.18. It locates in chromosome 18 (D13). Consider the result of two experiments together, we confirmed the result of former research about the hereditary feature of ob gene, and in the same time, laid a solid foundation of further researching and using this gene. BNL2571, BNL2652, NAU817, and NAU1141 also produced duplicate loci bridging of the homoeologous A13/D13 (At/Dt) chromosome pairs. Therefore, the expression of the ob gene in tetraploid cotton is a typical phenomenon of genome duplication.
引文
1. 别墅,孔繁玲,周有耀.中国3大主产棉区棉花品种遗传多样性的RAPD及其与农艺性状关系的研究[J].中国农业科学,2001,34(6):597-603
    2. 承泓良,何旭平,冷苏凤,等.棉花开放花蕾性状的遗传及其在杂优利用中的应用[J].棉花学报,2000,12(1):49-52
    3. 陈艳秋,邱丽娟,常汝镇,等.中国秋大豆预选核心种质遗传多样性的RAPD分析[J].中国油料作物学报,2002,24(3):21-24
    4. 陈新民,何中虎,史建荣,等.利用SSR标记进行优质冬小麦品种(系)的遗传多样性研究[J].作物学报,2003,29(1):13-19
    5. 陈旭升,狄佳春,许乃银,等.棉花长柱头性状与其它经济性状相关分析[J].江西棉花,2003,25(2):14-16
    6. 车永和.几种代表性分子标记技术[J].江苏农业科学,2003,2:34
    7. 邓国础,徐卫辉,李乐攻,等.棉花“陆异1号”花蕾大小、花柱外露长度与雌、雄蕊发育的形态特征研究[J].作物学报,1995,21(3):341-347
    8.杜金友,黎裕,王天宇.SSR和AFLP分析玉米遗传多样性的研究[J].华北农学报,2003,18(1):59-63
    9. 董玉琛.我国作物种质资源研究的现状和展望[J].中国农业科技导报,1992,2:36-40
    10.董玉琛,曹永生,张学勇.中国普通小麦初选核心种质的产生[J].植物遗传资源学报,2003,4(1): 1-8
    11.房卫平,许守明,孙玉堂,等.棉花抗黄萎病的RAPD标记[J].河南农业科学,2001,9:11-13
    12.房卫平,季道藩.棉花分子标记研究进展[J].河南农业科学,2002,2:9-12
    13.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001
    14.盖钧镒.植物种质群体遗传改良的测度[J].植物遗传资源学报,2005,6(1):1-18
    15.耿川东,黄骏麒.用RAPD鉴定棉花品种间差异[J].江苏农业学报,1995,11(4):21-24
    16.郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆与分子育种[J].科学通报,2003,48(5):410417
    17.郭旺珍,周兆华,张天真,等.RAPD鉴定棉花抗(耐)黄萎病品种(系)的遗传变异研究[J].江苏农业学报,1999,15(1):1-6
    18.郭旺珍,张天真,潘家驹,等.我国陆地棉品种的遗传多样性研究初报[J].棉花学报,1997,9(5):242—247
    19.郭旺珍,张天真,潘家驹,等.棉花胞质雄性不育育性恢复基因的RAPD-PCR标记的筛选[J].科学通报,1997,42(24):2645-2647
    20.海林,王克晶,杨凯.半野生大豆种质资源SSR位点遗传多样性分析[J].西北植物学报,2002,22(4):751-757
    21.黄滋康主编.中国棉花品种及其系谱[M].北京:中国农业出版社,1996
    22.何风华,曾瑞珍,席章营,等.不同Waxy基因型水稻的遗传多样性[J].植物分子育种,2003,1(2):179-186
    23.季道藩主编,汪若海,潘家驹副主编.棉花知识百科[M].北京,中国农业出版社,2001
    24.刘三才,曹永生,郑殿升,等.普通小麦核心种质抽样方法的比较[J].麦类作物学报,2001,21(2):42-45
