独立生长因子Gfi1基因在骨髓增殖性疾病中的作用与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探索独立生长因子Gfi1在髓系细胞增殖和凋亡中的作用,为骨髓增殖性疾病(MPD)的分子学诊断和治疗提供理论依据。
     方法:(1)通过绿色荧光蛋白GFP慢病毒载体包装系统把目的基因Gfi1和对照组空质Plox稳定转染入依赖白介素3(IL-3)生长的小鼠32D粒-单祖细胞细胞株中,无菌流式分选出32D/Gif1和32D/Plox细胞株。(2)通过细胞生长、集落生长和细胞周期的变化等实验来分析32D/Gfi1和32D/Plox细胞株增殖的变化;(3)IL-3撤退实验后,通过流式细胞术、细胞染色(碘化丙啶和Hoechst 33258)、蛋白免疫印迹(WB)等技术来分析32D/Gfi1和32D/Plox细胞株凋亡的变化。
     结果:(1)稳定转染Gfi1的细胞株(32D/Gfi1)和集落与对照组空质Plox的细胞株(32D/Plox)和集落的增殖差异明显,32D/Gfi1细胞增殖速度和集落形成率均明显高于32D/Plox细胞株;过表达Gfi1可以促使32D细胞由G0/G1期进入S期,加速细胞周期进程。(2)IL-3撤退48小时后,流式细胞术分析结果显示:32D/Plox细胞出现的凋亡显著多于32D/Gfi1细胞(分别为89.72%和34.52%,P<0.01);Western blot结果显示:相对于32D/Plox组,32D/Gfi1组的凋亡促进因子Bax和细胞周期依赖性激酶抑制基因(CDKN2A)编码的两种周期抑制蛋白(p16INK4a和p14ARF,以下简称P14,P16)的水平明显下调。
     结论:在小鼠32D-单核祖细胞株中,Gfi1能够促进细胞增殖、增加集落形成率和加速细胞周期进程;Gfi1能够抑制与细胞周期和凋亡相关的Bax、p16INK4a和p14ARF的表达,从而减少因IL-3撤退引起的32D细胞凋亡。
     目的:建立小鼠骨髓增殖性疾病(Myeloproliferative disorders, MPD)小鼠模型,探讨独立生长因子(growth factor independence 1, Gfi1)在MPD发病中的作用与机理。
     方法:选择DBA小鼠,实验动物按移植物不同随机分为3组,A组10只,B组20只,C组4只。移植当天将受鼠置于无菌笼内接受直线加速器亚致死剂量4.0Gy,进行照射,每只小鼠照射后4h内由尾静脉输注入移植物,每只受鼠输入细胞体积为200μl;每只小鼠输入的细胞数1.8×106个;A组输入32D/plox细胞,B组输入32D/Gfi1细胞,C组只做照射,不输细胞,留正常未处理小鼠做血象检测的对照。检测血象、检查嵌合体植入、观察肝、脾、骨的病理改变;Western-blot检测32D/plox小鼠和32D/Gfi1组小鼠Gfi1与JAK2的表达变化。
     结果:实时定量PCR检测Gfil mRNA在32D/plox小鼠和32D/Gfi1小鼠中的表达,后者显著增高,提示移植物成活;通过Y染色体上的sry基因的PCR扩增检测阳性也说明移植32D/Gfi1细胞成功。血象在30d、60d可检测到32D/Gfi1组小鼠的WBC、RBC、Plt显著增加,明显高于32D/plox小鼠和正常小鼠的血象,且差异有统计学意义(P<0.05),且以后持续保持在较高的血象水平,符合MPD的血象表现。32D/Gfi1小鼠肝脏、脾脏、骨髓的病理改变均符合MPD改变;32D/Gfi1组小鼠表达的Gfi1的mRNA、蛋白及JAK2的mRNA、蛋白比空白载体32D/plox组明显增强。
     结论:建立了稳定的MPD小鼠动物模型,过表达Gfi1通过增加JAK2的表达促使MPD的发生。
     目的:探讨骨髓增殖性疾病(myeloproliferative disorders, MPD)患者骨髓中独立生长因子(growth factor independence 1,Gfi1)的表达及其与临床预后的关系。方法:选择华中科技大学同济医学院附属同济医院医院确诊的74例MPD患者为研究对象,其中真性红细胞增多(polycythaemiavera, PV)23例、原发性血小板增多症(essential throm bocythaemia, ET)49例,特发性骨髓纤维化(idiopathic myelofibrosis,IMF)2例。应用逆转录-聚合酶链反应技术扩增Gfi1引物,琼脂糖凝胶电泳结果,分析各组MPD患者Gfi1阳性表达与MPD临床预后的关系。
     结果:74例MPD患者中52例检出Gfi1阳性表达,分别为PV患者78.26%(18/23)阳性表达,ET患者67.35%(33/49)阳性表达,IMF患者50%(1/2)阳性表达。Gfi1水平增高影响患者的预后,Gfi1阳性表达者,预后较差。
     结论:Gfi1可作为判断MPD预后的重要指标。
Research aims:The growth factor independent-1 (Gfi1) is a transcriptional repressor with essential roles in lymphopoiesis, myelopoiesis, and hematopoietic stem cell development. Here we will further investigate the functions of Gfil in myeloid proliferation and apoptosis.
