利用三个重叠重组自交系精细定位棉花染色体24部分区段的纤维品质及产量性状QTL
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是重要的纺织工业原料。棉花工作者长期以来面对的挑战是产量和纤维品质的同步提高以满足棉花生产者和纺织工业的要求。随着纺织技术的不断发展,对棉纤维品质提出了更高的要求,从而更多地要求更强、更细和更整齐的棉纤维。然而,由于纤维品质性状的复杂性,加上纤维品质检测的费用高和选择效率低,棉纤维品质的改良虽经过几十年的艰苦努力,纤维品质与产量的负相关依然存在,传统育种在进一步改良棉纤维品质上显然存在相当的困难。发展与棉纤维品质和产量性状连锁的DNA标记使得育种者在棉花生长的早期阶段或早期分离世代就能追踪这个重要的性状,从而提高选择效率。
     然而目前有关棉纤维品质和产量QTLs的筛选方面存在以下问题:(1)使用的群体多为海陆种间群体,用于陆地棉品质改良难度大;(2)使用的群体大多为F2暂时性群体,无法进行多年多点重复试验,难以获得稳定的QTLs。本研究在(7235×TM-1)RIL、(7235×TM-1)F2以及F2:3群体与纤维品质及产量性状相关的QTL定位研究结果的基础,利用(7235×TM-1)RIL中三个互相重叠而且是高强纤维的家系7TR-133,7TR-132和7TR-214再与TM-1回交,构建三个F2及F2:3群体,开展两年两点的重复试验,用基于PCR的SSR标记筛选不同环境中稳定表达的主效QTLs,为优质高产棉基因的利用提供理论依据。进行(7235×TM-1)重组自交系(RILs)三个家系(7TR-133,7TR-132和7TR-214)回交F2:3群体棉纤维品质与产量性状相关性以及F2和F2:3遗传性分析,以便从分子水平上揭示主要品质性状与主要产量构成因子性状相关性,进一步明确了棉花纤维品质与产量性状的遗传特性。主要研究结果如下:
     1.主要纤维品质性状及产量性状相关性分析
     纤维品质性状长度与强度正相关,细度与伸长率正相关,铃数与衣分正相关,长度性状与铃重正相关;纤维强度和细度与伸长率负相关,长度性状与铃数和衣分性状负相关,强度性状与产量性状铃数、铃重、衣分负相关,细度性状与铃数和铃重性状负相关,伸长率与铃数、铃重负相关,产量性状铃数与铃重负相关,铃重与衣分负相关。
     2.主要纤维品质性状及产量性状遗传分析
     主要纤维品质性状(纤维长度、纤维强度、麦克隆值、伸长率)及产量构成因子单株铃数、铃重、衣分的最佳遗传模式为两对主基因控制的遗传模型,其中加性效应在F2以及新疆和江浦两地的F2:3世代中能够稳定表达。在不同群体和世代中,品质和产量性状主基因遗传率不同可能由于控制数量性状的基因间互作以及基因与环境间互作的结果。
     3.遗传连锁图普的构建
     本研究利用6123对SSR引物进行三个群体四个亲本(7TR-133,7TR-132,7TR-214和TM-1)多态性筛选,构建(7TR-133×TM-1)F2,(7TR-132×TM-1)F2和(7TR-214×TM-1)F2分子遗传图谱,构建遗传图谱的群体大小分别是907,670和940,所构建的(7TR-133×TM-1)群体遗传图谱具有22个标记位点,长度为13.7cM,占Chro.24染色体遗传图谱111.7cM的12.3%;(7TR-132×TM-1)群体遗传图谱具有11个标记位点,长度为19.1cM,占Chro.24染色体遗传图谱111.7cM的17.1%;(7TR-214×TM-1)群体遗传图谱具有18个标记位点,长度为10.1cM,占Chro.24染色体遗传图谱111.7cM的9.4%。在构建图谱的22,11和18个标记中分别有16,7和10个偏分离标记,其偏分离位点的百分率分别是72.7%,63.6%和55.6%,由此可见,(7TR-132xTM-1)F2,(7TR-133×TM-1)F2和(7TR-214×TM-1)F2偏分离位点比(7235xTM-1)RIL的100%偏分离明显下降。
     4.纤维品质性状QTL定位分析
     PopA(7TR-133×TM-1)、PopB(7TR-132×TM-1)和PopC(7TR-214×TM-1)三个群体中检测到与纤维品质性状相关的QTLs共17个,其中,与纤维长度性状相关的5个QTLs,具有20.1-32.7%贡献率;与强度性状相关的5个QTLs,具有28.8-59.6%贡献率;与细度相关的4个QTLs,具有17.9-41.5%贡献率;与伸长率相关的3个QTLs,具有18.0-26.2%贡献率。与品质性状相关的QTL的增效基因在三个作图群体中具有较好的一致性,其中纤维强度、纤维长度以及纤维细度性状来自母本(7235×TM-1)RIL的家系7TR-133,7TR-132和7TR-214(纤维长度和强度增加,纤维细度降低),纤维伸长率来自父本TM-1(伸长率增加)。
     5.产量性状QTL的定位
     PopA(7TR-133×TM-1)、PopB(7TR-132xTM-1)和PopC(7TR-214×TM-1)三个群体中检测到与产量性状相关的QTLs共6个,其中,与铃数性状相关的1个QTL,具有5.6-9.4%贡献率;与铃重性状相关的3个QTLs,具有15.0-35.5%贡献率;与衣分性状相关的2个QTLs,具有10.9-19.3%。产量性状铃数、铃重增效基因来自父本TM-1(铃数和铃重增加),衣分性状增效基因来自母本(7235xTM-1)RIL家系7TR-133、7TR-132和7TR-214(衣分增加)。
     本实验研究在(7235×TM-1)RIL群体棉花染色体24上与纤维强度性状相关的QTL的置信区间内,在三个互相重叠(7235×TM-1)RIL家系7TR-133,7TR-132,7TR-214与TM-1回交群体中共检测到五个紧密连锁的强度性状QTL,其原因可能与进一步进行了回交以及使用了较大的研究群体有关。在本研究中的两个回交群体中检测到与铃数性状相关的QTL,即q-BN-D08,与Shen et al.在(7235×TM-1)RIL检测到的与铃数性状相关的QTL为同一个,由此可见该QTL是一个较为稳定的QTL。
     纤维品质及产量性状的遗传分析结果,主要品质及产量性状由两对主基因控制,并且以加性效应为主。纤维品质性状和产量性状相关性分析结果,主要品质性状与主要产量性状呈负相关,QTL定位分析结果,主要优质性状基因来自母本(7235×TM-1)RIL家系7TR-133,7TR-132和7TR-214,主要高产基因来自父本TM-1,因此,在棉花品种的培育与改良中,同步提高纤维品质及产量具有一定的难度。
Cotton is an important cash crop in the world. A long-term challenge facing cotton breeder is the simultaneous improvement of yield and fiber quality to meet the demands of the cotton producer as well as the textile industry. In the recent years, improvement of cotton fiber quality has been extremely important because of changes in spinning technology. However, a negative association between lint yield and fiber quality are still presented after over dozens years of exhausting breeding for improved fiber properties due to the genetic complexity of fiber quality properties. Conventional breeding procedures exist difficulty in further improving fiber quality because of its high costs, long duration, and low selective efficiency. The development of DNA markers linked to the fiber quality QTL would allow cotton breeders to trace this very important trait in early plant-growing stage or early segregating generations. The use of these DNA markers is increasing the prospect for streamlining the cotton breeding programs for improving fiber quality while maintaining fiber yield.