    25.刘家勇,陈学宽.19个云南自育甘蔗品种(系)基础种质分析[J].甘蔗,2004,11(3):30-33
    26.柳李旺,朱协飞,郭旺珍,等.分子标记辅助选择聚合棉花Rf1育性恢复基因和抗虫Bt基因[J].分子植物育种,2003,1(1):48-52
    27.刘文欣,孔繁玲,郭志丽,等.建国以来我国棉花品种遗传基础的分子标记分析[J].遗传学报,2003,30(6):560-570
    28.潘家驹.棉花育种学[M].北京:中国农业出版社,1998
    29.庞朝友,杜雄明.棉花种间杂交渐渗系创新效果评价及特异种质筛选[J].科学通报,2006,51:155-162
    30.秦鸿德.陆地棉产量与纤维品质性状QTL定位和标记辅助轮回选择[D].南京,南京农业大学,2007
    31.沈新莲.陆地棉纤维品质QTL的筛选、定位及其应用[D].南京,南京农业大学,2004
    32.宋国立,崔荣霞,王坤波.澳洲棉种遗传多样性的RAPD分析[J].棉花学报,1999,11(2):65-69
    33.宋宪亮.异源四倍体棉花栽培种分子遗传图谱的构建及部分性状QTL标记定位[D].山东,山东农业大学,2004
    34.宋启建,Quigley CV, Carter TE,等.用于大豆品种鉴定的一套标准三核苷酸重复系列位点的筛选[C].第七界全国大豆学术讨论会论文摘要集,中国作物学会大豆专业委员会,2001,47-48
    35.汪保华.湘杂棉2号强优势组合杂种优势表现的遗传机理研究[D].南京,南京农业大学,2006
    36.王坤波,杜雄明.棉花分子标记研究现状[J].中国棉花,1996,23(12):2-4
    37.武耀廷,张天真,殷剑美.利用分子标记和形态学性状检测的陆地棉栽培品种遗传多样性[J].遗传学报,2001,28(11):1040-1050
    38.王芙蓉,张军,李汝忠.分子标记及其在棉花遗传育种中的应用[J].棉花学报,1998,10(3):113-117
    39.徐秋华,张献龙,聂以春.长江、黄河流域两棉区陆地棉品种的遗传多样性比较研究[J].遗传学报,2001,28(7):683-690
    40.徐秋华,张献龙,聂以春,等.我国棉花抗枯萎病品种的遗传多样性分析[J].中国农业科学,2002,35(3):272-276
    41.肖杰华.棉花雌雄异熟两系法制种技术研究[J].中国棉花,1996,23(2):13-15
    42.谢军,才卓,刘向辉.生物技术在种质资源遗传多样性鉴定的应用[J].作物杂志,1998(增刊):71-76
    43.解志红,孙毅,吴日恒.棉花分子标记研究现状及展望[J].中国棉花,2002,29(5):5-8
    44.严建兵,汤华,黄益勤,等.玉米F2群体分子标记偏分离的遗传分析[J].遗传学报,2003,30(10):913-918
    45.易成新,张天真,郭旺珍.陆地棉衣分QTL的形态和RAPD分子标记筛选[J].作物学报,2001,27(6):781-786
    46.殷剑美,武耀廷,张天真.陆地棉产量性状QTLs的分子标记及定位[J].生物工程学,2002,18(2):162-166
    47.杨庆文,黄亨反.我国作物种质资源考察的成就与展望[J]。作物品种资源,1994,1:1-3
    48.袁有禄.棉花优质纤维特性的遗传及分子标记研究(博士论文)。南京农业大学,1999
    49.张军,武耀廷,郭旺珍,等.棉花微卫星标记的PAGE/银染快速检测[J].棉花学报,2000,12(5):267-269
    50.詹筠.种质资源——21世纪农业发展的保障[J].北方园艺,1996,5:1-3
    51.左开井,孙济中,张献龙,等.利用RFLP、 SSR和RAPD标记构建陆地棉分子标记连锁图(英)[J].华中农业大学学报,2000,19:190-193
    52.朱龙付,张献龙,聂以春.利用RAPD和SSR标记分析陆地棉种质资源的遗传多样性[J].农业生物技术学报,2003,11(5):450455
    53.朱青竹,赵国忠,赵丽芬.不同来源棉花种质资源基于RAPD的遗传变异[J].河北农业大学学报,2002,25(4):17-19
    54.朱云国,王学德,李悦有.用AFLP技术构建棉花雄性不育三系及其杂种F1的DNA指纹图谱[J].棉花学报,2001,13(3):158-160
    55.朱振东,贾继增.小麦SSR标记的发展及应用[J].遗传,2003,25(3):355-360
    56.张金发,王彩祥,孙济中,等.陆地棉与海岛棉种间杂种经济性状的基因效应分析[J].棉花学报,1994,6(3):163-168.