     Methods:We cloned the full-length sequences of human's Gfi-1 by using gene cloning and recombinant molecular biology, and constructed pLOX-Gfi-1. We introduced Gfi1 cDNA into the interleukin-3 (IL-3) dependent mouse myelomonoblastic 32D progenitor cells. By observing the colony-forming units, performing cell growth curve and cell cycle distribution analysis, we studied the proliferative ability of Gfi1. By using Propidium Iodide and Hoechst staining, apoptosis assays with flow cytometry and western blot assays, we investigated the proliferation and apoptosis in 32D/Gfil cells and 32D/plox cells after withdrawal of IL-3.
     Results:The plating efficiency of 32D/Gfi1 cells was much higher than that of control cells (32D/Plox) in colony formation assay. Overexpression of Gfi-1 promotes the entry of 32D cells from G0/G1 resting state into the S phase, thus results in enhanced proliferation through accelerated cell cycle progression. More importantly, overexpression of Gfi1 significantly reduced cell death initiated by IL-3 withdrawal. After 48 hours deprivation, more 32D/Plox cells showed morphology of apoptosis compared to 32D/Gfil cells (89.72% vs 34.52%, p<0.01). In accordance with the phenomenon, the protein levels of the proapoptotic regulator Bax and two CDKN2A encoding proteins p16INK4A and p14ARF are down-regulated by Gfi-1 overexpresssion.
     Conclusion:Gfi-1 is believed to promote proliferation and inhibit apoptosis through its simultaneous acceleration of cell cycle and repression of apoptosis-related factors.
     Research aims:To Establish mice model of myeloproliferative disorders (MPD) and study the effect and mechanism of growth factor independence 1 on myeloproliferative disease in mice.
     Methods:We select DBA mice as the test animals. According to the graft cells, the mice were randomly divided into 3 groups, group A was n=10, group B was n=20, and group C was n=4. Recipient mice were placed within a sterile cage received sublethal doses of 4.0Gy Linear accelerator radiation. The graft was input into the tail vein in 4 hours after irradiation. Group A was input 32D/plox cells, group B was input 32D/Gfi1, and group C only exposed to the rays, but not accepted graft. The recipients were observed for the features of MPD, such as anemia, anorexia, etc. The evidence of successful transplantation was shown by real-time quantitative PCR detection of Gfi1 mRNA in the recipient mice, and the amplification of mice Y chromosome specific DNA by PCR from the recipient bone marrow. HE stain histology was also performed for livers, spleen and bones in recipients at different time points. Quantitative RT-PCR and western blot were used to tracking the mRNA and protein expression of Gfi1 and JAK2.
     Results:(1) Typical features were seen in the mice MPD models, such as Increased blood count. anorexia, less activity, etc. (2) Gfi1 mRNA was significantly higher in group B than in group A. Also, PCR assays confirmed that complete chimerism was successfully established in recipient mice. Detecting blood count in the 30d,60d, WBC, RBC and Plt were significant increased in group B mice than in group A, and the difference was statistically significant (P<0.05). We found the pathological changes of liver, spleenand bone marrow were consistent with the changes in MPD. The mRNA and protein expression of Gfi1 and JAK2 in group B mice were significantly enhanced than that in the group A mice.
     Conclusion:Stable and reliable MPD model was established. Overexpression of Gfi1 led to the occurrence of MPD in mice by promoting the expression of JAK2.
     Objective:To examine the expression Gfi1 in patients with myeloproliferative disorders (MPD) and its relationship with clinic prognostic significance of MPD.
     Methods:Seventy-four MPD patients (who had been diagnosed in Tongji Hospital) were included in our study. The patients included 23 with polycythaemiavera (PV),49 with essential thrombocythaemia (ET) and 2 with idiopathicmyelofibrosis (IMF). Gfi1 was detected by reverse transcription polymerase chain reaction (RT-PCR). Agarose gel electrophoresis is used to separate DNA-sequencing. The correlation of Gfi1 with clinical prognosis of MPD was analyzed by Chi-square test.