     However, QTL analysis for fiber properties is problematic:(1) QTLs obtained from interspecies population of Sealand cotton and Upland cotton showed less valuable in improving fiber quality of Upland cotton; (2) In previous reports, population constructed were all F2 population. Replicated experiment couldn't be carried out and common QTLs couldn't be got. Considering of these problems above, the objective of this research is to develop three F2 and F2:3 populations, by using 7TR-133,7TR-132,7TR-214, which derived from a cross between 7235 and TM-1 using a bulk-selfing technique, as female parent, backcrossed with TM-1 to identify fine located of common QTL associated with fiber quality and yield component traits across different background and different generations by PCR to screen SSR markers. Second, in order to provide theory for employing super quality and high yield, replicated experiment of two years and two locations in the present were used to identify stable major QTLs of fiber quality and yield component traits. The present result as following:
     1. Correlation analysis for fiber quality and yield traits
     Positive correlation was observed between fiber length and fiber strength, between fineness and elongation, between bolls per plant and lint percentage, between fiber length and boll size, and negative correlations between strength and fineness, strength and fiber elongation, between bolls per plant and boll size, boll size and lint percentage, between fiber length and bolls per plant and lint percentage, between fiber strength and bolls per plant, fiber strength and boll size, fiber strength and lint percentage, between fiber fineness and bolls per plant, fineness and boll size, between fiber elongation and bolls per plant, elongation and boll size.
     2. Genetic analysis for fiber quality and yield components
     Fiber quality (fiber length, fiber strength, fiber fineness and fiber elongation) and yield components genetic model was controlled by more than one major gene. Additive effect was stably exhibited in F2 and F2:3 generations and different locations (Xinjiang and Jiangpu). In the present research, the herelicity for fiber quality and yield component was different in different generations and locations. It was the reason that the genes for these traits were influenced by themselves and surroundings.
     3. Construction of genetic linkage map
     Of the 6123 SSR markers employed in this study, polymorphic SSR markers were detected in three populations (between 7TR-133 and TM-1,7TR-132 and TM-1,7TR-214 and TM-1). The three genetic maps for (7TR-133×TM-1) F2, (7TR-132×TM-1) F2, and (7TR-214×TM-1) F2 were generated. The SSR genetic map was constructed using 907 individuals in (7TR-133×TM-1)F2 and included 22 loci covering 13.7 cM, which represented approximately 12.3% of the total 111.7 cM recombinational length of cotton Chro.24. The map constructed from 670 individuals in (7TR-132×TM-1) F2 included 11 loci covering 19.1 cM, approximately 17.1% of the recombinational length of cotton Chro. 24, and the map constructed using 940 individuals in (214-RIL×TM-1) F2 included 18 loci covering 10.1 cM, approximately 9.4% of the recombinational length of cotton Chro.24. Sixteen,7 and 10 distorted SSR loci were detected in (7TR-133×TM-1) F2, (7TR-132×TM-1) F2 and (7TR-214×TM-1) F2. The percent skewed segregation ratios were 72.7%, 63.6%, and 55.6%, respectively, a great deal of decrease from 100% in (7235×TM-1)RIL.
     4. QTL tagging for fiber quality
     17 QTLs of fiber quality were identified in Pop A (7TR-133×TM-1), Pop B(7TR-132 ×TM-1) and Pop C (7TR-214×TM-1) three populations. Of these QTLs, there were 5 QTLs for fiber length, which exhibited a total phenotypic variance (PV) of 20.1%-32.7%,5 QTLs for fiber strength, which exhibited a total phenotypic variance (PV) of 28.8%-59.6%, 4 QTLs for fiber fineness, which exhibited a total phenotypic variance (PV) of 17.9%-41.5%, and 3 QTLs for fiber elongation, which exhibited a total phenotypic variance (PV) of 18.0%-26.2%. The QTLs for fiber length, fiber strength and fiber fineness were conferred by female parents 7TR-133,7TR-132 and 7TR-214 (increased fiber length and strength, decrease fiber fineness), and the QTL for elongation was conferred by male parent TM-1 (increased fiber elongation).
     5. QTL tagging for yield traits
     6 QTLs of yield trait were identified in (7TR-133×TM-1) Pop A, (7TR-132×TM-1) Pop B and (7TR-214×TM-1) Pop C populations. Of these QTLs, there were 1 QTLs for bolls per plant, which exhibited a phenotypic variance (PV) of 5.6%-9.4%,3 QTLs for boll size, which exhibited a total phenotypic variance (PV) of 15.0%-35.5%, and 2 QTLs for lint percentage, which exhibited a total phenotypic variance (PV) of 10.9%-19.3%. The QTLs for bolls per plant and boll size were conferred by male parent TM-1 (increased bolls per plant and boll size), and the QTL for lint percentage was conferred by female parent 7TR-133,7TR-132 and 7TR-214(increased lint percentage).