    57.张天真,郭旺珍.陆地棉开放花蕾品系E-81的遗传鉴定[J].棉花学报,2001,13(2):128
    58.张天真.棉花纤维品质分子育种的现状及展望[J].棉花学报,2000,12(6):321-326
    59.张天真.棉花开放花蕾性状的遗传研究[J].中国棉花,1992,19(3):12-14
    60. Adams KL, Cronn R, Percifield R, et al. Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing [J]. Proc Natl Acad Sci USA,2003,100:4649-4654
    61. Altaf MK, Zhang JF, Steward JM. Integrated molecular map based on a trispecific F2 population of cotton [C]. Beltwide cotton conf,1998,491-492
    62. Andersen JR, Zein I, Wenzel G, et al. High levels of linkage disequilibrium and associations with forage quality at Phenylalanine Ammonia-Lyase locus in European maize (Zea mays L.) inbreds [J]. Theor Appl Gent,2007,114:307-319
    63. Aranzana MJ, Kim S, Zhao K, et al. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes [J]. PLoS Gener,2005,1:e60
    64. Ardlie K, Liu-Cordero SN, Eberle MA, et al. Lower-Than-Expected Linkage Disequilibrium between Tightly Linked Markers in Humans Suggests a Role for Gene Conversion [J]. Am J Hum Genet,2001,69:582-589
    65. Bell CJ. Assessment of 30 microsatelite loci to the linkage mapping of Arabidopsis [J]. Genomics, 1994,250:3949
    66. Bezawada C, Saha S, Jenkins JN. SSR markers associated with root knot nematode resistance genes in cotton [J]. J Cot Sci,2003,7:179-184
    67. Bolek Y, El-Zik KM. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research [J]. J Cot Sci,2001,5:103-113
    68. Bolek Y, El-Zik Km, Pepper AE, et al. Mapping of Verticillium wilt resistance genes in cotton [J]. Plant Sci,2005,168(66):1581-1590
    69. Bonierbale MW, Plaisted RL, Tanksley SD. RFLP maps based on a common set of clones reveal modes of chromosomal evolutuon in potato and tomato [J]. Genetics,1988,120:1095-1103
    70. Botstein D, White RL, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment polymorphisms [J]. Am J Hum Genet,1980,32:314-331
    71. Brew RB, Yvert G, Clinton R, et al. Genetic dissection of transcriptional regulation in budding yeast [J]. Science,2002,296:752-755
    72. Brondani C, Rangel PHN, Borba TCO, et al. Transferability of microsatellite and sequence tagged site markers in Oryza species [J]. Hereditas,2003,138:187-192
    73. Brubaker CL, Paterson AH, Wendel JF. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors [J]. Genome,1999,42:184-203
    74. Brubaker CL, Bourland FM, Wendel JF. The origin and domestication of cotton. In:Smith CW, Cothren JT (eds) Cotton. Wiley, New York,1992,3-31
    75. Brubaker CL, Wendel JF. Revaluting the origin of domesticated cotton(Gossypium hirsutum Malvaceae) using nuclear restriction fragment length polymorphisms RFLPs [J]. Am J Bot,1994, 81(10):1309-1326
    76. Cantrell RJ, Ulloa, M, Zeiger E, et al.Genetic variation for stomatal conductance in an interspecific cotton population [C]. Beltwide cotton conf,1998,485-486
    77. Cronn RC, Small RL, Wendel JF. Duplicated genes evolve independently after polyploidy formation in cotton [J]. Proc Natl Acad Sci USA,1999,96:14406-14411
    78. Devlin B, Roeder K. Genomic control for association studies [J]. Biometrics,1999,55:997-1004
    79. Edwards M, Johnson L. RFLP for rapid recurrent selection:Analysis of Molecular Marker Data [J]. Theor Appl Genet,1994,88:33-40
    80. Endrizzi JE. Monosomic analysis of 23 mutant loci in cotton [J]. J Hered,1975,66:163-165
    81. Endrizzi JE. Linkage analysis of open bud(ob2) and yellow petal (Y1) in cotton [J]. Genome,1991, 34:461-463
    82. Endrizzi JE, Turcotte EL, Kohel RJ. Quantitative genetics, cytology and cytogenetics. In:Kohel RJ, Lewis DF (eds) Agronomy, vol 24:Cotton. American Society of Agronomy, Madison, Wis.,1984: 59-80