     Results:Gfi1 positive was detected in 52 of the 74 MPD patients, including 18 (18/23, 78.26%) with PV,33 (33/49,67.35%) with ET, and 1 (1/2,50%) with IMF. Positive expression of Gfi1 affects the prognosis of the MPD patients. Patients with positive Gfi1 were significantly different from healthy volunteers, indicating poor prognosis.
     Conclusion:Gfi1 could be used as an important prognostic indicator in MPD.
引文
1. Gilks CB, Bear SE, Grimes HL, et al. Progression of interleukin-2 (IL-2)-dependent rat T cell lymphoma lines to IL-2-independent growth following activation of a gene (Gfi-1) encoding a novel zinc finger protein. Mol Cell Biol,1993,13(3):1759-1768.
    2. Schmidt T, Karsunky H, Gau E, et al. Zinc finger protein GFI-1 has low oncogenic potential but cooperates strongly with pim and myc genes in T-cell lymphomagenesis. Oncogene,1998,17:2661-7.
    3. Alkema MJ, Jacobs H, van LM, et al. Pertubation of B and T cell development and predisposition to lymphomagenesis in Emu Bmil transgenic mice require the Bmil RING finger. Oncogene,1997,15:899-910.
    4. Alkema MJ, van der Lugt NM, Bobeldijk RC, et al. Transformation of axial skeleton due to overexpression of bmi-1 in transgenic mice.Nature,1995,374:724-7.
    5. Van Lohuizen M, Verbeek S, Scheijen B, et al. Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell,1991,65:737-52.
    6. Jacobs J, Scheijen B,Voncken JW, et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc- induced apoptosis via INK4a/ARF. Genes Dev, 1999,13:2678-90.
    7. Juin P, Hueber AO, Littlewood T, et al. c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes Dev,1999,13:1367-81.
    8. Chung CD, Liao J, Liu B, et al. Specific inhibition of Stat3 signal transduction by PIAS3. Science,1997,278:1803-5.
    9. Rodel B, Wagner T, Zornig M, et al. The human homologue (GFI1B) of the chicken GFI gene maps to chromosome 9q34.13-A locus frequently altered in hematopoietic diseases. Genomics,1998,54(3):580-582.
    10. Tong B, Grimes HL, Yang TY, et al. The Gfi-1B proto-oncoprotein represses p21WAF1 and inhibits myeloid cell differentiation.Mol Cell Biol,1998,18:2462-73.
    11. Basu S, Liu Q, Qiu Y, et al. Gfi-1 represses CDKN2B encoding p15INK4B through interaction with Miz-1.ProcNatlAcadSci USA,2009,06(5):1433-1438.
    12. Person RE,Li FQ,Duan Z,et al. Gfil proto-oncogene mutation causes human neutropenia and targets neutrophil elastase. Nat Genet,2003,34:308-12.
    13. Zarebski A, Velu CS, Baktula AM, et al. Mutations in growth factor independent-1 associated with human neutropenia block murine granulopoiesis through colony stimulating factor-1.Immunity,2008,28(3):370-80.
    14. Klein C. Genetic defects in severe congenital neutropenia:emerging insights into life and death of human neutrophil granulocytes.Annu Rev Immunol,2011,23(29): 399-413.
    15. Boztug K, Klein C. Genetic etiologies of severe congenital neutropenia. CurrOpinPediatr,2011,23(1):21-6.
    16. Duan Z, Horwitz M. Targets of the transcriptional repressor onco-protein Gfi-1. ProcNatlAcadSci USA,2003,100:5932-7.
    17. Barjaktarevic I, Maletkovic-Barjaktarevic J, et al. Altered functional balance of Gfi-1 and Gfi-1b as an alternative cause of reticular dysgenesis? Med Hypotheses,2010, 74(3):445-8.
    18. Cheng T, Rodrigues N, Shen H, et al.Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science,2000,287:1804-8.
    19. Cellot S, Sauvageau G.Gfi-1:another piece in the HSC puzzle.Trends Immunol.2005, 26(2):68-71.
    20. Marteijn JA, van der Meer LT, Van Emst L, et al. Diminished proteasomal degradation results in accumulation of Gfi1 protein in monocytes.Blood,2007,109(1):100-8.
    21. Friedman AD. Oncogene. Transcriptional control of granulocyte and monocyte development.2007,26(47):6816-28.
    22.黄敏.Gfi1在慢性细胞白血病中的表达及对32D细胞增殖作用的影响.[D]武汉,华中科技大学图书馆,2010.
    23. Spooner CJ, Cheng JX, Pujadas E, et al. A recurrent network involving the transcription factors PU.1 and Gfi1 orchestrates innate and adaptive immune cell fates. Immunity.2009; 31(4):576-586.