     In the present,5 clustered QTL for fiber strength were detected in the three backcross populations among the confidence interval of q-FS-D08 identified by Shen et al. The q-BN-D08 was identified in the three backcross populations and (7235×TM-1) RIL population. It showed that the QTL for bolls per plant was stable and common. There was consistent with the result of genetic analysis and QTL mapping. Fiber quality and yield components were controlled by more than one main gene, and additive effect was mainly. It was difficult to breed and improve fiber quality and yield at same time because there was negative correlation between fiber quality and yield components.
引文
1.范术丽,喻树迅,宋美珍.短季棉早熟性的分子标记及QTL定位[J].棉花学报,2006,18(3):135-139.
    2.房卫平,许守明,孙玉堂,唐中杰,王家典.棉花抗黄萎病的RAPD标记.河南农业科学,2001,9:11-13.
    3.盖钧镒,章元明,王健康.植物数量性状遗传体系[M].2003,北京:科学出版社.
    4.高用明,朱军.植物QTL定位方法的研究进展.遗传,2000,22(3):175-179.
    5.高玉千,聂以春,张献龙.棉花黄萎病基因的QTLs定位[J].棉花学报,2003,15(2):73-78.
    6.郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆与分子育种.科学通报,2003,48(5):410-417.
    7.何风华.水稻QTLs分析的研究进展[J].西北植物学报,2004,24(11):2163-2169.
    8. 李首成,江先炎.利用陆中杂种后代选育棉花高强度优质材料.中国棉花,1997,24(11):9-11.
    9.林毅,赵伦一.陆地棉纤维品质性状的基因效应估计.遗传学报,1988,15(60):401-407.
    10.刘秀艳,谢正苗,陈惠哲.遗传基因组学(Genetical genomics)的研究进展[J].生物化学与生物物理研究进展,2006,33:1030-1034.
    11.钱思颖,黄骏麒,彭跃进,周宝良,应苗成,沈端庄,刘桂钤.陆地棉与异常棉种间杂种的研究及其在育种上的应用,中国农业科学,1992,25(6):44-51.
    12.钱思颖,黄骏麒,周保良.陆地棉(G.hirsutum L.)克劳茨基棉(G.klotzschianum Anderss)的研究和利用,江苏农业学报,1996,12(4):18-22.
    13.王娟,郭旺珍,张天真.渝棉1号优质纤维QTL的标记与定位[J].作物学报,2007,33(12):1915-1921.
    14.王永军.大豆重组自交系的构建与调整及其在遗传作图、抗花叶病毒基因定位和农艺及品质性状QTL分析中的应用.博士学位论文,2001,南京农业大学.
    15.吴茂清,张献龙,聂以春.四倍体栽培棉种产量和纤维品质性状的QTL定位[J].遗传学报,2003,30(5):443-452.
    16.吴振衡,刘定俊,莫惠栋.陆地棉数量性状的遗传分析(Ⅰ).17个农艺性状的基因效应估计.遗传学报,1985,12(5):334-349.
    17.武耀廷,张天真,郭旺珍.陆地棉品种SSR标记的多态性及用于杂交种纯度检测的研究[J].棉花学报,2001,13(3):131-133.
    18.项时康,余楠,胡育昌,唐淑荣,熊宗伟,杨伟华.论我国棉花质量现状,棉花学报,1999,11(1):l-10.
    19.徐云碧,朱立煌.分子数量遗传学[M].1994,北京:中国农业出版社.
    20.殷剑美,武耀廷,张天真.陆地棉产量性状QTLs的分子标记及定位.生物工程学报,2002,18(2):162-166.
    21.殷剑美,武耀廷,朱协飞.陆地棉产量与品质性状的主基因与多基因遗传分析.棉花学报,2003,67-72.
    22.袁有禄,张天真,郭旺珍,沈新莲,John Yu, R J Kohel棉花高品质纤维性状QTLs的分子标记筛选及其定位[J].遗传学报,2001,28(12):1151-1161.
    23.张军,武耀廷,郭旺珍.棉花微卫星标记的PAGE/银染快速检测[J].棉花学报,2000,12(5):267-269.
    24.张培通,郭旺珍,朱协飞.高产棉花品种泗棉3号产量及其构成因素的QTL标记与定位[J].作物学报,2006,32(8):1197-1203.
    25.张培通,朱协飞,郭旺珍.陆地棉衣分及相关性状的遗传和QTL分子标记[J].江苏农业学报,2005,21(4):264-271.
    26.周仲华,陈金湘.棉花数量性状遗传与QTL定位研究进展[J].中国农学通报,2005,21:36-40.
    27.朱军.运用混合线性模型定位复杂数量性状基因的方法[J].浙江大学学报,1999,33(3):327-335.
    28. Altaf M K, Myers G O, Stewart J Ml. Addition of the new markers to the trispecific cotton map[C]. Proc. of the Beltwide Cotton Conference. National Cotton Council, Memphis, TN,1999,439-448.
    29. Altaf M.K, J.F. Zhang, J.M. Steward.,& R..G. Cantrell. Integrated molecular map based on a trispecific F2 population of cotton. Beltwide cotton conf.,1998. P491-492.
    30. Arcade A, Labourdette A, Falque M. BioMercator:integrating genetic maps and QTLs towards discovery of candidate genes. Bioinformatics,2004,20:2324-2326.
    31. Bailey D.W. Recombinant inbred strains and bilineal congenic strains. The mouse in biomedical research.,1981,1:223-239.
    32. Bariana H S, G N Brown, N U Ahmed.2002, Characterisation of Triticum vavilovii-derived stripe rust resistance using genetic, cytogenetic and molecular analyses and its marker-assisted selection[J]. Thero Appl Genet,2002,104(2-3):315-320.
    33. Basten C.J., Weir B.S., Zeng Z.B. QTL Cartographer, Version 1.15.2001, Department of Statistics, North Carolina State University, Raleigh, NC.
    34. Berloo R V, P Stam. Marker-assisted selection in autogamous RIL population:a simulation study[J]. Theor Appl Genet,1998,96:147-154.
    35. Bolek Y., El-Zik K.M. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. J Cotton Sci.,2001,5:103-113.
    36. Boora K S, R A Frederiksen, C W Magill. A molecular marker that segregates with sorghum leaf blight resistance in one cross is maternally inherited in anther[J]. Mol Gen Genet,1999, 261:317-322.
    37. Bowman D.T., Gutirez O.A. Sources of fiber strength in the U.S. Upland cotton crop from 1980 to 2000. J Cotton Sci.,2003,7:164-169.