    83. Endrizzi JE, Turcotte EL, Kohel RJ. Genetics, cytology, and evolution of Gossypium [J]. Adv Genet 1985,23:271-375
    84. Falconer DS, Mackay TFC. Introduction to Quantitative Genetics. Longman Group, Harlow, England,1996
    85. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data:linked loci and correlated allele frequencies [J]. Genetics,2003,164:1567-1587
    86. Ferriol M, Pico B, Nuez FG. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers [J]. Genet Res Crop Evol,2003,50(3):227-238
    87. Flint-Garcia SA, Thuillet A, Yu J, et al. Maize association population:a high-resolution platform for quantitative trait locus dissection [J]. Plant J,2005,44,6:1054-1064
    88. Flint-Garcia SA, Thornsberry JM, Buckler ES. Structure of linkage disequilibrium in plants [J]. Annu Rev Plant Biol,2003.54:357-374
    89. Fisher RA. The Logic of Inductive Inference [J]. J Rov Stat Soci,1935,98:39-82
    90. Fraser LG, Harvey CF, Crowhurst RN, et al. EST-derived microsatellites from Actinidia species and their potential for mapping [J]. Theor Appl Genet,2004,108:1010-1016
    91. Frelichowski JEJ, Palmer MB, Main D, et al. Cotton genome mapping with new microsatellites from Acala'Maxxa'BAC-ends [J]. Mol Gen Gent,2006,275(5):479-491
    92. Fryxell PA. The natural history of the cotton tribe. Texas A&M University Press, College Station, Tex.1979
    93. Gaut BS, Long AD. The lowdown on linkage disequilibrium [J]. Plant Cell,2003,15:1502-1506
    94. Guo WZ, Cai CP, Wang CB, et al. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium [J]. Genetics,2007,176:527-541
    95. Guo WZ, Zhang TZ, Pan JJ, et al. Identification of RAPD marker linked with fertility-restoring gene of cytoplasmic male sterile lines in upland cotton [J]. Chin Sci Bull,1998,43:52-54
    96. Hagenblad J, Nordborg M. Sequence variation and haplotype structure surrounding the flowering time locus FRI in Arabidopsis thaliana [J]. Genetics,2002,161:289-298
    97. Han ZG, Guo WZ, Song XL, et al. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton [J]. Mol Gen Gent,2004,272:308-327
    98. Han ZG, Wang CB, Song XL, et al. Characteristics, development and mapping of Gossypium hirsutum derived-EST-SSRs in allotetraploid cotton [J]. Theor Appl Genet,2006,112:430-439
    99. Heun M, Kennedy AE, Anderson JA, et al. Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare) [J]. Genome,1991,34:437-447
    100. Hu J, Vick BA. Target Region Amplification Polymorphism:A novel marker technique for plant genotyping [J]. Plant Mol Bio Rep,2003,21:289-294
    101. Ibrokhim Y, Abdurakhmonov, Sukumar S, et al. Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm [J]. Genetica, DOI 10.1007/s10709-008-9337-8
    102. Iqbal M, Aziz N, Saeed NA, et al. Genetic diversity evaluation of some elite cotton varieties by RAPD analysis [J]. Theor Appl Genet,1997,94:139-144
    103. Jansen RC, Nap JP. Genetical genomics:The added value from segregation [J]. Trends Genet,2001, 17(7):388-391
    104. Jiang CX, Wright RJ, EL-Zik KM, et al. Polyploid formation created unique avenues for response to selection in Gossypium (Cotton) [J]. Proc Natl Acad Sci,1998,95:4419-4424
    105. Karaca M, Saha S, Jenkins JN, et al. Simple sequence repeat (SSR) markers linked to the Ligon Lintless (LiI) mutant in cotton[J]. J Hered,2002,93:221-224
    106. Khan MA, Myers GO, Stewart JM, et al. Cantrell. Addition of new markers to the trispecific cotton map[C]. Beltwide cotton conf,1999:1331
    107. Kohel RJ. Genetic analysis of the open bud mutant in cotton [J]. J Hered,1973,64:237-238
