单核细胞增多性李斯特菌分子进化与酸应激功能基因组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单核细胞增多性李斯特菌(简称单增李斯特菌)是重要的食源性人畜共患病原菌,可引发败血症、脑膜炎与流产等,致死率可达30%,远高于其它食源性病原菌。近年来,欧美国家李斯特菌病的发病率呈上升趋势。2007~2009年美国、加拿大和丹麦均暴发食源性李斯特菌病,共导致30人死亡。我国由于缺乏系统的李斯特菌病流行病学资料,目前无法评估其危害的严重性。
     单增李斯特菌食品分离株间致病力各异。4b型(谱系Ⅰ)引起大多数的侵袭型李斯特菌病病例,且死亡率高于其他血清型;1/2a型(谱系Ⅱ)在食品中的分离率最高,主要引起人胃肠炎型李斯特菌病;谱系Ⅲ则很少引起人发病。单增李斯特菌的感染过程包括抵抗宿主内环境的应激、黏附并侵入细胞、细胞内增殖以及细胞间扩散,每一步均由特定的毒力因子介导。食源性病原菌通过消化道进入人体后,首先需要耐受胃液的酸性环境。因此,抗酸应激能力是单增李斯特菌建立感染的前提。无害李斯特菌常伴随单增李斯特菌出现在被污染的食品中,两者的生态、生化及基因组特征均非常相似,但无害李斯特菌不致病。因此,单增李斯特菌-无害李斯特菌进化枝是研究细菌致病性和毒力基因演化的良好模型。
     本研究旨在探明:(1)国内食源性单增李斯特菌的分子流行病学特征与致病性;(2)单增李斯特菌谱系Ⅲ和无害李斯特菌的生物多样性及其分子进化关系;(3)单增李斯特菌精氨酸脱亚胺酶系统的抗酸应激功能及其分子机制。
     1、食源性单增李斯特菌分子流行病学特征与致病性
     基于iap与lmo0038的多重PCR反应,首次将鉴定李斯特菌各个种与区分单增李斯特菌谱系Ⅲ结合于一步检测体系中,适用于大批量样品的李斯特菌监测。2000~2007年中国13个省市李斯特菌平均污染率为3.8%,其中单增李斯特菌约占25.3%。其污染无季节性差异,肉类与水产品的受污染程度最为严重。采自浙江、福建的88株单增李斯特菌食品分离株中,1/2a型占58%,4b型仅占12%,M7与S19属于谱系Ⅲ。2007~2008年从5大洲29个国家进口的1275批水产品中,李斯特菌污染率为2.8%,与国内水产品相近(2.7%),其中单增李斯特菌所占的比例(91.7%)远高于国内水产品(22.2%),4b型(65.2%)取代1/2a型(13.0%)成为主导,并有流行克隆Ⅰ和Ⅱ检出。系统进化树中,流行克隆Ⅰ与我国病羊临床株亲缘关系较近,流行克隆Ⅱ位于1/2b型菌株间,而我国食源性4b分离株则位于独立的分枝。由此可见,进口水产品中致病性单增李斯特菌的危害风险性较高。上述菌株均含有第一毒力岛(LIPI-1)、inlAB(除S10)等主要毒力基因。除谱系Ⅲ菌株M7,绝大部分菌株对体外培养细胞和小鼠均具有较强致病力。ActA中1个赖氨酸重复区(PRR)的缺失并不影响细菌毒力,但可作为区分流行克隆Ⅰ和Ⅱ的遗传标志。谱系Ⅲ在系统进化树中位置特殊,可能为研究单增李斯特菌的进化提供线索。
     2、单增李斯特菌谱系Ⅲ的多样性与分子进化
     16S rRNA进化树中,单增李斯特菌谱系Ⅲ菌株位于单增李斯特菌、无害李斯特菌与玛氏李斯特菌之间。在基于21个基因的多位点序列分型中,13个谱系Ⅲ菌株位于3个主要分枝,分别代表亚系ⅢA、ⅢB、ⅢC。其中ⅢA又可分为3个亚枝ⅢA-1、ⅢA-2与ⅢA-3,弱毒株M7与54006属于ⅢA-3。基于46个生化指标的生化分型,将这些谱系Ⅲ菌株分为8个生化型:ⅢA-3为1型;4株ⅢA-1与ⅢA-2为2型;5株ⅢB分别为3-7型;2株ⅢC同属8型。基于37种内化素基因的内化素分型,则将谱系Ⅲ菌株分为10个内化素型,并可归为4类:第一类对应ⅢB,所含内化素基因数最少;第二类对应ⅢA-3;第三类对应ⅢC菌株;第四类对应ⅢA-1与ⅢA-2,包含的内化素基因最多。ascB-dapE内化素岛结构进一步将ⅢB与ⅢC分为ⅢB-1、ⅢB-2与ⅢC-1、ⅢC-2。
     所有ⅢA-1、ⅢA-2、ⅢB与ⅢC菌株均具有与谱系Ⅰ和Ⅱ强毒株相似的胃液存活力、细胞黏附力、侵袭力以及细胞空斑形成能力,对正常小鼠与免疫抑制小鼠均具有致病力。但ⅢA-3在胃液的存活力仅为其他菌株的1/1000,在庆大霉素存在时不能形成细胞空斑,易被宿主清除,因而对正常小鼠与免疫抑制小鼠的致病力均很弱。所有谱系Ⅲ菌株均含有完整的LIPI-1、InlAB等毒力因子,其余内化素(如InlC、InlF、InlJ)及ActA中一个PRR重复区的缺失并不是导致ⅢA-3弱毒的原因。ⅢA-3菌株的LIPI-1毒力基因与inlAB的表达水平显著高于其他菌株,具有极强的体外溶脂活性。在ⅢA-3的PrfA转座突变株中,LIPI-1毒力基因与inlAB的表达量降至亲本株的1/10~1/1000。因此,ⅢA-3的毒力基因高水平表达可能由PrfA的过度表达引起。PrfA是单增李斯特菌最重要的毒力调控因子,ⅢA-3的PrfA第145位由甘氨酸(G)突变为丝氨酸(S)。该位点位于PrfA的HTH基序外侧,其突变引起PrfA空间构象改变而处于构成性激活状态,引起下游调控基因(包括膜裂解因子LLO、PC-PLC等)过度表达,细菌裂解宿主细胞的能力增强,从而使菌体暴露于机体免疫系统而被清除,进而导致弱毒。其余谱系Ⅲ菌株均为强毒株,但极少引起人发病,可能是因其在食品与环境中的分离率较低,感染人的几率较小。
     ⅢA-3代表菌株M7的全基因组序列长2852640bp,编码约2970个ORF,GC含量为38.2%,高于其他谱系(37.8~38.0%)。与1/2a型、4b型强毒株相比,M7在46个区域缺失109个基因,包括ADI基因岛(lmo0036-lmo0041基因簇)、rplS-infC内化素岛、ascB-dapE内化素岛及11个疑似转录调控因子等。M7含有345个特异性基因,包括E家族毒力因子M7-28、Sigma家族蛋白M7-210、内化素M7-214与4个疑似转录调控因子等。ⅢA-3含有与强毒株相同的LIPI-1,但其23S rRNA与无害李斯特菌具有更高的同源性。基于2168个李斯特菌属保守基因的系统进化树中,ⅢA-3位于单增李斯特菌谱系Ⅰ、Ⅱ与无害李斯特菌之间。ⅢA-3既含有单增李斯特菌特异的毒力因子(如LIPI-1、InlAB、Bsh等),又与无害李斯特菌具有相似的基因缺失(如精氨酸脱亚胺酶基因岛、rplS-infC内化素岛、ascB-dapE内化素岛等)与基因插入(108个共有特异性基因),这类弱毒株可能为单增李斯特菌-无害李斯特菌进化枝的进化中间体。ⅢA-3特异性含有介导细菌水平转移的多种噬菌体相关蛋白、重组酶、整合酶、转座子蛋白与CRISPR相关蛋白,提示ⅢA-3可能具有更高的水平转移发生概率。但是,ⅢA-3无法指示该进化枝的进化方向。无害李斯特菌作为进化枝的另一极,其亚群结构可能为确定该进化枝的进化方向提供重要线索。
     3、无害李斯特菌的亚群结构以及单增李斯特菌-无害李斯特菌分枝的进化关系
     内化素分型与多位点序列分型将无害李斯特菌分为亚群A、B、C和D。亚群A包括内化素型1与3(除菌株0063属于亚群C),亚群B包括内化素型2与4。大多数菌株(94.2%)属于这两个亚群。亚群A、B与共同祖先的遗传距离(TMRCA)相同,提示两者出现的时间相似。但亚群A的重组率显著高于亚群B,包括重组的相对发生频率(r/m)及相对影响程度(ρ/θ)。绝大多数亚群A菌株含有完整的无害李斯特菌特异性内化素与单增李斯特菌-无害李斯特菌共有内化素。溯祖(Coalescent)模型提示亚群A近期经历了种群规模的扩张。因此,亚群A可能代表了无害李斯特菌环境适应性的进化方向。除亚群D菌株L43含有inlJ,无害李斯特菌缺失其他与黏附、侵袭、细胞内感染相关的基因,对小鼠均无致病力。无害李斯特菌的序列多态性显著低于单增李斯特菌,为相对年轻的菌种。因此,该分枝的进化方向是由单增李斯特菌至无害李斯特菌,代表细菌致病力由强变弱的罕见案例。
     亚群D对应于内化素型5,在进化树上偏离其他亚群,可能是单增李斯特菌与无害李斯特菌的另一进化中间体。可通过丙氨酸-苯丙氨酸-脯氨酸芳胺酶与丙氨酸芳胺酶反应活性与无害李斯特菌其他亚群相区别。较之亚群A菌株CLIP 11262,L43在全基因组的50个区域缺失365个基因。其中部分为L43与单增李斯特菌共同缺失,部分为进化中间体L43与单增李斯特菌ⅢA-3特异缺失。L43含有单增李斯特菌特异性黏附因子InlJ,但在第11个赖氨酸重复区具有7个核苷酸的错位缺失,代表首例提前终止的InlJ。
     综上所述,提出单增李斯特菌-无害李斯特菌进化枝的进化模型。单增李斯特菌1/2c型(谱系Ⅱ)代表最古老的类群,存在至少3条进化途径:一条进化为谱系Ⅰ,经1/2b至4b;一条通向ⅢB(由ⅢB-1至ⅢB-2);另一条则进化为1/2a型(谱系Ⅱ)和ⅢA-/-2,后者进而分化为ⅢA-3与ⅢC (ⅢC-1至ⅢC-2)。单增李斯特菌ⅢA-3为进化中间体,并经由另一进化中间体无害李斯特菌亚群D,向无害李斯特菌进化(由亚群C至亚群A、B)。