    38. Brubaker C.L., Paterson A.H., and Wendel J.F. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome,1999,42:184-203.
    39. Burr B., Burr F.A., Thompson K.H., Albertson M.C., and Stuber C.W. Gene mapping with recombinant inbreds in maize. Genetics,1988,118:519-526.
    40. Cantrell R.J., M.Ulloa, E.Zeiger,& Z.Lu. Genetic variation for stomatal conductance in an interspecific cotton population. Beltwide cotton conf.,1998,485-486.
    41. Chee P, Draye X, Jiang C. Molecular dissection interspecific variation between Gossypium hirsutum and Gossypium barbadense by backcross-self approach:Ⅰ. Fiber elongation[J]. Theor Appl Genet, 2005a,111:757-763.
    42. Chee P, Draye X, Jiang C X. Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense by a backcross-self approach:Ⅲ. fiber length[J]. Theor Appl Genet,2005b,111:772-781.
    43. Chesler EJ, Lu L, Shou S. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function[J]. Nat Genet,2005,37:233-242.
    44. Cheung VG, Conlin LK, Weber TM. Natural variation in human gene expression assessed in lymphoblastoid cells[J]. Nat Genet,2003,33:422-425.
    45. Chowdhury A K, P Srinives, P Saksoong, P Tongpamnak. RAPD markers linked to resistance to downy mildew disease in soybean. Euphytica,2002,128(1):55-60.
    46. Cooper H.B.,S.R.Oakley, and J.Dobbs. Fiber strength by different test methods. Beltwide Cotton Conf.1988,138-139.
    47. Crane C.F., Price H.J., Stelly D.M., Czeschin Jr. D.G, McKnight T.D.Identification of a homoeologous chromosome pair by in situ hybridization to ribosomal RNA loci in meitotic chromosomes of cotton(Gossypium hirsutum L.). Genome,1994,36:1015-1022.
    48. Culp T.W., Moore R.F., Pitner J.B.1985, Simultaneous improvement of lint yield and fiber strength in cotton. S.C. Agri. Exp. Stn. Tech. Bull.1985,109-120.
    49. Culp,T.W. Simultaneous improvement in yield and fiber strength of Upland cotton. In Proceedings from cotton fiber cellulose:structure, function, and utilization conference. Memphis, TN; National Cotton Council of American,1992,247-288.
    50. Delmer D P, Pear J R, Andrawis A. Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers.Mol.Gen.Genet.1995, 248:43-51.
    51. Deussen H. Improved cotton fiber properties:The textile industry's key to success in global competition. In Proceedings from cotton fiber cellulose:structure, function, and utilization conference. Memphis, TN; National Cotton Council of American,1992,43-64.
    52. Draye X, Chee P, Jiang C X. Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense(cotton) by a backcross-self approach:Ⅰ. Fiber elongation[J]. Theor Appl Genet,2005,111:757-763.
    53. Dudley J W. Molecular markers in plant improvement:manipulation of genes affecting quantitative traits[J]. Crop Sci,1993,33:660-668.
    54. Edwards M D, N J Page. Evaluation of marker-assisted selection through computer simulation[J]. Theor Appl Genet,1994,88:376-382.
    55. Fishman L, Kelly A.J., Morgan E, and Willis J.H. A genetic map in the mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interaction. Genetics,2001, 159:1701-1716.
    56. Frelichowski Jr JE, Palmer M B, Main D. Cotton genome mapping with new microsatellites from Acala'Maxxa' BAC-ends[J]. Mol Gen Genomics,2006,275:479-491.
    57. Frish M, M Bohn, A E Melchinger. Comparison of selection strategies for marker-assisted backcrossing of a gene [J]. Crop Science,1999,39:1295-1301.
    58. Fryxell PA. A revised taxonomic interpretion of Gossypium (Malvaceae). Rheedea,1992,2:108-165.
    59. Fulton F M, S grandillo, T Beck-bunn. Advanced backcross QTL analysis of a Lycopersicon esculentum × Lycopersicon parviflorum cross [J]. Theor Appl Genet,2000,100:1025-1042.
    60. Guo WZ, Cai CP, Wang CB. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium[J]. Genetics,2007,176:527-541.
    61. Guo WZ, Zhou BL, Yang LM. Genetic diversity of landraces in Gossypium arboretum L. race sinense assessed with simple sequence repeat markers[J]. Journal of Integrative Plant Biology,2006, 48:1008-1017.
    62. Haldane J.B.S. and Waddington C.H. Inbreeding and linkage. Genetics,1931,16:357374.
    63. Han F, I Romagosa, S E Ullrich et al. Molecular marker-assisted selection for malting quality traits in barley[J]. Molecular Breed,1997,3:427-437.
    64. Han ZG, Guo WZ, Song XL. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton[J]. Mol Genet Genomics,2004,272:308-327.
    65. Han ZG, Wang CB, Song XL. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSR in allotetraploid cotton[J]. Theor Appl Genet,2006,112:430-439.
    66. He DH, Lin ZX, Zhang XL. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton[J]. Euphytiac,2005,144:141-149.
    67. Hittalmani S, A parco, T V Mew. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice[J]. Theor Appl Genet,2000,100:1125-1128.
    68. Holland J.B. EPISTACY:A SAS program for detecting two-locus epistatic interactions using genetic marker information. J Hered,1998,89:374-375.
    69. Hospital F, A Charcoset. Marker-assisted introgression of quantitative trait loci [J]. Genetics,1997, 147:1469-1485.
    70. Hospital F, C Chevalet. Using markers in gene introgression breeding programs. Genetics,1992, 132:1119-1210.
    71. Hospital F. Size of donor chromosome segments around introgressed loci and reduction of linkage drag in marker-assisted backcross programs [J]. Genetics,2001,158:1363-1379.
    72. Hu J and Vick BA. Target Region Amplification Polymorphism:A novel marker technique for plant genotyping. Plant Mol Biol Rep,2003,21:289-294.
    73. Hyer A.H.,& D.M. Bassett. Acala cotton in Califorlia:a historical perspective. Beltwide cotton Conf. 1985,74-75.
    74. Jeuken M.J., and Lindhout P. The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germplasm. Thero Appl Genet.2004,26:116-218.
    75. Jiang C.X., Wright R.J., El-Zik K.M., Paterson A.H. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Pro.Natl.Acad.Sci.USA 1998,95:4419-4424.