    108. Kohel RJ, Yu J, Park YH, et al. Molecular mapping and characterization of traits controlling fiber quality in cotton [J]. Euphytica,2001,121:163-172
    109. Kosambi DD. The estimation of map distance from recombinaination values [J]. Ann Eugen,1944, 12:172-175
    110. Lacape JM, Nguyen TB, Thibivilliers S, et al. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum x Gossypium barbadense backcross population [J]. Genome, 2003,46,4:612-626
    111. Lan TH, Cook CG, Paterson AH. Identification of a RAPD marker linked to a male fertility restoration gene in cotton (Gossypium hirsutum L.) [J]. J Agric Genomic,1999,4:299
    112. Lander ES, Green P, Abrahamson J, et al. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987,1:174-181
    113. Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), A new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica [J]. Theor Appl Genet,2003,107(1):168-180
    114. Lin ZX, He DH, Zhang XL, et al. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD [J]. Plant Breeding,2005,124:180-187
    115. Lin ZX, Zhang XL, Nie YX, et al. Construction of a genetic linkage map for cotton based on SRAP [J]. Chin Sci Bull,2003,.48:2063-2067
    116. Liu KJ, Muse SV. PowerMarker:an integrated analysis environment for genetic marker analysis [J]. Bioinfo Appl Note,2005,9(21):2128-2129
    117. Liu HC, Creech RG, Jenkins JN, et al. Cloning and promoter analysis of the cotton lipid transfer protein gene Ltp3 (1) [J]. Biochim Biop Acta,2000,1487(1):106-111
    118. Liu LW, Guo WZ, Zhu XF, et al. Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L [J]. Theor Appl Genet,2003,106:461-469
    119. Liu S, Cantrell RG, MaCarty JC, et al. Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions [J]. Crop Sci.2000a,40:1459-1469
    120. Liu S, Saha S, Stelly D, et al. Cantrell.Chromosomal assignment of microsatellite loci in cotton [J]. JHered,2000b,91:326-332
    121. Luo ZW, Hackett C, Bradshaw JE, et al. Construction of a genetic linkage map in tetraploid species using molecular markers [J].Genetics,2001,157:1369-1385
    122. Luo ZW, Zhang RM, Kearsey MJ. Theoretical basis for genetic linkage analysis in autotetraploid species [J]. Proc Natl Acad Sci USA,2004,101:7040-7045
    123. Lyon. DNA markers and molecular breeding of cotton [J]. The Australian cotton grower,1999, 20(5):80-83
    124. Maliepaard C, Jansen J, Van Ooijen JW. Linkage analysis in a full-sib family of an outbreeding plant species:Overview and consequences for applications [J]. Genet Res,1997,70:237-25
    125. Mei M, Syed NH, Gao S, et al. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium) [J]. Theor Appl Genet,2004,108:280-291
    126. McCouch S, Kochert G, Yu Z, et al. Molecular mapping of rice chromosomes [J].Theor Appl Genet, 1988,76:815-829
    127. Multanid S, Lyon BR. Genetic finger pringting of Australian cotton cultivars with RAPD markers [J]. Genome,1995,38:1005-1008
    128. Nguyen TB, Giband M, Brottier P, et al. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers [J]. Theor Appl Genet,2004,109:167-175
    129. Nnadozie C, Oraguzie. Association Mapping in Plants [M]. The Horticulture and Food Research Institute of New Zealand Ltd (HortReserach) Havelock North, New Zealand. pp:57-67
    130. Norborg M, Borvitz JO, Bergelson J, et al. The extent of linkage disequilibrium in Arabidopsis thaliana [J]. Nature Genetics,2002,30:191-193
    131. Paterson AH, Brubaker CL, Wendel JF. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis [J]. Plant Mol Biol Rep,1993,11,2:122-127