    24. Karsunky H, Mende I, Schmidt T, et al. High levels of the onco-protein Gfi-1 accelerate T-cell proliferation and inhibit activation induced T-cell death in Jurkat T-cells. Oncogene.2002 28; 21(10):1571-1579.
    25. Rodriguez-Tarduchy G, Collins M, Lopez-Rivas A. Regulation of apoptosis in interleukin-3-dependent hemopoietic cells by interleukin-3 and calcium ionophores. EMBO J.1990; 9(9):2997-3002.
    26. Baffy G, Miyashita T, Williamson JR, et al. Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced Bcl-2 oncoprotein production. J Biol Chem.1993; 268(9):6511-6519.
    27. Guttridge KL, Luft JC, Dawson TL, et al. Mer receptor tyrosine kinase signaling: prevention of apoptosis and alteration of cytoskeletal architecture without stimulation or proliferation. J Biol Chem.2002; 277(27):24057-24066.
    28. Zhu J, Guo L, Min B, et al. Growth factor independent-1 induced by IL-4 regulates Th2 cell proliferation. Immunity.2002; 16(5):733-744.
    29. Zornig M, Schmidt T, Karsunky H, et al. Zinc finger protein GFI-1 cooperates with myc and pim-1 in T-cell lymphomagenesis by reducing the requirements for IL-2. Oncogene.1996; 12(8):1789-1801.
    30. Scheijen B, Jonkers J, Acton D, et al. Characterization of pal-1, a common proviral insertion site in murine leukemia virus-induced lymphomas of c-myc and Pim-1 transgenic mice. J Virol.1997; 71(1):9-16.
    31. Schmidt T, Karsunky H, Gau E, et al. Zinc finger protein GFI-1 has low oncogenic potential but cooperates strongly with pim and myc genes in T-cell lymphomagenesis. Oncogene.1998; 17(20):2661-2667.
    32. Hock H, Hamblen MJ, Rooke HM, et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature.2004; 431(7011):1002-1007.
    33. Straume O, Sviland L, Akslen LA. Loss of nuclear p16 protein expression correlates with increased tumor cell proliferation (Ki-67) and poor prognosis in patients with vertical growth phase melanoma. Clin Cancer Res.2000; 6(5):1845-1853.
    34. Ito S, Ohga T, Saeki H, et al. Promoter hypermethylation and quantitative expression analysis of CDKN2A (p14ARF and p16INK4a) gene in esophageal squamous cell carcinoma. Anticancer Res.2007; 27(5A):3345-3353.
    35. Zhang Z, Rosen DG, Yao JL, et al. Expression of p14ARF, p15INK4b, p16INK4a, and DCR2 increases during prostate cancer progression. Mod Pathol.2006; 19(10): 1339-1343.
    36. Berns A, van der Lugt N, Alkema M, et al. Mouse model systems to study multistep tumorigenesis. Cold Spring Harb Symp Quant Biol.1994; 59:435-447.
    37. Deng X, Ruvolo P, Carr B, et al. Survival function of ERK1/2 as IL-3-activated, staurosporine-resistant Bc12 kinases. Proc Natl Acad Sci USA.2000,97(4):1578-1583.
    38. Nakazawa Y, Suzuki M, Manabe N, et al. Cooperative interaction between ETS1 and GFI1 transcription factors in the repression of Bax gene expression. Oncogene.2007; 26(24):3541-3550.
    39. Chang W, Sun HY, Huang M, et al. Effect of Adriamycin on Gfil expression in K562 cells and its relationship with the relevant apoptotic genes. Journal of experimental hematology.2007; 15(2):278-282. (Article in Chinese).
    1. Dahl R, Walsh JC, Lancki D, et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nat Immunol, 2003,4:1029-1036.
    2. Lidonnici MR, Audia A, Soliera AR, et al. Expression of the transcriptional repressor Gfi-1 is regulated by C/EBP{alpha} and is involved in its proliferation and colony formation-inhibitory effects in p210BCR/ABL-expressing cells. Cancer Res,2010, 70(20):7949-59.
    3. Spooner CJ, Cheng JX, Pujadas E, et al. A recurrent network involving the transcription factors PU.1 and Gfi1 orchestrates innate and adaptive immune cell fates. Immunity,2009,31(4):576-586.
    4. Zhang DE,ZhangP,Wang ND, et al. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice.ProcNatlAcadSci USA,1997,94:569-74.
    5. Zhuang D, Qiu Y, Kogan SC, Dong F. Increased CCAAT enhancer-binding protein epsilon (C/EBPepsilon) expression and premature apoptosis in myeloid cells expressing Gfi-1 N382S mutant associated with severe congenital neutropenia. J BiolChem,2006,281(16):10745-51.