    76. Jiang C.X., Wright R.J., Woo S.S., DelMonte T.A., Paterson A.H. QTL analysis of leaf morphology in tetraploid Gossypium (cotton). Thero Appl Gene,2000,100:409-418.
    77. John M.E. Genetic engineering of cotton for fiber modifications. In Proceedings from cotton fiber cellulose:structure, function, and utilization conference. Memphis, TN; National Cotton Council of American,1992,91-105.
    78. John M.E. Characterization of a cotton (Gossypium hirsutum L.) fiber mRNA (Fb-B6). Plant Physi., 1995,107:1477-1478.
    79. John M.E. Structural characterization of genes corresponding to cotton fiber mRNA, E6:Reduced E6 protein in transgenic plants by antisense gene. Plant Molecular Biology,1996,30:297-306.
    80. John M.E. and G Keller. Metabolic pathway engineering in cotton:Biosynthesis of polyhydroxybutyrate in fiber cells. Proc. Natl. Sci. USA,1996,93:12768-12773.
    81. Kandemir N, B L Jones, D M Wesenberg. Marker-assisted analysis of three grain yield QTL in barley using near isogenic lines[J]. Molecular Breeding,2000,6:157-167.
    82.Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative trait loci[J].Genetics, 1999,152:1203-1216.
    83. Kawai M, Aotsuka S, Uchimiya H. Isolation of a cotton CAP gene:a homologue of adenylyl cyclase-associated protein highly expressed during fiber elongation.Plant Cell Physiol.1998, 39:1380-1383.
    84. Khan M.A., GO.Myers, J.M.Stewart, J.Zhang, R.G.Cantrell. Addition of new markers to the trispecific cotton map. Beltwide Cotton Conf.1999,1331-1345.
    85. Knapp S J. Marker-assisted selection as a strategy for increasing the probability of selecting superior genotypes [J]. Crop Science,1998,38:1164-1174.
    86. Kohel R.J. Cotton germplasm resources and the potentials for improved fiber productivity and quality. Basra A.S. (ed.).In Cotton fibers:developmental biology, quality improvement, and testile processing. Food product press. NY.1999,167-182.
    87. Kohel R. J., Park Y. H., Slocum M. K. Analysis of the origion of extra long staple fiber in Gossypium barbadense L. In Biochemistry of cotton, Sep 28-30, Galveston, Texas,1994,84-88.
    88. Kohel R.J., Yu J, Park Y.H., Lazo G.R. Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica,2001,121:163-172.
    89. Kohel R. J., C. R.Benedict,& G.M. Jividen. Incorporation of 14C glucose into crystalline cellulose in aberrant fibers of a cotton mutant. Crop Sci.s,1993,33:1036-1040.
    90. Lacape J.M., Nguyen T.B., Thibivilliers S., Bojinnov T.B., Courtois B., Cantrell R.G., Burr B. and Hau B. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum×Gossypium barbadense backcross population. Genome,2003,46:612-626.
    91. Lacape JM, Nguyen TB. Mapping quantitative trait loci associated with leaf and stem pubescence in cotton[J]. J Heredity,2005b,96:441-444.
    92. Lacape JM, Nguyen, TB, Courtois, B, et al. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum×Gossypium barbadense backcross generation[J]. Crop Science,2005a,45:123-140.
    93. Lanaud C., Risterucci A. M., Pieretti I, N'Goran J.A.K., and Fargeas D. Characterisation and genetic mapping of resistance and defense gene analogs in cocoa (Theobroma cacao L.). Molecular Breed, 2004,13:211-227.
    94. Lande R and R Thompson. Efficiency of marker-assisted selection in the improvement of quantitative traits [J]. Genetics,1990,124:743-756.
    95. Lande R. The minimum number of genes contributing quantitative variation between and with population. Genetics,1981,99:541-553.
    96. Lander E.S., Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185-199.
    97. Lathrop G.M., Labouel D. Easy calculation of lod scores and genetic risk on small computer. Am. J. Hum. Genet.1989,36:460-465.
    98. Lawson W R, K C Goulter, R J Henry, G A Kong. Marker-assisted selection for two rust resistance gene in sunflower. Mol. Breed,1998,4:227-234.
    99. Li G, Quiros CF. Sequence--related amplified polymorphism (SRAP), A new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2003,107(1):168-180.
    100.Li L, and Guo X. AFLP-based genetic linkage maps of the pacific oyster Crassostrea gigas Thunberg. Mar. Biotechnol,2004,6:26-36.
    101.Li X B, Cai L, Cheng N H. Molecular characterization of the cotton GhTUBl gene that is preferentially expressed in fiber.Plant Physiol.2002,130:666-674.
    102.Li Y L, Sun J and LI C H. Specific expression of a b-tubulin gene (GhTubl) in developing cotton fibers.Science in China Series C,2003,46:235-242.
    103.Li Z H, Luo P. SPSS for Windows,2nd edn.Beijing:Beijing Electronic Industral Publisher,2005, 87-89 (in Chinese).
    104.Li Z. Molecular analysis of epistasis affecting complex traits. In:Paterson AH(ed) Molecular dissection of complex traits. CRC Press, Boca Raton,1998,119-130.
    105.Lincoln SE, Daly MJ, Lander ES. Mapping genes controlling quantitative trait using Mapmarker/QTL1.1.1993, Whitehand Institute Technical Report.,2nd edition.
    106.Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize. Thero Appl Genet,2002,105:622-628.
    107.Manly B.F. A Macintosh program fosterage and analysis of experimental genetic mapping data. Genome,1993,4:303-313.
    108.Mather K., and Jinks J.L. Biometrical genetics.1971, Cornell University Press, Ithaca, N.Y.
    109.May O.L. Enhancement of cotton length and strength properties for a 21st century textile industry. proceedings:Genetic control of cotton fiber and seed quality workshop. San Antonio, Texas.2000, 37-41.
    110.May O.L. Bowman D.T., and Calhoun D.S. Genetic diversity of U.S. Upland cotton cultivars released between 1980 and 1990. Crop Sci.1995,35,1570-1574.
    111.May O.L. Genetic variation in fiber quality. Basra A.S. (ed.).In Cotton fibers developmental biology, quality improvement, and testile processing. Food product press. NY.1999,183-229.
    112.May O.L. Jividen G.M.. Genetic modification of cotton fiber properties as measured by single and high volume instruments. Crop Sci.1999,39:328-333.