    132. Percival AE, Wendel JF, Stewart J McD. Taxonomy and germplasm resources. In:Smith CW, Cothren JT (eds) Cotton. Wiley, New York,1999,33-63
    133. Pritchard JK, Przeworski M. Linkage disequilibrium in humans:models and data [J]. Am J Hum Genet,2001,69:1-14
    134. Pritchard JK, Stephens M, Donnelly P. Inference of Population Structure Using Multilocus Genotype Data [J]. Genetics,2000,155:945-959
    135. Pritchard JK, Wen XQ, Daniel F. Documentation for structure software:Version 2.2.2007
    136. Ravel C, Praud S, Canaguier A, et al. DNA sequence polymorphisms and their application to bread wheat quality [J]. Euphytica,2007,158:331-336
    137. Reddy A, Haisler RM, Weller JW, et al. Development of amplified fragment length polymorphic makers in cotton [C]. Plant Genome IV conf. San Diego. CA.1996
    138. Reddy OUK, Pepper AE, Saha S, et al. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research [J]. J Cot Sci,2001,5:103-113
    139. Reinisch AJ, Dong JM, Brubaker CL, et al. A detailed RFLP map of cotton, Gossypium hirsutum × Gossypium barbadense:chromosome organization and evolution in disomic polyploidy genome [J]. Genetics,1994,138:829-847
    140. Reich DE, Cargill M, Bolk S, et al. Linkage disequilibrium in the human genome [J]. Nature,2001, 411:199-204
    141. Remington DL, Thornberry JM, Matsuoka Y, et al. Structure on linkage disequilibrium and phenotypic associations in the maize genome [J]. Proc Natl Acad Sci USA,2001,98:11479-114784
    142. Ren LH, Guo WZ, Zhang TZ. Identification of quantitative trait loci (QTLs) affecting yield and fiber properties in chromosome 16 in cotton using substitution line [J]. Acta Botanica Sinica,2002, 44,7:815-820
    143. Rhyne C. Open bud cotton-a product of interspecific modifiers [J]. J Hered,1979,70:80
    144. Risch N, Merikangas K. The Future of Genetic Studiers of Complex Human Diserses [J]. Science 1996,273:1516-1517
    145. Roder M S, Plaschke J, Konig SU, et al. Abundance, variability and chromosomal location of microsatellites in wheat [J]. Mol Gen Genet,1995,246:327-333
    146. Rong JK, Abbey C, Bowers JE, et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium) [J]. Genetics,2004,166:389-417
    147. Saha S, Karaca M, Jenkins JN, et al. Simple sequence repeats as useful resources to study transcribed genes of cotton [J]. Euphytica,2003,130:355-364
    148. Sanchez de la Hoz MP, Davila JA, Loarce Y, et al. Simple sequence repeat primers used in polymerase chain reaction amplifications to study the genetic diversity in barley [J]. Genome,1996, 39:112-117
    149. Shappley ZW, Jenkins JN, Meredith WR, et al. An RFLP linkage map of upland cotton (Gossypium hirsutum L.) [J]. Theor Appl Genet,1998,97:756-761
    150. Shappley ZW, Jenkins JN, Zhu J, et al. Quantitative trait loci associated with agronomic and fiber traits of Upland cotton [J]. J Cot Sci,1998,4:153-163
    151. Shapply ZW, Jenkins JN, Watson CE, et al. Establishment of molecular markers and linkage groups in two F2 populations of Upland cotton [J]. Theor Appl Genet,1996,92:915-919
    152:Shepard KA, Purugganan MD. Molecular Population Genetics of the Arabidopsis CLAVATA2 Region The Genomic Scale of Variation and Selection in a Selfing Species [J]. Genetics,2003, 163:1083-1095
    153. Small RL, Wendel JF. Phylogeny, duplication, and intraspecific variation of Adh sequences in new world diploid cotton (Gossypium L., Malvaceae) [J]. Mol Phyl Evol,2000,16:73-84
    154. Syvanen AC, Soderlund H. Accessing genetic variation:genotyping single necleotide polymorphisms [J]. Nat Biot,2002,20:349-350.