     4、单增李斯特菌酸应激功能基因组学研究
     通过Solexa基因表达谱分析技术,在全基因组水平上比较单增李斯特菌参考菌株10403S在中性(pH 7.0)与酸性(pH 4.8)环境下基因的转录水平差异,发现有谷氨酸脱羧酶(GAD)系统与精氨酸脱亚胺酶(ADI)系统(lmo0036-lmo0043基因簇)在酸性环境中转录量明显上升。GAD系统含有3个同源基因gadD1、gadD2和gadD3。在酸性环境(pH 4.8)中,gadD2与gadD3的转录水平升高,而gadD1转录水平不变。表明GAD系统与单增李斯特菌的抗酸应激有关,该系统与inlGHE与inlGC2DE同步进化。
     无论从分子进化或功能基因组学角度,ADI基因簇均引起了我们的关注。该.基因岛含有8个基因,包括arc家族成员arcABCD、aguA家族成员aguAl与aguA2、可能转录调控因子lmo0041与未知功能基因lmo0042,同时涵盖ADI系统与AgDI系统。这些基因在酸性条件(pH 4.8)的转录水平均显著高于中性条件(pH 7.0)。这些基因缺失株在中性BHI(pH7.0)的生长速率与亲本株无差异,但在酸性BHI(pH5.5)的生长速率低于亲本株;这种生长差异在酸性MEM(pH5.5)中更为明显。在人工胃液中,各缺失株的存活率亦显著低于亲本株。表明ADI系统是单增李斯特菌的抗酸应激系统。同时,各缺失株对小鼠的致病力显著低于亲本株。aguA1与aguA2编码双拷贝的鲱精胺脱亚胺酶(AgDI),但aguA2对单增李斯特菌的抗酸性发挥更重要的作用,对致病力的影响亦更为明显。
     5、单增李斯特菌精氨酸脱亚胺酶/鲱精胺脱亚胺酶系统功能蛋白的作用机制
     单增李斯特菌arc A(lmo0043)编码ADI,以精氨酸为反应底物。单增李斯特菌含有arg基因家族,可内源性合成精氨酸;又可在强酸性环境中摄取外源性精氨酸。精氨酸经ADI催化发生脱亚胺反应,生成瓜氨酸与氨。同时,aguAl(lmo0038)与aguA2(lmo0040)编码双拷贝的鲱精胺脱亚胺酶(AgDI),以鲱精胺为底物。单增李斯特菌可在强酸性环境中摄取外源性鲱精胺;又具有精氨酸脱羧酶活性,可介导精氨酸的脱羧反应生成内源性鲱精胺。鲱精胺经AgDI催化发生脱亚胺反应,生成氨甲酰腐胺与氨。AguA1与AguA2具有相似的亲水性与活性位点,但AguA2对单增李斯特菌的抗酸性具有更显著的影响。由此可见,ADI与AgDI分别启动了其相应的代谢通路。
     ArcB兼具鸟氨酸氨甲酰转移酶(OTC)与腐胺氨甲酰转移酶(PTC)的活性,催化两组可逆的氨甲酰基转移反应,为首例可同时催化4个反应方向的氨甲酰转移酶。体外的转氨甲酰反应平衡倾向于同化方向。同化反应的最适pH呈碱性(pH8~pH10),而异化反应的最适pH为酸性(pH5~pH5.5),提示OTC/PTC在酸性环境(如胃液)中主要催化异化反应。异化方向OTC催化瓜氨酸的脱氨甲酰反应,生成鸟氨酸与氨甲酰磷酸盐;而异化方向PTC则催化氨甲酰腐胺的脱氨甲酰反应,生成腐胺与氨甲酰磷酸盐。OTC与PTC活性分别推进了ADI代谢通路与AgDI代谢通路。ArcB将这两条代谢通路联系起来,发挥承前启后的关键作用。
     氨甲酰磷酸盐在氨甲酰激酶CK (lmo0039)的作用下,生成二氧化碳与氨。而鸟氨酸与腐胺通过跨膜转运因子AP (lmo0037),与胞外的精氨酸或鲱精胺进行等量交换,启动新一轮的ADI与AgDI代谢循环。该循环处于动态平衡之中。在1个ADI或AgDI循环中,1 mol精氨酸或鲱精胺生成2 mol氨。在酸性环境中,氨与细胞质中的H+结合为NH4+,提高细胞质的pH,以减轻酸应激对细胞的伤害,从而增强细菌在酸性环境(如胃液)中的存活力。
     ADI基因岛如此精巧的排布背后,必然有一个缜密的调控网络系统。Lmo0041属于rpiR家族转录调控因子,ArgR为精氨酸合成抑制因子,分别在胃液中负调控与正调控ADI与AgDI代谢通路,其中Lmo0041的作用强于ArgR。ArgR同时正调控Lmo0041,更加剧了Lmo0041对ADI与AgDI通路的负调控作用。ADI基因岛中存在应激调控因子SigB与毒力调控因子PrfA的结合位点,提示ArgR与Lmo0041可能受更高一级的调控因子所调控。这些调控因子可能在不同的环境条件下,选择性激活或抑制ADI与AgDI代谢通路。由此可见,ADI与AgDI系统在级联调控网络的作用下,介导单增李斯特菌的抗酸性以及致病力。
     综上所述,本论文阐明了(1)国内外食源性单增李斯特菌(除谱系Ⅲ菌株M7)均具有较强的致病力,进口水产品中单增李斯特菌的危害风险性高于我国食品体系;(2)单增李斯特菌谱系Ⅲ具有极高的生物多样性,亚系ⅢA-3菌株为弱毒,可能由毒力调控因子PrfA的第145位氨基酸发生突变引起;(3)无害李斯特菌代表相对年轻的种,包含4个亚群,其中亚群A代表环境适应性的进化方向,亚群D与单增李斯特菌ⅢA-3构成单增李斯特菌-无害李斯特菌进化枝的进化中间体,该进化枝代表细菌致病力由强变弱的罕见案例:(4)GAD系统及ADI/AgDI系统与单增李斯特菌的抗酸应激相关,ADI/AgDI系统还与细菌致病力相关;(5)ADI代谢途径与AgDI代谢途径在ADI、双拷贝AgDI、OTC/PTC与AP等功能蛋白的介导下,并行不悖地发挥抗酸应激作用;(6)ADI系统受级联调控网络的调控。
The intracellular pathogen Listeria monocytogenes is the causative agent of listeriosis, a severe invasive illness that has an extremely high mortality rate. This disease is primarily transmitted by consumption of contaminated foods. The incidence of listeriosis has increased in Europen and American countries.From 2007 through 2009, three large listeriosis outbreaks have been reported in US, Canada, and Denmark, which lead to 30 deaths and a large proportion of perinatal infections. Unfortunately, there is a paucity of systemic investigation on the prevalence of Listeria in Chinese food systems.
     L. monocytogenes encompasses a diversity of strains with varying virulence and pathogenicity. While serovar 4b strains caused the vast majority of invasive listeriosis cases with a higher mortality rate than other serovars, lineage III strains are rarely associated with human listeriosis. L. monocytogenes infection process comprises several distinct stages:tolerance to adverse conditions in gastrointestinal tract (GIT), adhesion and invasion of host cells, escape from vacuole, intracellular multiplication and intercellular spread. Each stage invovles specific virulence factors. After ingestion by host, L. monocytogenes encounters the stomach with low pH. Therefore, survival in acid environments is the primary ability for L. monocytogenes to initiate infection. L. innocua is most closely related to L. monocytogenes, and they usually co-exist in food specimens.Although these two species resemble each other ecologically, biochemically and genetically, L. innocua has no pathogenic inclination. Therefore, the L. monocytogenes-L. innocua clade within the genus Listeria can be used as a model system to examine the evolution of pathogenicity.