    113.May O.L., Bridges W.C. Breeding cotton for conventional and late-planted F2 production system. Crop Sci.1995,35:132-136.
    114.May O.L., Green C.C., S.H.Roach, and B.U.Kittrell. Registration of PD93001, PD93002, PD93003, and PD93004 germplasm lines of Upland cotton with brown lint and high fiber quality. Crop Sci. 1994,34:542.
    115.May O.L., Green C.C. Genetic variation for fiber properties in elite Pee Dee cotton populations. Crop Sci.1994,34:684-690.
    116.May O.L., Jividen G.M.. Genetic modification of cotton fiber properties with single and high volume instruments. Beltwide Cotton Conf.,1998,569-570.
    117.May O.L., Wofford,T.J.& John M.E.. Heritability of fiber strength in genetically engineered cotton. The 2th international cotton conference, Greece,1998,62-75.
    118.Mcbride K, Pear J.R., Perez-grau L. WO Patent,1996,12-19.
    119.McCouch S.R., Cho YG, Yano P.E., Blinstrub M., Morishima H. and Kinoshita T. Report on QTL nomenclature, Rice Genet. Newslett,1997,14:11-13.
    120.Mei M, Syed NH, Gao W, et al. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium)[J]. Theor Appl Genet,2004,108:280-291
    121.Mei M., Syed N.H., Gao W., Thaxton P.M., Smith C.W., Stelly D.M., Chen Z.J. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet 2004, 108:280-291.
    122.Meredith W.R., Jr. Cotton breeding for fiber strength. In Proceedings from cotton fiber cellulose: Structure, function, and utilization conference. Memphis, TN; National Cotton Council of American, 1992,289-302.
    123.Meredith W.R., R.R.Bridge. The relationship between F2 and F3 Fselected progenies in cotton (Gossypiuim hrsutum). Crop Sci.1973,13:354-356.
    124.Meredith W.R.,P.E.Sasser, and S.T.Rayburn. Regional high quality fiber properties as measured by conventional and AFIS methods. Beltwide Cotton Conf.,1996,1681-1684.
    125.Meredith W.R. Quantitative genetics. In R.J. Kohel,& C.F. Lewis (ed) Cotton:Agronomy,1984, 24:131-150.
    126.Meredith, W. R. Yield and Fiber Quality Potential for Second-generation Cotton Hybrids. Crop Sci. 1990,30:301-307.
    127.Meredith, W. R., J.S. Brown.1998, Heterosis and combing ability of cottons originating from different regions of the United States. J. Of Cotton Sci.,1998,2:77-84.
    128.Michelmore R.W., I. Paran, and R.V. Kesseli. Identification of markers linked to disease-resistance genes,by bulked segregant analysis:A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Nati. Acad. Sci. USA.1991,88:9828-9832.
    129.Miklas P N, R C Larsa, R Rily. Potential marker-assisted selection for bc-12 resistance to bean common mosaic potyvirus in common bean [J]. Euphytica,2000,116(3):211-219.
    130.Miller P.A.,J.A.Lee. Heterosis and combing ability in varietal top crosses of Upland cotton, Gossypium hirsutum. Crop Sci.,1965,5:645-649.
    131.Mohler V, A Jahoor. Allele-specific Amplification of polymorphic sites for the detection of powdery mildew resistance loci in cereals [J]. Theor Appl Genet,1996,93:1078-1082.
    132.Monforte A J, S D Tanksely. Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirstum chromosomal affecting fruit characteristics and agronomic traits:breaking linkage among QTLs affecting different traits and dissection of heterosis for yield [J]. Theor Appl Genet,2000, 100:474-479.
    133.Moreau L, A Charcosset, F Hospital and A Gallais. Marker-assisted selection efficiency in population of finite size [J]. Genetics,1998,148:1353-1365.
    134.Moreno-Gonzalez J. Efficiency of generation for estimating marker-associated QTL effects by multiple regression [J]. Genetics,1993,135:223-231.
    135.Nair S, A Kumar, M N Srivastava, M Mohan. PCR-based DNA markers linked to a gall midge resistance gene, Gm4t, Has potential for marker-aided selection in rice[J]. Theor Appl Genet,1996, 92:660-665.
    136.Nair S, J S Bentur, V P Rao, M Mohan. DNA markers tightly linked to a gall midge resistance gene(Gm2) are potentially useful for marker-aided selection in rice breeding[J]. Theor Appl Genet, 1995,91:68-73.
    137.Nguyen TB, Giband M, Brottier P. Wide coverage of teraploid cotton genome using newly developed microsatellite markers[J]. Theor Appl Genet,2004,109:167-175
    138.Orford S J, Timmis J N. Specific expression of an expansin gene during elongation of cotton fibres.Biochim. Biophys. Acta.1998,1398:342-346.
    139.Park Y H, Alabady M S, Ulloa M. Genetic mapping of new cotton fiber lociusing EST-derived microsatellites in an interspecific recombinant inbred line cotton population [J]. Mol Gen Genomics, 2005,274:428-441
    140.Paterson A.H., Brubaker C.L., Wendel J.F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Molecular Biology Report,1993,11(2): 122-127.
    141.Paterson A.H., Damon S., Hewitt J.D., Zamir D., Rabinowitch H.D., Lincoln S.E., Lander E.S., and Tanksley S.D. Mendelian factors underlying quantitative traits in tomato:comparison across species, generations, and environments. Genetics,1991,127:181-197.
    142.Paterson A.H., E.S. Lander, J.D. Hewitt, S. Peterson, S.E. lincoln,& S.D. Tanksley. Resolution of quatitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature,1988,335:721-726.
    143.Paterson AH, Saranga Y, Menz M. QTL analysis of genotypexenvironment interactions affecting cotton fiber quality[J]. Theor Appl Genet,2003,106:384-396
    144.Pooni H.S., Coombs D.J., Jinks P.S. Detection of epistatsis and linkage of interacting genes in the presence of reciprocal differences. Heredity,1987,58:257-266.
    145.Prabbu R R, V N Njiti, B Bell-Joharison. Selecting soybean cultivars for dual resistance to soybean cyst nematode and sudden death syndrome using two DNA markers.Crop Sci,1999,39:987-992.
    146.Qi X, Stam P, Lindhout P. Use of locus-specific AFLP markers to construct a high density molecular map in barley. Thero Appl Genet 1998,96:376-384.