    6. Velu CS, Baktula AM, Grimes HL. Gfil regulates miR-21 and miR-196b to control myelopoiesis. Blood,2009,113(19):4720-8.
    7. Frenkel' MA. Current diagnosis of myeloproliferative neoplasms (2008 WHO classification).Klin Lab Diagn,2011,1(1):43-9.
    8. Huang M, Hu Z, Chang W, et al. The growth factor independence-1 (Gfi1) is overexpressed in chronic myelogenous leukemia.Acta Haematol,2010,123(1):1-5.
    9. Randrianarison-Huetz V, Laurent B, Bardet V, Gfi-1B controls human erythroid and megakaryocytic differentiation by regulating TGF-beta signaling at the bipotenterythro-megakaryocytic progenitor stage. Blood,2010,115(14):2784-95.
    10. James C, UgoV, LeCoudic JP, et a 1. Aunique clonal JAK2 mutation leading to constitutive signalling causes polycythaemiavera. Nature,2005,434:1144-1148.
    11. KralovicsR, Passam on ti F, Buser AS, et al. Again of function mutation of JAK2 in myeloproliferative disorders. N Engl J Med,2005,352:1779-1790.
    12. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine k -inase JAK2 in polycythemiavera, essentialthrombocythemia, and myeloid m -etaplasia with myeloibrosis. Cancer Cell,2005,7:387-397.
    13. Zornig M, Schmidt T, Karsunky H, et al. Zinc finger protein GFI-1 cooperates with myc and pim-1 in T-cell lymphomagenesis by reducing the requirements for IL-2. Oncogene,1996,12(8):1789-1801.
    14. Grimes HL, Gilks CB, ChanTO, et al. The Gfi-1 protooncoprotein represses Bax expression and inhibits T-cell death.ProcNatlAcadSci USA,1996,93:14569-73.
    15. Baxter EJ, Scott LM, Campbel PJ, et al. Acquired mutation of thetyrosine kinase JAK2 in human myeloproliferative disorders. Lancet,2005,365(9464):1054-1061.
    16. Campbell PJ, ScottLM, Baxter EJ, et al. Method s for the detection of the JAK2 V617F mutation in human myeloproliferative disorders. Methods MolMed,2006,125(2): 253-264.
    17. Osawa M, Yamaguchi T, Nakamura Y, et al. Erythroid expansion mediated by the Gfi-1B zinc finger protein:role in normal hematopoiesis. Blood,2002,100(8): 2769-77.
    18. Wilks AF. Two putative protein tyrosine kinases identied by the application of the polymerasechain reaction.ProcNatlAcad Sci,1989,86:1603-07.
    19. Yuan LY, Li H, Chen GA, et al. Incidence of JAK2V617F mutation in myeloproliferative diseases and its clinical significance. Zhejiang Da XueXueBao Yi Xue Ban,2010,39(2):202-6. Chinese.
    20. Lucia E, Recchia AG, Gentile M, et al. Janus kinase 2 inhibitors in myeloproliferative disorders. Expert OpinInvestig Drugs,2011,20(1):41-59.
    21. Mahfouz RA, Hoteit R, Salem Z, et al. JAK2 V617F gene mutation in the laboratory work-up of myeloproliferative disorders:experience of a major referral center in Lebanon. Genet Test Mol Biomarkers,2011,15(4):263-5.
    22. Kiladjian JJ, Casadevall N, Vainchenker W, et al. The first international meeting on V617F JAK2 mutation and its relevance in Philadelphia-negative myeloproliferative disorders.PatholBiol (Paris),2007,55(2):85-7.
    23. Mossuz P; Grouped'EtudesMulticentriques des Syndrome MyeloProliferatifs (GEMSMP). Influence of the assays of endogenous colony formation and serum erythropoietin on the diagnosis of polycythemiavera and essential thrombocythemia. SeminThrombHemost,2006,32(3):246-50.
    24. Oku S, Takenaka K, Kuriyama T, et al. JAK2 V617F uses distinct signalling pathways to induce cell proliferation and neutrophil activation. Br J Haematol,2010,150(3): 334-44. Epub 2010 Jun 10.
    25. Abe M, Funakoshi-Tago M, Tago K, et al. The polycythemia vera-associated Jak2 V617F mutant induces tumorigenesis in nude mice. IntImmunopharmacol,2009, 9(7-8):870-7.
    26. Sazawal S, Bajaj J, Chikkara S, et al. Prevalence of JAK2 V617F mutation in Indian patients with chronic myeloproliferative disorders. Indian J Med Res,2010,132:423-7.