     This study was in an attempt to clarify (1)molecular epidemiology and pathogenic potential of L.monocytogenes isolates from Chinease food system and imported food products;(2) the biodiversity and evolution of L. monocytogenes-L. innocua clade;and (3)the role of arginine deiminase system in acid tolerance/resistence and its underlying molecular mechanisms.
     1.Molecular epidemiology and pathogenicity of L. monocytogenes in food systems
     A novel multiplex PCR, based on Imo0038 in combination with optimized iap migration profiles, was developed for simultaneous identification of Listeria species and discrimination of L. monocytogenes lineage III. The recovery rate of Listeria in Chinese food products between 2000 and 2007 was 3.7%, with L. monocytogenes accounting for 25.3%.There was no difference between the recovery rate in summer and that in winter. Of the seven main categories of food products, meat and seafood represented the major products to be contaminated by Listeria. Among the 88 selected L. monocytogenes food isolates from Zhejiang and Fujian provinces, serovar 1/2a dominated (47.7%),and the isolation of serovar 4b (6.8%) and lineageⅢ(2.4%) was low. From the 1275 batches of aquatic products imported from 29 countries, the recovery rate of Listeria was 2.8%, similar to that in Chinese aquatic products (2.7%). However, L. monocytogenes accounted for a surprisingly high proportion (91.7%) compared to that in Chinese aquatic products (22.2%).Serovar 4b predominted (65.2%), with epidemic clonesⅠ(ECⅠ) andⅡ(ECⅡ) recognized, followed by serovar 1/2a(13.0%).In the cladogram, ECI formed sister branch with clinical isolates from Chinese diseased animals, while ECⅡwas placed between 1/2b isolates.Chinese food 4b isolates occupied another branch not related to any ECs. All L. monocytogenes isolated from Chinese food systems and imported aquatic products harbored LIPI-1 and InlAB (except S10), and demonstrated virulence potential in mouse model except M7 being low-pathogenic.The absence of one proline-rich repeat (PRR) did not stop the bacterium causing listeriosis, but offered a potential marker for differentation of epidemic clonesⅠandⅡfrom phylogenic perspective. LineageⅢwas recovered at an extremely low frequency, but might serve as sources of clues for understanding the evolution history in L. monocytogenes-L. innocua clade.
     2. Diversity and evolution of L. monocytogenes lineageⅢ
     In the cladogram based on 16S rRNA,13 L. monocytogenes lineageⅢstrains were placed between L. monocytogenes, L. innocua and a novel species, L. marthii. The phylogenetic tree based on 21 genes revealed three major branches representing sublineagesⅢA,ⅢB andⅢC respectively.ⅢA was further separated intoⅢA-1,ⅢA-2 andⅢA-3(containing low-pathogenic strains M7 and 54006).These lineageⅢstrains were grouped into 8 biochemical types (BTs) based on 46 biochemical reactions.ⅢA-3 belonged to BT1,ⅢA-1 andⅢA-2 to BT2,ⅢB to BT3 to BT7 (5ⅢB strains representing 5 individual BT), andⅢC to BT8. These lineageⅢstrains were separated into 10 internalin type (ITs)dusted in 4 categories.ⅢB belonged to categoryⅠcontaining the least number of internalins,ⅢA-3 andⅢC to categoriesⅡandⅢrespectively, andⅢA-1 andⅢA-2 to categoryⅣwith the most number of internalins.The organization of internalin genes between ascB and dapE further classifiedⅢB into andⅢB-1 andⅢB-2, andⅢC intoⅢC-1 andⅢC-2.