    147.Qian S.Y., Huang J.Q., Peng Y.T., Zhou B.L., Ying M.C., Shen D.Z., Liu G.L., Hu T.X., Xu. Y.J., Gu L.M., Ni W.C., Chen S. Studies on the hybrid of Ghirsutum L. and G. anomalum Wawr.& Peyr. and application in breeding. Sci Agric Sinica,1992,25:44-51.
    148.Quisenberry, J.E. Inheritance of fiber properties among crosses of Acala and High Plains cultivars of Upland cotton. Crop Sci.,1975,15:202-204.
    149.Reinisch U.J., J.M. Dong, C.M. Brubaker D.M.Stelly, J.F.Wendel & A.H.Paterson. A detailed RFLP map of cotton, Gossypium Hirsutum Gossypium Babadense:chromosome organization and evolution in a disomic polyploid genome, Genentics,1994,138,829-847.
    150.Ren L H, Guo W Z, Zhang T Z, Identification of quantitative trait loci (QTLs) affect yield and fiber properties in chromosome 16 in cotton using substitution line [J]. Acta Botanica sinica,2002,44(7): 815-820.
    151.Rong J, Bowers JE, Schulzel. Comparative genomics of Gossypium and Arabidopsis:Unraveling the consequences of both ancient and recent polyploidy[J]. Genome Res.2005,15:1198-1210.
    152.Rong JK, Abbery C, Bowers JE. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium) [J]. Genetics,2004,166:389-417.
    153.Rong JK, Feltus FA, Waghmare VN, Pierce GJ. Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development[J]. Genetics,2007,176:2577-2588.
    154.Saranga Y, Menzm M, Jiang CX, et al. Genomic dissection of genotypexenvironment interactions conferring adaptation of cotton to arid conditions[J]. Genome Res,2001,11:1988-1995.
    155.SAS institute SAS/STAT user's guide version 6,4th edn.1989, SAS Institute, Cary, North Carolina.
    156.Sax K. The association of size difference with seed-coat pattern and pigmentation in Phaseolus vulgaris[J]. Genetics,1923,8:552-560.
    157.Schadt E E, Monks S A, Drake T A. Genetics of gene expression surveyed in maize, mouse and man[J]. Nature,2003,,422:297-302.
    158.Schneider K A, M E Brothers, J D Kelly. Marker-assisted selection to improve drought resistance in common bean. Crop Sci,1997,37:51-60.
    159.Self F.W.,M.T. Henderson. Inheritance of fiber strength in a cross between the Upland cotton varieties AHA 50 and Half and Half. Agron. J.1954,46,151-154.
    160.Shappley Z.W., Jenkins J.N., Zhu J., McCarty J.C. Quantitative trait loci associated with agronomic and fiber traits of upland cotton. J Cotton Sci,1998,2:153-163.
    161.Shen L, B Courtois, K L Mcnally. Evaluation of near isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection[J]. Theor Appl Genet,2001,103:75-83.
    162.Shen X L, Guo WZ, Lu QX. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica,2007,155:371-380.
    163.Shen X L, Guo, WZ, Zhu, XF. Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR markers[J]. Mol Breed.2005,15:169-181.
    164.Shen X L, Zhang T Z, Guo W Z. Mapping fiber and yield QTLs with main, epistatic, and QTL Environment interaction effects in recombinant inbred lines of Upland cotton[J]. Crop Sci,2006,46: 61-66.
    165.Shin H, Brown R M J. GTPase activity and biochemical characterization of a recombinant cotton fiber annexin.Plant Physiol.1999,119:925-934.
    166.Singh S, J S Sidhu, N Huang. Pyramiding three bacterial blight resistance genes(xa5, xa13, xa21)using marker-assisted selection into indica rice cultivar PR106[J]. Thero Appl. Genet,2001, 102(6):1011-1015.
    167.Song P, Allen R D. Identification of a cotton fiber-specific acyl carrier protein cDNA by differential display.Biochim.Biophys.Acta.1997,1351:305-312.
    168.Spickett S.G., Thoday J.M. Regular response to selection and interaction between located polygenes. Genet Res.,1966,7:96-121.
    169.Stam P. Construction of integrated genetic linkage maps by means of new computer package: JionMap. The Plant Journal.1993,5:739-744.
    170.Stelly D.M. Interfacing cytogenetics with the cotton genome mapping effort. Beltwide Cotton Conf., 1993,1545-1550.
    171.Stromberg L.D., Dudley J.W., and Rufener GK. Comparing conventional early generation selection with molecular marker assisted selection in maize. Crop Sci,1994,34:1221-1225.
    172.Stuber C W and M D Edwards. Genotypic selection for improvement of quantitative traits in corn using molecular marker loci. Proc.41st Annual Corn and Sorghum Research Conf., Am. Seed Trade Assoc.1986,41:40-83.
    173.Stuber C W, S E Lincoln, D W Wolf. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics,1995,132:823-839.
    174.Tanksely S D, J C Nelson. Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines[J]. Theor Appl Genet,1996,92:191-203.
    175.Tanksely S D, N D Young, A H Patterson et al. RFLP mapping in plant breeding:New tools for old science[J]. Bio/technology,1989,7:257-263.
    176.Tanksely S D, S R Mcouch. Seed banks and molecular maps:Unlocking genetic potential from the wild [J]. Science,1997,277(22):1063-1066.
    177.Tanksely S.D., and Hewitt J.D. Use of molecular markers in breeding for soluble solids in tomato---a re-examination. Thero. Appl. Genet,1998,75:811-823.
    178.Tanksley S.D. Mapping polygenes. Annu. Rev. genet,1993,27:205-233.
    179.Tartarini S et al. Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple[J]. Plant Breeding,1999,118:183-186.
    180.Turner J.H. Response to selective pressure in early generation progenies of Upland cotton (Gossypium hirsutum).Euphytica,1980,29:615-624.
    181.Ulloa M, Saha S, Jenkins JN, Meredith WR. Chromosomal Assignment of RFLP Linkage Groups Harboring Important QTLs on an Intraspecific Cotton (Gossypium hirsutum L.) Joinmap. J Heredity, 2005,96:132-144
    182.Ulloa M., Meredith W.R. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Sci,2000,4:161-170.