    27. Basquiera AL, Soria NW, Ryser R, et al. Clinical significance of V617F mutation of the JAK2 gene in patients with chronic myeloproliferative disorders. Hematology,2009, 14(6):323-30.
    28. Shen YM, Chao HY, Zhang R, et al. Quantitative assay for Janus kinase 2 (JAK2) mutation in Chinese patients with chronic myeloproliferative disorders. J Int Med Res, 2009,37(1):37-46.
    29. Williams DM, Kim AH, Rogers O,et al. Phenotypic variations and new mutations in JAK2 V617F-negative polycythemia vera, erythrocytosis, and idiopathic myelofibrosis. ExpHematol,2007,35(11):1641-6.
    1 Vardiman JW. The new World Health Organization classification of myeloid neoplasms. Clin Adv Hematol Oncol,2003,1(1):18-21.
    2 Robert T, Cowell JK. Cloning of the human Gfi-1 gene and its mapping to chromosome region 1p22. Oncogene.1997,14(8):1003-1005.
    3 Schmidt T, Karsunky H, Gau E, et al. Zinc finger protein GFI-1 has low oncogenic potential but cooperates strongly with pim and myc genes in T-cell lymphomagenesis. Oncogene.1998,17(20):2661-2667.
    4 Chang W, Sun HY, Huang M, et al. Effect of Adriamycin on Gfil expression in K562 cells and its relationship with the relevant apoptotic genes. Journal of experimental hematology.2007,15(2):278-282.
    5 Huang M, Ou DM, Wu J, et al. Establishment of a stable transfectant 32D/Gfil cell line by recombinant lentiviral expression vector. Journal of Experimental Hematology.2009, 17(4):949-952.
    6 Zhu J, Guo L, Min B, et al. Growth factor independent-1 induced by IL-4 regulates Th2 cell proliferation. Immunity.2002,16(5):733-744.
    7. Phelan JD, Shroyer NF, Cook T, et al. Gfi1-cells and circuits:unraveling transcriptional networks of development and disease. Current Opinion in Hematology.2010, 17(4):300-307.
    8 Wallis D, Hamblen M, Zhou Y, et al. The zinc finger transcription factor Gfil, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival.Development.2003,130(1):221-232.
    9 Kazanjian A, Wallis D, Au N, et al. Growth factor independence-1 is expressed in primary human neuroendocrine lung carcinomas and mediates the differentiation of murine pulmonary neuroendocrine cells. Cancer Res.2004,64(19):6874-6882.
    10 Huang M, Hu Z, Chang W, et al. The growth factor independence-1 (Gfi1) is overexpressed in chronic myelogenous leukemia.Acta Haematol.2010,123(1):1-5.
    11 Spooner CJ, Cheng JX, Pujadas E, et al. A recurrent network involving the transcription factors PU.1 and G fi1 orchestrates innate and adaptive immune cell fates. Immunity.2009,31(4):576-586.
    12 Karsunky H, Mende I, Schmidt T, et al. High levels of the onco-protein Gfi-1 accelerate T-cell proliferation and inhibit activation induced T-cell death in Jurkat T-cells. Oncogene.2002,21(10):1571-1579.
    13 Sierra-DM, Sakakibara S, Gasperini P, Salvucci OJ, et al. The transcription factor Gfi1 regulates G-CSF signaling and neutrophil development through the Ras activator RasGRP1. Blood.2010,115(19):3970-3979.
    14 Wickrema A, Crispino JD. Erythroid and megakaryocytic transformation. Oncogene. 2007,26(47):6803-6815.
    15 Zornig M, Schmidt T, Karsunky H, et al. Zinc finger protein GFI-1 cooperates with myc and pim-1 in T-cell lymphomagenesis by reducing the requirements for IL-2. Oncogene. 1996,12(8):1789-1801.
    16 Baxter EJ, Scott LM, Campbel PJ, et al. Acquired mutation of thetyros ine kinase JAK2 in hum an myeloproliferative disorders. Lancet.2005,365(9464):1054-1061.
    17 Campbell PJ, ScottLM, Baxter EJ, et al. Method s for the detection of the JAK2 V617F mutation in hum an myeloproliferative disorders. Methods Mol Med.2006,125(2): 253-264.
    18 James C, Ugo V, Casadevall N, et al. A JAK2 mutation in myeloproliferative d isorders: pathogenesis and therapeutic and scientific prospects. Trends Mol Med.2005,11 (12): 546-554.
    19 Pardanan IA. JAK2 inhibitor therapy in myeloproliferative disorders:rationale, preclinical studies and ongoing clinical trials. Leukemia.2008,22(1):23-30.