     AllⅢA-1,ⅢA-2,ⅢB andⅢC strains showed comparable survival ability in human gastric fluid, adhesion and invasion of epithelial cells, intracellular spread ability and pathogenicity in normal and immunocompromised mice to those of lineagesⅠandⅡstrains.Thus, the uncommon human listeriosis cases due to lineageⅢstrains might be explained by the rarity of foodborne exposure to lineageⅢ.
     ⅢA-3 had an imparied survival ability in human gastric fluid and formed no visible plaques in fibroblast in the presnce of gentamycin. Also,ⅢA-3 was eliminated by host more easily than pathogenic strains, and thus exhibited negligible virulence in normal and immunocompromised mice.ⅢA-3 contained the complete version of LIPI-1 and InlAB.Lacking some internalins (e.g. InlC, InlF and InlJ) and one PRR in ActA did not contribute to the subdued virulence. PrfA is the main virulence regulator in L. monocytogenes, and the core PrfA regulon encompasses LIPI-1 and inlAB. The expression levels of LIPI-1 and InlAB inⅢA-3 were suprisingly higher than pathogenic strains, and declined drastically in the PrfA mutant inserted by transposon. Significant mutation of PrfA inⅢA-3 was found at 145 (Glycine to Serine), which introduced a repositioning of the PrfA helix-turn-helix DNA binding region in comparison to the wild-type structure. This repositioning resulted in the constitutive activation of PrfA and the overexpression of PrfA-regulated factors (e.g. LLO, PC-PLC), which faciliated the membrance-lysis process. Hence, bacteria was exposed to the immune system and easily cleared, which resulted in the reduced virulence.
     The complete genome ofⅢA-3 strain M7 was sequenced by Illumina/Solexa. M7 contained one circular chromosome of 2852640bp in length with an average G+C content of 38.2%, higher than those in other lineages.There were 2970 predicted coding regions in the genome. Compared to pathogenic strains, M7 lacked 109 genes clustered in 46 loci, including ADI island, rplS-infC internalin island, ascB-dapE internalin island,11 transcriptional regulators, etc, and possessed 345 specific genes, covering those encoding virulence-associated E family protein (M7-28), Sigma family protein (M7-210),internalin (M7-214),4 transcriptional regulators, etc.ⅢA-3 harbored LIPI-1 like pathogenic strains, and had higher nucleotide identity of 23S rRNA to L. innocua than to L. monocytogenes. In the cladogram based on 2168 genes conserved in genus Listeria,ⅢA-3 were placed between L. monocytogenes lineagesⅠandⅡand L. innocua. By bearing L. monocytogenes-specific virulence genes (e.g. LIPI-1 and inlAB), and sharing similar gene deletions (e.g.ADI island, rplS-infC and ascB-dapE internalin islands) and gene insertions (e.g.108 genes existing inⅢA-3 and L. innocua) with L. innocua, L. monocytogenesⅢA-3 constituted a evolutionary intermediate between L. monocytogenes and L. innocua. In addition,ⅢA-3 possessed many specific proteins involved in horizontal gene transfer (HGT) events, e.g. phage-related proteins, site-specific recombinases, integrases, conjugative transposon proteins and CRISPR-associated proteins, suggesting a higher frequency of HGT than that in other lineages. However, IIIA-3 failed to indicate the evolutionary direction of L. monocytogenes-L. innocua clade. As the other side of the coin, L. innocua might hold the key to clarifying the evolution direction.
     3.Population structure of L. innocua and evolution history of the L. monocytogenes-L. innocua clade
     Based upon internalin profiling and multilocus sequence typing, L. innocua was separated into four subgroups.Subgroups A and B correlated with internalin types 1 and 3 (except strain 0063 belonging to subgroup C) and internalin types 2 and 4 respectively. The majority of L. innocua strains belonged to these two subgroups. The time to the most recent common ancestor (TMRCA) of L. innocua subgroups A and B were similar, suggesting these two subgroups appeared at approximately the same time. However, subgroup A harbored a whole set of L. monocytogenes-L. innocua common and L. innocua-specific internalin genes, and displayed strikingly higher recombination rates than those of subgroup B,including the relative frequency of occurrence of recombination versus mutation (ρ/θ) and the relative effect of recombination versus point mutation (r/m).Subgroup A also exhibited a significantly smaller exterior/interior branch length ratio than expected under the coalescent model, suggesting a recent expansion of its population size. Therefore, subgeoup A might represent the possible evolutionary direction towards adaptation to enviroments. All L. innocua strains lacked 17 virulence genes found in L. monocytogenes (except for the subgroup D strain L43 harboring inlJ) and were nonpathogenic to mice. L. innocua was genetically monophyletic compared to L. monocytogenes, representing a young species descending from L. monocytogenes. The evolutionary history in the L. monocytogenes-L. innocua clade represents a rare example of evolution towards reduced virulence of pathogens.
     Subgroup D, which correlated with internalin type 5,branched off from the other three subgroups, and served as another evolutionary linkage between L. monocytogenes and L. innocua. This subgroup could be differentiated from other subgroups by Asp-Phe-Pro arylamidase and alanine arylamidase reactions.Compared to subgroup A strain CLIP11262, subgroup D lacked 365 genes clustered in 50 loci, some of which were also absent in L. monocytogenes or L. monocytogenes IIIA-3. Subgroup D contained L. monocytogenes-specific virulece gene inlJ. However, this gene carried a premature stop codon mutation that led to production of a truncated and possibly nonfunctional InlJ due to a non-in-frame deletion of seven nucleotide acids within the 11th PRR. Thus, subgroup D failed to invade and spread efficiently.
     Overall, a stepwise evolution model of L. monocytogenes-L. innocua clade was demonstrated. If we consider gene deletion as an important force in Listeria evolution, L. monocytogenes serovar 1/2c (lineageⅡ) is more ancestral in this clade, and evolved in three directions. One evolved into serovar 4b (lineageⅠ) via serovar 1/2b (lineageⅠ); one gave rise toⅢB (fromⅢB-1 toⅢB-2);and the other turned into serovar 1/2a (lineageⅡ) andⅢA-1/2, and the latter further intoⅢC (fromⅢC-1 toⅢC-2) andⅡA-3.ⅢA-3 evolved into L. innocua via subgroup D.
     4. Functional genomics of L. monocytogenes under acidic conditions
     Based upon the comparison of gene transcription profiling at neutral (pH7.0) and acidic (pH4.8) conditions using Solexa genome analysis system, two systems were identified from the whole genome of 10403S with elevated transcriptional levels under acidic conditions.One was the glutamate decarboxylase (GAD) system, and the other was the putative arginine deiminase (ADI) system (lmo0036-lmo0043 cluster). The GAD system involved three GAD paralogs (gadDl,gadD2, gadD3) located in three distinct loci.The transcription of gadD2 and gadD3 were increased under acidic condition, indicating a role of GAD system in acid tolerance. Moreover, it is suggested that GAD system co-evolved with inlGHE and inlGC2DE.