    183.Ulloa M., Meredith W.R., Shapplet Z.W., Kahler A.L. RPLF genetic linkage maps from four F2:3 population and a joinmap of Gossypium hirsutum L. Thero Appl Genet 2002,104:200-208.
    184.Van Ooijen JW. MapQTL version 5.0:software for the'mapping of quantitative trait loci in experiment population.2004, In Wageningen:Plant Research International.
    185.Van Ooijen JW, Voorrips RE. Software for the calculation of genetic linkage maps.2001, In Wageningen:Plant Research International.
    186.Visscher P M, C S Haley. Marker-assisted introgression in backcross breeding programs. Genetics, 1996,144:1923-1932.
    187.Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior M.L., Stuber C.W., Melchinger A.E., Lubberstedt T, Xia X.C., Stam P, Zabeau M, Kuiper M. Two high-density AFLP linkage maps of Zea mays L.:analysis of distribution of AFLP markers. Thero Appl Genet 1999,99:921-935.
    188.Walker D, H Roger Boerma, John All. Combining cry 1 Ac with QTL alles from PI229358 to improve soybean resistance to lepidopteran pests. Molecular Breeding,2002,9:43-51.
    189.Wang B H, Guo W Z, Zhu X F. QTL Mapping of Yield and Yield Components for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Gene Sin,2007,34:(1) 35-45
    190.Wang B H, Wu Y T, Huang N T. QTL Mapping for Plant Architecture Traits in Upland Cotton Using RILs and SSR Markers[J]. Acta Gene Sin,2006,33:(2) 161-170
    191.Wang D.L., Zhu J, Li Z.K., Paterson A.H. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Thero. Appl. Genet,1999, 99:1255-1264.
    192.Wang G.L., Dong J.M., Paterson A.H. The distribution of Gossypium hirsutum chromatin in G. barbadense germplasm:molecular analysis of introgressive plant breeding, Theor Appl Genet,1995, 91:1153-1161.
    193.Wendel J.F. New world tetraploid cottons contain old world cytoplasm. Proc. Natl. Acad. Sci. U.S.A. 1989,86:4132-4136.
    194.Whittaker J C, Curnow R N, Haley C S, Thompson R. Using maker-maps in marker-assisted selection[J]. Genet Res,1995,66:255-265.
    195.Williams C.G., Goodman M.M., and Stuber C.W. Comparative recombination distances among Zea mays L. inbreds, wide crosses and interspecific hybrids. Genetics,1995,141:1573-1581.
    196.Williams J.G.K., A.R. Kabelik, K.J. Livak, J.A. Rafalski and S.V. Tingey. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res.1990,18,6531-6535.
    197.Williams J.G.K., R.S. Reiter, R.M. Young, and P.A. Scolnik. Genetic mapping of mutations using phenotypic pools and mapped RAPD markers. Nucl. Acids Res.1993,21,2697-2702.
    198.Williamson V M. A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theor Appl Genet,1994,87:757-763.
    199.Wright R.J., A.H. Paterson, P.M. Thaxton,& K.M. El-zik. DNA markers diagnostic of genetic
    factors controlling leaf pubescence in cotton. Cotton Improvement Conference,1994,485-492.
    200.Wright R.J., Thaxton P.M., EL-Zik K.M., Paterson A.H. D-subgenome bias of Xcm resistance genes in tetraploid Gossypium(cotton) suggests that polyploid formation has created novel avenues for evolution. Genetics 1998,149:1987-1996.
    201.Wu J., Jenkins J.N., McCarty J.C., Zhu J. Comparisons of QTL mapping properties for two methods of RI development. Beltwide Cotton Congerences,2000,565-570.
    202.Wu P, Zhang G, Huang N, Ladha J.K. Non-additive interaction conditioning spikelet sterility in an F2 population of an indica/japonica cross in rice. Thero. Appl. Genet,1995,91:825-829.
    203.Xiao J, Li J, Yuan L, Tanksely S.D. Dominance is the majoe genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics,1995,140:745-754.
    204.Xie C, Xu S. Efficiency of multistage maker-assisted selection in the improvement of multiple quantitative traits[J]. Heredity,1998,80:489-498.
    205.Young N.D., Tanksley S.D. Restriction fragment length polymorphism maps and the concept of graphical genotypes, Theor Appl Genet,1989,77:95-101.
    206.Yousef G G, J A Juvik. Comparison of phenotypic and marker-assisted selection for quantitative traits in Sweet Corn. Crop Sci.,2001,41:645-655.
    207.Yu J, Kohel RJ, Dong JM. Toward positional cloning of a major glandless gene in cotton[A]. In Proc of the Beltwide Cotton Conference, National Cotton Council, Memphis, TN,2000,Ⅰ:516-517
    208.Yu Z H, Park Y H, Lazo G R. Molecular mapping of cotton genome and its application to cotton improvement[C]. Proc. Belt. Cotton. Pro Res Conf,1996,636-637.
    209.Yu,J. Y.H. Park,G. Lazo R., Kohel R.J., Molecular cotton genome with molecular markers. cotton improvement conference.1997,447-452.
    210.Yu,J. Y.H. Park,G. R. Lazo, R.J.Kohel, Molecular mapping of the cotton genome:QTL analysis of fiber quality properties. Cotton Improvement Conference.,1998,485-496.
    211.Yu,J., R.J.Kohel, Update of the cotton genome mapping. Beltwide Cotton Conf.1999,285-287.
    212.Yvert G, Brem RB, Whittle J. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors[J]. Nat Genet,2003,35:57-64.
    213.Zeng Z.B. Precision mapping of quantitative trait loci, Genetics,1994,136:1457-1468.
    214.Zhang J., Wu Y.T., Guo W.Z., Zhang T.Z. Fast screening of SSR markers in cotton with PAGE/silver staining, Cotton Sci Sinica,2000,12:267-269.
    215.Zhang TZ, Yuan YL, Yu J, Guo WZ, Kohel RJ. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor Appl Genet,2003,106:262-268.
    216.Zhang W, Smith C. Computer simulation of marker-assisted selection utilizing linkage disequilibrium. Theor Appl Genet,1992,83:813-820.
    217.Zhang ZS, Xiao YH, Luo M. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.) [J]. Euphytica,2005,144:91-99.
    218.Zhu H, G Briceno, R Dovel. Molecular breeding for grain yield in barley:an evaluation of QTL effects in a spring barley cross. Theor Appl Genet,1999,98:772-779.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700