    1 Gilks CB, Bear SE, Grimes HL, et al. Progression of interleukin-2 (IL-2)-dependent rat T cell lymphoma lines to IL-2-independent growth following activation of a gene (Gfi-1) encoding a novel zinc finger protein. Mol Cell Biol,1993,13:1759-68.
    2 Yucel R, Kosan C, Heyd F, et al. Gfi1:Green Fluorescent Protein Knock-in Mutant Reveals Differential Expression and Autoregulation of the Growth Factor Independence1 (Gfi1) Gene during Lymphocyte Development. J BiolChem,2004, 279(39):40906-17.
    3 Zornig M, Schmidt T, Karsunky H, et al. Zinc finger protein GFI-1 cooperates with myc and pim-1 in T-cell lymphomagenesis by reducing the requirements for IL-2. Oncogene, 1996,12(8):1789-1801.
    4 Rodel B, Wagner T, Zornig M, et al. The human homologue (GFI1B) of the chicken GFI gene maps to chromosome 9q34.13-A locus frequently altered in hematopoietic diseases. Genomics,1998,54(3):580-582.
    5 Frenkel' MA. Current diagnosis of myeloproliferative neoplasms (2008 WHO classification). Klin Lab Diagn,2011, 1(1):43-9.
    6 Tong B, Grimes HL, Yang TY, et al. The Gfi-1B proto-oncoprotein represses p21WAF1 and inhibits myeloid cell differentiation. Mol Cell Biol,1998,18:2462-73.
    7 Schwartz R, Engel I, Fallahi-Sichani M, et al. Gene expression patterns define novel roles for E47 in cell cycle progression, cytokine-mediated signaling, and T lineage development. ProcNatlAcadSci U S A,2006,103(26):9976-81.
    8 Hock H, Orkin SH. Zinc-finger transcription factor Gfi-1:versatile regulator of lymphocytes, neutrophils and hematopoietic stem cells. CurrOpinHematol,2006, 13(1):1-6.
    9 Wallis D, Hamblen M, Zhou Y,et al. The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival.Development,2003,130:221-32.
    10 Zarebski A, Velu CS, Baktula AM, et al. Mutations in growth factor independent-1 associated with human neutropenia block murine granulopoiesis through colony stimulating factor-1.Immunity,2008,28(3):370-80.
    11 Person RE, Li FQ, DuanZ, et al. Gfil proto-oncogene mutation causes human neutropenia and targets neutrophil elastase. Nat Genet,2003,34:308-12.
    12 Klein C. Genetic defects in severe congenital neutropenia:emerging insights into life and death of human neutrophil granulocytes. Annu Rev Immunol,2011, 23(29):399-413.
    13 Yang Z, DingK, PanL, Deng M, et al.Math5 determines the competence state of retinal ganglion cell progenitors.Dev Biol,2003,264:240-54.
    14 Wistuba Ⅱ, Gazdar AF, Minna JD. Molecular genetics of small cell lung carcinoma.Semin Oncol,2001,28:3-13.
    15 Linnoila RI, Jensen-Taubman S, Kazanjian A,et al. Loss of GFI1 impairs pulmonary neuroendorine cell proliferation, but the neuroendocrine phenotype has limited impact on post-naphthalene airway repair.Lab Invest,2007,87(4):336-44.
    16 Kazanjian A,Wallis D,Au N,et al.Growth factor independence-1 is expressed in primary human neuroendocrine lung carcinomas and mediates the differentiation of murine pulmonary neuroendocrine cells. Cancer Res,2004,64:6874-82.
    17 Ravid L, Arama E. There is more to life than death:a moonlighting function of a bcl-2 member.Dev Cell,2011,20(5):575-6.
    18 Biswas S, Shi Q, Matise L, Cleveland S, et al. A role for proapoptotic Bax and Bak in T-cell differentiation and transformation.Blood,2010,116(24):5237-46.
    19 Nakazawa Y, Suzuki M, Manabe N, et al. Cooperative interaction between ETS1 and GFI1 transcription factors in the repression of Bax gene expression. Oncogene,2007, 26(24):3541-3550.
    20 Grimes HL, Gilks CB, Chan TO, et al. The Gfi-1 protooncoprotein represses Bax expression and inhibits T-cell death.Proc Natl Acad Sci USA,1996,93(25):14569-73.
    21 Post SM, Quintas-Cardama A, TerzianT, et al. p53-dependent senescence delays Emu-myc-induced B-cell lymphomagenesis. Oncogene,2010,29(9):1260-9.
    22 Khandanpour C, Kosan C, Gaudreau MC, et al. Growth Factor Independence 1 (Gfil) Protects Hematopoietic Stem Cells Against Apoptosis But Also Prevents the Development of a Myeloproliferative-Like Disease. Stem Cells,2010, [Epub ahead of print].