     From perspectives on molecular evolution and functional genomics, ADI gene island is of great interest to us.This island comprised eight genes, arc family genes arcABCD, aguA family genes aguAl and aguA2, one putative transcriptional regulator lmo0041,and one unknown gene lmo0042, which involved in arginine deiminase and agmatine deiminase systems.The transcription of those genes were increased under acidic condition relative to those under neutral condition. The AarcA,ΔarcB,ΔarcD,ΔaguA1 andΔaguA2 null mutants exhibited impaired growth rate under low pH (pH 5.5).Deletion of these genes also led to a decreased survival rates in synthetic human gastric fluid (pH 2.5).In addition, these knock-out mutants demonstrated a lower pathogenicity to mice relative to wild-type strain. Remarkably, aguAl and aguA2 represented two agmatine deiminase (AgDI) paralogs, but AguA2 contributed to acid tolerance and pathogenicity more effectively.
     5. Molecular mechanisms of the arginine deiminase-agmatine deiminase system in L. monocytogenes
     arcA (lmo0043) encoded ADI using arginine as substrate. L. monocytogenes harbored the whole arg gene family, suggesting arginine could be synthesized de novo. Also, L.monocytogenes was able to uptake extracellular arginine under strong acid conditions.ADI triggered the ADI pathway, and mediated the first reaction producing citrullin and ammonia. aguAl (lmo0038) and aguA2 (lmo0040) encoded two AgDI paralogs with agmatine as substrate.L. monocytogenes was able to produce agmatine from arginine using arginine decarboxylase, and uptake extracellular agmatine under strong acid conditions. AgDI initiated the AgDI pathway, and mediated the first reaction producing carbamoylputrescine and ammonia. Interestingly, although AguAl and AguA2 showed similar hydrophilicity and contained similar active sites, AguA2 played a more important role in acid tolerance.
     ArcB (lmo0036) displayed the ornithine carbamoyltransferase (OTC) and putrescine carbamoyltransferase (PTC) activities, representing the first example of carbamoyltransferase responsible for two sets of reversible reactions,in vitro kinetic studies showed that the equilibrium of the reaction lied overwhelmingly towards the formation of citrulline or carbamoylputrescine (anabolic reaction).While the optimum pH for anabolic reactions were at pH 8 to pH 10, the optimum pH for catabolic reactions were at pH 5 to pH 5.5,indicating ArcB possibly served as catabolic OTC or PTC under acidic conditions. While catabolic OTC mediated the reaction yielding ornitine and carbamoyl phosphate, catabolic PTC mediated reaction with the products of putrescine and carbamoyl phosphate. Thus, ArcB linked the second and following reaction steps, and promoted the ADI and AgDI pathways.
     Carbamoyl phosphate turned into ammonia, carbon dioxide and ATP by carbamate kinase (CK).Ornithine or putrescine was transported out of the cell in exchange for a molecule of arginine or agmatine by a membrane-bound antiport (AP) encoded by arcD (lmo0037), initiating a new metabolic circle at a state of dynamic equilibrium. For each mole of arginine catabolized via the ADI or AgDI pathway, two moles of ammonia were produced. This ammonia combined with intracellular cytoplasmic protons to yield ammonium inos (NH4+), thereby alleviating acidification of the cytoplasm and maintaining pH homeostasis.
     Beneath the exquisite organization of ADI system, it revealed a rigorous transcriptional network. Lmo0041,a rpiR family transcriptional regulator, and ArgR, an arginine biosynthetic repressor, regulated ADI/AgDI pathways negatively and positively in the synthetic human gastric fluid. The repressive function of Lmo0041 took precedence over the activation of the ADI system mediated by ArgR. ArgR also elevated the expression of Lmo0041,which further facilitated its repression of ADI system. PrfA and stress regulator SigB might be at the top of the hierarchy of regulatory network, regulating ADI system as well as ArgR and Lmo0041,evidenced by the potential PrfA and SigB binding sites proceeding the genes in ADI gene island as well as argR.These regulators activated or repressed the ADI system under varied conditions, which mediated listerial acid tolerance and pathogenicity.
     In conclusion, this study demonstrated that(1)L. monocytogenes food isolates (except lineageⅢisolate M7) all exhibit virulence potential, among which the isolates from imported aquatic products pose higher risk than those from Chinese food system; (2) L. monocytogenes lineageⅢencompasses a diversity of sublineages, with sublineage IIIA-3 showing low virulence which possibly caused by G145S mutation in PrfA; (3)L. innocua is a young species, and comprises four subgroups, with subgroup A representing the possible evolutionary direction towards adaptation to enviroments, and subgroup D together with L. monocytogenes sublineageⅢA-3 serve as evolutionary intermediates of the L. monocytogenes-L. innocua clade, representing a rare example of evolution towards reduced virulence of pathogens;(4) GAD and ADI systems contribute to the acid stress responses in L. monocytogenes, and ADI system is also involved in the listerial pathogenesis; (5) ADI pathway and AgDI pathway are mediated by functional proteins, including ADI, two paralogs of AgDI, OTC/PTC and AP;and (6) ADI system is under the regulatory network.
引文
1.Karlin S, Theriot J, Mrazek J. Comparative analysis of gene expression among low G+C gram-positive genomes. Proc Natl Acad Sci U S A 2004;101(16):6182-7.
    2.Schmid MW, Ng EY, Lampidis R, Emmerth M, Walcher M, Kreft J, Goebel W, Wagner M, Schleifer KH. Evolutionary history of the genus Listeria and its virulence genes. Syst Appl Microbiol 2005;28(1):1-18.
    3.Dominguez-Bernal G, Muller-Altrock S, Gonzalez-Zorn B, Scortti M, Herrmann P, Monzo HJ, Lacharme L, Kreft J, Vazquez-Boland JA. A spontaneous genomic deletion in Listeria ivanovii identifies LIPI-2, a species-specific pathogenicity island encoding sphingomyelinase and numerous internalins. Mol Microbiol 2006;59(2):415-32.
    4. Rocourt J, Boerlin P, Grimont F, Jacquet C, Piffaretti JC.Assignment of Listeria grayi and Listeria murrayi to a single species, Listeria grayi, with a revised description of Listeria grayi. Int J Syst Bacteriol 1992;42(1):171-4.
    5.Vazquez-Boland JA, Dominguez-Bernal G, Gonzalez-Zorn B, Kreft J, Goebel W. Pathogenicity islands and virulence evolution in Listeria. Microbes Infect 2001;3(7):571-84.
    6.Kimpe A, Decostere A, Hermans K, Baele M, Haesebrouck F. Isolation of Listeria ivanovii from a septicaemic chinchilla (Chinchilla lanigera). Vet Rec 2004;154(25):791-2.
    7.Guillet C, Join-Lambert O, Le Monnier A, Leclercq A, Mechai F, Mamzer-Bruneel MF, Bielecka MK, Scortti M, Disson O, Berche P, Vazquez-Boland J, Lortholary O, Lecuit M. Human listeriosis caused by Listeria ivanovii. Emerg Infect Dis;16(1):136-8.
    8.Perrin M, Bemer M, Delamare C. Fatal case of Listeria innocua bacteremia. J Clin Microbiol 2003;41(11):5308-9.