    155. Shifman S, Kuypers J, Kokoris M, et al. Linkage disequilibrium patterns of the human genome across populations [J]. Hum Mol Gent,2003,12:771-776
    156. Szalma SJ, Buckler ES, Snook ME, et al. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks [J]. Theor Appl Genet,2005,110:1324-1333
    157. Tenaillon MI, Sawkins MC, Long AD, et al. Patterns of DNA sequence polymorphism along chromosome lof maize (Zea mays ssp.mays L.) [J]. Proc Natl Acad Sci USA,2001,98:9161-9166
    158. Thornsberry JM, Goodman MM, Doebley J, et al. Dwarf8 polymorphisms associate with variation in flowering time [J]. Nat Genet,2001,28:286-289
    159. Ulloa M, Meredith JW, Shappley ZW. RFLP genetic linkage maps from four F2:3 populations and joinmap of Gossypium hirsutum L. [J]. Theor Appl Genet,2002,104:200-208
    160. Wang CB, Guo WZ, Cai CP, et al. Characterization, development and exploitation of EST-derived microsatellites in Gossypium raimondii Ulbrich [J]. Chin Sci Bull,2006,51:557-561
    161. Van Ooijen JW. MapQTL 5.0:Software for the mapping quantitative trait loci in experimental populations [M]. Wageningen (the Netherlands), Plant Research International,2004
    162. Van Ooijen JW, Voorrips RE. JoinMapR Version 3.0:software for the calculation of genetic linkage maps [M]. CPRO-DLO, Wageningen,2001
    163. Wang K, Song XL, Han ZG, et al. Complete assignment of the chromosomes of Gossypium hirsutum L. bytranslocation and fluorescence in situ hybridization mapping [J]. Theor Appl Genet, 2006,113(1):73-80
    164. Weir BS. Genetic data analysis [M]. Sinauer Associates Sunderland, MA,1990
    165. Wendel JF. New world tetraploid cottons contain old world cytoplasm [J]. Proc Natl Acad Sci USA, 1989,86:4132-4136
    166. Wendel JF, Stewart J McD, Rettig J H. Molecular evidence for homoploid reticulate evolution among Australian species of Gossypium [J]. Evolution,1991,45:694-711
    167. Wendel JF, Cronn RC. Polyploidy and the evolutionary history of cotton [J]. Adv Agron,2003,78: 139-186
    168. Wendel JF. Genome evolution in polyploids [J]. Plant Mol Biol,2000,42:225-249
    169. Wendel JF, Brubaker CL, Percial E. Genetic diversity in Gossypium hirsutum and the origin of Upland cotton [J]. Am J Bot,1992,79:1291-1310
    170. Wendel JF, Schnabel A, Seelanan T. Bidirectional interlocus concerted following allopolyploid speciation in cotton (Gossypium) [J]. Proc Natl Acad Sci USA,1995b,92:280-284
    171. Wendel JF, Schnabel A, Seleman T. An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression [J]. Mol Phyl Evol,1995,4: 298-313
    172. Whitt SR, Wilson LM, Tenaillon MI, et al. Genetics diversity and selection in themaize starch pathway [J]. Proc Natl Acad Sci USA,2002,99:12959-12962
    173. Wright RJ, Thaxton PM, El-Zik KM. D-Subgenome bias of Xcm resistance genes in tetraploid Gossypium (Cotton) suggests that polyploid formation has created novel avenues for evolution [J]. Genetics,1998,149:1987-1996
    174. Wu RL, Zeng ZB. Joint linkage and linkage disequilibrium mapping in natural populations [J]. Genetics,2001,157:899-909
    175. Wright SI, Bi IV, Schroeder SG, et al. The effects of artificialselection on the maize genome [J]. Science,2005,308 (5726):1310-1314
    176. Xu S. Mapping quantitative trait loci using four-way crosses [J]. Genet Res,1996,68:175-181
    177. Yamasaki M, Tenaillon MI, Bi IV, et al. A large scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement [J]. Plant Cell,2005, 17:2859-2872
    178. Yu J, Buckler E. Genetic association mapping and genome organization of maize [J]. Curr Opin Biot,2006,17:155-160
    179. Yu J, Pressoir G, Briggs WH, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness [J]. Nat Genet,2006,38:203-208
    180. Yu J, Park YH, Lazo GH, et al. Molecular cotton genome with molecular markers [J]:Beltwide cotton conf,1997:447
    181. Yu J, Kohel RJ, Dong JM, et al. Toward positional cloning of a major glandless gene in cotton [C]. Beltwide cotton conf,2000,1:516~517
    182. Zabean M, P Vos. Selective restriction fragment amplication:a general method for DNA fingerprinting [P]. European Patent Application no.92402629, Publication No. Ep0534858A1, 1993.
    183. Zhang J, Guo WZ, Zhang TZ. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population [J]. Theor Appl Genet,2002,105: 1166-1174
    184. Zhang TZ, Yuan YL, Yu JZ, et al. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection [J]. Theor Appl Genet,2003,106:262-268
    185. Zhao K, Aranzana MJ, Kim S, et al. An Arbidopsis example of association mapping in structured samples [J]. PLoS Genet,2007,3:e4
    186. Zhao X, Si Y, Hason RE, et al. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton [J]. Genome Res,1998,8:479-492

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700