    23 Scheijen B, Jonkers J, Acton D, et al. Characterization of pal-1, a common proviral insertion site in murine leukemia virus-induced lymphomas of c-myc and Pim-1 transgenic mice. J Virol,1997,71(1):9-16.
    24 Schmidt T, Karsunky H, Gau E, et al. Zinc finger protein GFI-1 has low oncogenic potential but cooperates strongly with pim and myc genes in T-cell lymphomagenesis. Oncogene,1998,17(20):2661-2667.
    25 Friedman AD. Transcriptional regulation of granulocyte and monocyte development. Oncogene,2002,21:3377-90.
    26 Horwitz M, Benson KF, Duan Z, et al. Role of neutrophil elastase in bone marrow failure syndromes:molecular genetic revival of the chalone hypothesis. CurrOpinHematol,2003,10:49-54.
    27 Karsunky H, Mende I, Schmidt T, et al. High levels of the onco-protein Gfi-1 accelerate T-cell proliferation and inhibit activation induced T-cell death in Jurkat T-cells. Oncogene,2002,21(10):1571-1579.
    28 Hock H, Hamblen MJ, Rooke HM, et al. Intrinsic requirement for zinc finger transcription factorgfi-1 in neutrophil differentiation. Immunity,2003,18:109-20.
    29 Duan Z, Horwitz M. Targets of the transcriptional repressor onco-protein Gfi-1. Proc Natl Acad Sci USA,2003,100:5932-7.
    30 Yamanaka R, Barlow C, Lekstrom-Himes J, et al. Impaired granulopoiesis, myelodysplasia, andearly lethality in CCAAT/enhancer binding protein epsilon-deficient mice. Proc Natl Acad Sci USA,1997,94:13187-92.
    31 Zhang DE, Zhang P, Wang ND, et al. Absence of granulocytecolony-stimulating factor signaling and neutrophil development in CCAAT enhancer bindingprotein alpha-deficient mice. Proc Natl Acad Sci USA,1997,94:569-74.
    32 McKercher SR, Torbett BE, Anderson KL, et al. Targeted disruption of the PU.1 gene results inmultiple hematopoietic abnormalities. EMBO J,1996,15:5647-58.
    33 Scott EW, Simon MC, Anastasi J, et al. Requirement of transcription factor Pu.1 in the development of multiple hematopoietic lineages. Science,1994,265:1573-7.
    34 Karsunky H, Zeng H, Schmidt T, et al. Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfil. Nat Genet,2002,30:295-300.
    35 Rathinam C, Geffers R, Yucel R, et al. The transcriptional repressor Gfil controls STAT3-dependent dendritic cell development and function. Immunity,2005,22:717-28.
    36 Elmaagacli AH, Koldehoff M, Zakrzewski JL, et al. Growth factor-independent 1B gene (GFI1B) is overexpressed in erythropoietic and megakaryocytic malignancies and increases their proliferation rate. Br J Haematol,2007,136(2):212-9.
    37 Zaree MA, Javadi HR, Kamali M, et al. Bcr-ab1 silencing by specific small-interference RNA expression vector as a potential treatment for chronic myeloid leukemia. Iran Biomed J.2010,14(1-2):1-8.
    38 Rathinam C, Klein C. Transcriptional repressor Gfil integrates cytokine-receptor signals controlling B-cell differentiation. PLoS One.2007,2(3):e306.
    39 Osawa M, Yamaguchi T, Nakamura Y, et al. Erythroid expansion mediated by the Gfi-1B zinc finger protein:role in normal hematopoiesis. Blood.2002,100(8):2769-77.
    40 Laurent B, Randrianarison-Huetz V, Kadri Z, et al. Gfi-1B promoter remains associated with active chromatin marks throughout erythroid differentiation of human primary progenitor cells. Stem Cells.2009,27(9):2153-62.
    41 Takeda K,Kaisho T,Yoshida N,Takeda J,Kishimoto T,Akira S.Stat3 activation is responsible for IL-6-dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell-specific Stat3-deficient mice. J Immunol.1998, 161:4652-60.
    42 Duan Z, Zarebski A, Montoya-Durango D, et al. Gfil coordinates epigenetic repression of p21Cip/WAF1 by recruitment of histone lysine methyltransf erase G9a and histone deacetylase 1. Mol Cell Biol.2005,25(23):10338-51.
    43 Liu Q, Basu S, Qiu Y, et al. A role of Miz-1 in Gfi-1-mediated transcriptional repression of CDKN1A. Oncogene.2010,29(19):2843-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700