    9.Rocourt J, Hof H, Schrettenbrunner A, Malinverni R, Bille J. [Acute purulent Listeria seelingeri meningitis in an immunocompetent adult].Schweiz Med Wochenschr 1986;116(8):248-51.
    10. Andre P, Genicot A. [First isolation of Listeria welshimeri in a human].Zentralbl Bakteriol Mikrobiol Hyg A 1987;263(4):605-6.
    11.Rapose A, Lick SD, Ismail N. Listeria grayi bacteremia in a heart transplant recipient. Transpl Infect Dis 2008;10(6):434-6.
    12.Todeschini G, Friso S, Lombardi S, Casaril M, Fontana R, Corrocher R. A case of Listeria murray/grayi bacteremia in a patient with advanced Hodgkin's disease. Eur J Clin Microbiol Infect Dis 1998;17(11):808-10.
    13.Chen JS, Jiang LL, Fang WH. [Virulence determinants and its evolution of the genus Listeria]. Wei Sheng Wu Xue Bao 2007;47(4):738-42.
    14. Graves LM, Helsel LO, Steigerwalt AG, Morey RE, Daneshvar MI, Roof SE, Orsi RH, Fortes ED, Milillo SR, den Bakker HC, Wiedmann M, Swaminathan B, Sauders BD. Listeria marthii sp. nov., isolated from the natural environment, Finger Lakes National Forest. Int J Syst Evol Microbiol 2009.
    15.Leclercq A, Clermont D, Bizet C, Grimont PA, Le Fleche-Mateos A, Roche SM, Buchrieser C, Cadet-Daniel V, Le Monnier A, Lecuit M, Allerberger F. Listeria rocourtiae sp. nov. Int J Syst Evol Microbiol 2009.
    16. Seeliger HP, Langer B.Serological analysis of the genus Listeria. Its values and limitations. Int J Food Microbiol 1989;8(3):245-8.
    17. Liu D. Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen. J Med Microbiol 2006;55(Pt 6):645-59.
    18.Wiedmann M, Bruce JL, Keating C, Johnson AE, McDonough PL, Batt CA. Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect Immun 1997;65(7):2707-16.
    19.Gandhi M, Chikindas ML.Listeria:A foodborne pathogen that knows how to survive. Int J Food Microbiol 2007;113(1):1-15.
    20. Swaminathan B, Gerner-Smidt P. The epidemiology of human listeriosis. Microbes Infect 2007;9(10):1236-43.
    21.Chen J, Zhang X, Mei L, Jiang L, Fang W. Prevalence of Listeria in Chinese food products from 13 provinces between 2000 and 2007 and virulence characterization of Listeria monocytogenes isolates. Foodborne Pathog Dis 2009;6(1):7-14.
    22.Altekruse SF, Cohen ML, Swerdlow DL. Emerging foodborne diseases. Emerg Infect Dis 1997;3(3):285-93.
    23.Goulet V, Hedberg C, Le Monnier A, de Valk H. Increasing incidence of listeriosis in France and other European countries. Emerg Infect Dis 2008;14(5):734-40.
    24. Outbreak of Listeria monocytogenes infections associated with pasteurized milk from a local dairy--Massachusetts,2007.MMWR Morb Mortal Wkly Rep 2008;57(40):1097-100.
    25.Preliminary FoodNet Data on the incidence of infection with pathogens transmitted commonly through food--10 States,2008. MMWR Morb Mortal Wkly Rep 2009;58(13):333-7.
    26. Smith B, Larsson JT, Lisby M, Muller L, Madsen SB, Engberg J, Bangsborg J, Ethelberg S, Kemp M. Outbreak of Listeria monocytogenes caused by Beef meat from a Meals-on-Wheel's delivery, Denmark 2009. Clin Microbiol Infect.
    27.肖义泽,任丽娟.云南省首次动物源性李斯特菌病暴发的流行病学调查.中华流行病学杂志,2000,21(3):236.
    28.蒋建军,剡根强,王鹏雁,马勋,王静梅.新疆绵羊致病株李斯特杆菌分离与鉴定.中国预防兽医学报,2006;28(6):614-617.
    29.Nelson KE, Fouts DE, Mongodin EF, Ravel J, DeBoy RT, Kolonay JF, Rasko DA, Angiuoli SV, Gill SR, Paulsen IT, Peterson J, White O, Nelson WC, Nierman W, Beanan MJ, Brinkac LM, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Haft DH, Selengut J, Van Aken S, Khouri H, Fedorova N, Forberger H, Tran B,Kathariou S, Wonderling LD, Uhlich GA, Bayles DO, Luchansky JB, Fraser CM. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res 2004;32(8):2386-95.
    30.Gerner-Smidt P, Ethelberg S, Schiellerup P, Christensen JJ, Engberg J, Fussing V, Jensen A, Jensen C,Petersen AM,Bruun BG. Invasive listeriosis in Denmark 1994-2003:a review of 299 cases with special emphasis on risk factors for mortality. Clin Microbiol Infect 2005;11(8):618-24.
    31.Chen Y, Knabel SJ. Multiplex PCR for simultaneous detection of bacteria of the genus Listeria, Listeria monocytogenes, and major serotypes and epidemic clones of L. monocytogenes. Appl Environ Microbiol 2007;73(19):6299-304.
    32.Chen Y, Zhang W, Knabel SJ. Multi-virulence-locus sequence typing identifies single nucleotide polymorphisms which differentiate epidemic clones and outbreak strains of Listeria monocytogenes. J Clin Microbiol 2007;45(3):835-46.
    33.Vazquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Dominguez-Bernal G, Goebel W, Gonzalez-Zorn B,Wehland J, Kreft J. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 2001;14(3):584-640.
    34. Dussurget O, Pizarro-Cerda J, Cossart P. Molecular determinants of Listeria monocytogenes virulence. Annu Rev Microbiol 2004;58:587-610.
    35.Miller LL, Ordal ZJ. Thermal injury and recovery of Bacillus subtilis. Appl Microbiol 1972;24(6):878-84.
    36.Earnshaw RG, Appleyard J, Hurst RM.Understanding physical inactivation processes: combined preservation opportunities using heat, ultrasound and pressure. Int J Food Microbiol 1995;28(2):197-219.
    37. Yura T, Nakahigashi K. Regulation of the heat-shock response. Curr Opin Microbiol 1999;2(2):153-8.
    38.Abee T, Wouters JA. Microbial stress response in minimal processing. Int J Food Microbiol 1999;50(1-2):65-91.
    39.Sokolovic Z, Goebel W. Synthesis of listeriolysin in Listeria monocytogenes under heat shock conditions. Infect Immun 1989;57(1):295-8.
    40.Gahan CG, O'Mahony J, Hill C. Characterization of the groESL operon in Listeria monocytogenes:utilization of two reporter systems (gfp and hly) for evaluating in vivo
    expression. Infect Immun 2001;69(6):3924-32.
    41.Hanawa T, Yamanishi S, Murayama S, Yamamoto T, Kamiya S.Participation of DnaK in expression of genes involved in virulence of Listeria monocytogenes. FEMS Microbiol Lett 2002;214(1):69-75.
    42.Stack HM, Sleator RD, Bowers M, Hill C, Gahan CG. Role for HtrA in stress induction and virulence potential in Listeria monocytogenes.Appl Environ Microbiol 2005;71(8):4241-7.
    43.Georgopoulos C, Welch WJ. Role of the major heat shock proteins as molecular chaperones. Annu-Rev Cell Biol 1993;9:601-34.
    44.Gottesman S. Proteases and their targets in Escherichia coli. Annu Rev Genet 1996;30:465-506.
    45. Hartl FU. Molecular chaperones in cellular protein folding. Nature 1996;381(6583):571-9.
    46.Zeilstra-Ryalls J, Fayet O, Georgopoulos C. The universally conserved GroE (Hsp60) chaperonins. Annu Rev Microbiol 1991;45:301-25.
    47. Hendrick JP, Hartl FU. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 1993;62:349-84.
    48.Fayet O, Ziegelhoffer T, Georgopoulos C. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 1989;171(3):1379-85.
    49. Flahaut S, Hartke A, Giard JC, Benachour A, Boutibonnes P, Auffray Y. Relationship between stress response toward bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microbiol Lett 1996;138(1):49-54.
    50. Kilstrup M, Jacobsen S, Hammer K, Vogensen FK. Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis. Appl Environ Microbiol 1997;63(5):1826-37.
    51.Phan-Thanh L, Mahouin F. A proteomic approach to study the acid response in Listeria monocytogenes. Electrophoresis 1999;20(11):2214-24.
    52. Salotra P, Singh DK, Seal KP, Krishna N, Jaffe H, Bhatnagar R. Expression of DnaK and GroEL homologs in Leuconostoc esenteroides in response to heat shock, cold shock or chemical stress.FEMS Microbiol Lett 1995;131(1):57-62.
    53.Hanawa T, Kai M, Kamiya S, Yamamoto T. Cloning, sequencing, and transcriptional analysis of the dnaK heat shock operon of Listeria monocytogenes. Cell Stress Chaperones 2000;5(1):21-9.
    54. Yuan G, Wong SL. Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK. J Bacteriol 1995;177(22):6462-8.
    55.Schulz A, Schumann W. hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J Bacteriol 1996;178(4):1088-93.
    56. Roncarati D, Spohn G, Tango N, Danielli A, Delany I, Scarlato V. Expression, purification and characterization of the membrane-associated HrcA repressor protein of Helicobacter pylori. Protein Expr Purif 2007;51(2):267-75.
    57.Wetzstein M, Volker U, Dedio J, Lobau S, Zuber U, Schiesswohl M, Herget C, Hecker M, Schumann W. Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis. J Bacteriol 1992;174(10):3300-10.
    58. Kuroda M, Kobayashi D, Honda K, Hayashi H, Ohta T. The hsp operons are repressed by the hrc37 of the hsp70 operon in Staphylococcus aureus. Microbiol Immunol 1999;43(1):19-27.
    59. Narberhaus F, Giebeler K, Bahl H. Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE, dnaJ, and a new heat shock gene. J Bacteriol 1992;174(10):3290-9.
    60. Schumann W. The Bacillus subtilis heat shock stimulon. Cell Stress Chaperones 2003;8(3):207-17.
    61.Schulz A, Tzschaschel B, Schumann W. Isolation and analysis of mutants of the dnaK operon of Bacillus subtilis. Mol Microbiol 1995;15(3):421-9.
    62. Mogk A, Homuth G, Scholz C, Kim L, Schmid FX, Schumann W. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis.Embo J 1997;16(15):4579-90.
    63.Ensgraber M, Loos M. A 66-kilodalton heat shock protein of Salmonella typhimurium is responsible for binding of the bacterium to intestinal mucus. Infect Immun 1992;60(8):3072-8.
    64. Minnick MF, Smitherman LS, Samuels DS. Mitogenic effect of Bartonella bacilliformis on human vascular endothelial cells and involvement of GroEL. Infect Immun 2003;71(12):6933-42.
    65. Henderson B, Allan E, Coates AR. Stress wars:the direct role of host and bacterial molecular chaperones in bacterial infection. Infect Immun 2006;74(7):3693-706.
    66.Garduno RA, Garduno E, Hoffman PS. Surface-associated hsp60 chaperonin of Legionella pneumophila mediates invasion in a HeLa cell model. Infect Immun 1998;66(10):4602-10.
    67. Hennequin C, Porcheray F, Waligora-Dupriet A, Collignon A, Barc M, Bourlioux P, Karjalainen T. GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiology 2001;147(Pt 1):87-96.
    68.Waligora AJ, Hennequin C, Mullany P, Bourlioux P, Collignon A, Karjalainen T. Characterization of a cell surface protein of Clostridium difficile with adhesive properties. Infect Immun 2001;69(4):2144-53.
    69. Hevin B, Morange M, Fauve RM. Absence of an early detectable increase in heat-shock protem synthesis by Listeria monocytogenes within mouse mononuclear phagocytes. Res Immunol 1993;144(9):679-89.
    70. Hanawa T, Yamamoto T, Kamiya S. Listeria monocytogenes can grow in macrophages without the aid of proteins induced by environmental stresses. Infect Immun 1995;63(12):4595-9.
    71.Chatterjee SS, Hossain H, Otten S, Kuenne C, Kuchmina K, Machata S, Domann E, Chakraborty T, Hain T. Intracellular gene expression profile of Listeria monocytogenes. Infect Immun 2006;74(2):1323-38.
    72.Joseph B, Przybilla K, Stuhler C, Schauer K, Slaghuis J, Fuchs TM, Goebel W. Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. J Bacteriol 2006;188(2):556-68.
    73.Hanawa T, Fukuda M, Kawakami H, Hirano H, Kamiya S, Yamamoto T. The Listeria monocytogenes DnaK chaperone is required for stress tolerance and efficient phagocytosis with macrophages. Cell Stress Chaperones 1999;4(2):118-28.
    74. Gottesman S. Regulation by proteolysis:developmental switches. Curr Opin Microbiol 1999;2(2):142-7.
    75.Katayama Y, Gottesman S, Pumphrey J, Rudikoff S, Clark WP, Maurizi MR. The two-component, ATP-dependent Clp protease of Escherichia coli. Purification, cloning, and mutational analysis of the ATP-binding component. J Biol Chem 1988;263(29):15226-36.
    76.Maurizi MR, Clark WP, Kim SH, Gottesman S. Clp P represents a unique family of serine proteases. J Biol Chem 1990;265(21):12546-52.
    77. Gottesman S, Wickner S, Maurizi MR. Protein quality control:triage by chaperones and proteases. Genes Dev 1997;11(7):815-23.
    78.Wawrzynow A, Banecki B, Zylicz M. The Clp ATPases define a novel class of molecular chaperones. Mol Microbiol 1996;21(5):895-9.
    79.Schirmer EC, Glover JR, Singer MA, Lindquist S. HSP100/Clp proteins:a common mechanism explains diverse functions. Trends Biochem Sci 1996;21(8):289-96.
    80.Chastanet A, Derre I, Nair S, Msadek T. clpB, a novel member of the Listeria monocytogenes CtsR regulon, is involved in virulence but not in general stress tolerance. J Bacteriol 2004;186(4):1165-74.
    81.Rouquette C, Ripio MT, Pellegrini E, Bolla JM, Tascon RI, Vazquez-Boland JA, Berche P. Identification of a ClpC ATPase required for stress tolerance and in vivo survival of Listeria monocytogenes. Mol Microbiol 1996;21(5):977-87.
    82.Rouquette C, de Chastellier C, Nair S, Berche P. The ClpC ATPase of Listeria monocytogenes is a general stress protein required for virulence and promoting early bacterial escape from the phagosome of macrophages. Mol Microbiol 1998;27(6):1235-45.
    83.Nair S, Frehel C, Nguyen L, Escuyer V, Berche P. ClpE, a novel member of the HSP100 family, is involved in cell division and virulence of Listeria monocytogenes. Mol Microbiol 1999;31(1):185-96.
    84.Gaillot O, Pellegrini E, Bregenholt S, Nair S, Berche P. The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes. Mol Microbiol 2000;35(6):1286-94.
    85.Woo KM, Kim KI, Goldberg AL, Ha DB,Chung CH. The heat-shock protein ClpB in Escherichia coli is a protein-activated ATPase. J Biol Chem 1992;267(28):20429-34.
    86.Nair S, Derre I, Msadek T, Gaillot O, Berche P. CtsR controls class Ⅲ heat shock gene expression in the human pathogen Listeria monocytogenes. Mol Microbiol 2000;35(4):800-11.
    87.Karatzas KA, Wouters JA, Gahan CG, Hill C, Abee T, Bennik MH. The CtsR regulator of Listeria monocytogenes contains a variant glycine repeat region that affects piezotolerance, stress resistance, motility and virulence. Mol Microbiol 2003;49(5):1227-38.
    88.Kirstein J, Zuhlke D, Gerth U, Turgay K, Hecker M. A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B.subtilis. Embo J 2005;24(19):3435-45.
    89.Derre I, Rapoport G, Devine K, Rose M, Msadek T. ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis. Mol Microbiol 1999;32(3):581-93.
    90. Derre I, Rapoport G, Msadek T. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol Microbiol 1999;31(1):117-31.
    91.Lemos JA, Burne RA. Regulation and Physiological Significance of ClpC and ClpP in Streptococcus mutans. J Bacteriol 2002;184(22):6357-66.
    92.Varmanen P, Vogensen FK, Hammer K, Palva A, Ingmer H. ClpE from Lactococcus lactis promotes repression of CtsR-dependent gene expression. J Bacteriol 2003;185(17):5117-24.
    93.Kruger E, Zuhlke D, Witt E, Ludwig H, Hecker M. Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. Embo J 2001;20(4):852-63.
    94.Kruger E, Witt E, Ohlmeier S, Hanschke R, Hecker M. The clp proteases of Bacillus subtilis
    are directly involved in degradation of misfolded proteins. J Bacteriol 2000;182(11):3259-65.
    95.Kirstein J, Schlothauer T, Dougan DA, Lilie H, Tischendorf G, Mogk A, Bukau B, Turgay K. Adaptor protein controlled oligomerization activates the AAA+ protein ClpC.Embo J 2006;25(7):1481-91.
    96. Kirstein J, Turgay K. A new tyrosine phosphorylation mechanism involved in signal transduction in Bacillus subtilis.J Mol Microbiol Biotechnol 2005;9(3-4):182-8.
    97. Ripio MT, Vazquez-Boland JA, Vega Y, Nair S, Berche P. Evidence for expressional crosstalk between the central virulence regulator PrfA and the stress response mediator ClpC in Listeria monocytogenes. FEMS Microbiol Lett 1998;158(1):45-50.
    98.Chaturongakul S, Boor KJ. SigmaB activation under environmental and energy stress conditions in Listeria monocytogenes. Appl Environ Microbiol 2006;72(8):5197-203.
    99. Wemekamp-Kamphuis HH, Wouters JA, de Leeuw PP, Hain T, Chakraborty T, Abee T. Identification of sigma factor sigma B-controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl Environ Microbiol 2004;70(6):3457-66.
    100.Raynaud C, Charbit A. Regulation of expression of type Ⅰ signal peptidases in Listeria monocytogenes. Microbiology 2005;151(Pt 11):3769-76.
    101.Hensel M, Shea JE,Gleeson C, Jones MD, Dalton E, Holden DW.Simultaneous identification of bacterial virulence genes by negative selection. Science 1995;269(5222):400-3.
    102.Mei JM, Nourbakhsh F, Ford CW, Holden DW. Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol Microbiol 1997;26(2):399-407.
    103.Charpentier E, Novak R, Tuomanen E. Regulation of growth inhibition at high temperature, autolysis, transformation and adherence in Streptococcus pneumoniae by clpC. Mol Microbiol 2000;37(4):717-26.
    104.Kwon HY, Kim SW, Choi MH, Ogunniyi AD, Paton JC, Park SH, Pyo SN, Rhee DK. Effect of
    heat shock and mutations in ClpL and ClpP on virulence gene expression in Streptococcus pneumoniae. Infect Immun 2003;71(7):3757-65.
    105.Ibrahim YM, Kerr AR, Silva NA, Mitchell TJ. Contribution of the ATP-dependent protease ClpCP to the autolysis and virulence of Streptococcus pneumoniae. Infect Immun 2005;73(2):730-40.
    106.Nair S, Milohanic E, Berche P. ClpC ATPase is required for cell adhesion and invasion of Listeria monocytogenes. Infect Immun 2000;68(12):7061-8.
    107. Foucaud-Scheunemann C,Poquet I. HtrA is a key factor in the response to specific stress conditions in Lactococcus lactis. FEMS Microbiol Lett 2003;224(1):53-9.
    108.Lipinska B, Fayet O, Baird L, Georgopoulos C. Identification, characterization, and mapping of the Eschorichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures. J Bacteriol 1989; 171 (3):1574-84.
    109.Noone D, Howell A, Devine KM. Expression of ykdA, encoding a Bacillus subtilis homologue of HtrA, is heat shock inducible and negatively autoregulated. J Bacteriol 2000;182(6):1592-9.
    110.Fanning AS, Anderson JM. PDZ domains:fundamental building blocks in the organization of protein complexes at the plasma membrane. J Clin Invest 1999;103(6):767-72.
    111.Sassoon N, Arie JP, Betton JM. PDZ domains determine the native oligomeric structure of the DegP (HtrA) protease. Mol Microbiol 1999;33(3):583-9.
    112.Spiess C, Beil A, Ehrmann M. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 1999;97(3):339-47.
    113.Ibrahim YM, Kerr AR, McCluskey J, Mitchell TJ. Role of HtrA in the virulence and competence of Streptococcus pneumoniae. Infect Immun 2004;72(6):3584-91.
    114.Jones CH, Bolken TC, Jones KF, Zeller GO, Hruby DE. Conserved DegP protease in gram-positive bacteria is essential for thermal and oxidative tolerance and full virulence in Streptococcus pyogenes. Infect Immun 2001;69(9):5538-45.
    115.Utaida S, Dunman PM, Macapagal D, Murphy E, Projan SJ, Singh VK, Jayaswal RK, Wilkinson BJ. Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cell-wall-active antibiotics reveals a cell-wall-stress stimulon. Microbiology 2003;149(Pt 10):2719-32.
    116.Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF, Danchin A, et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 1997;390(6657):249-56.
    117. Poquet I, Saint V, Seznec E, Simoes N, Bolotin A, Gruss A. HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Kicrobiol 2000;35(5):1042-51.
    118.Antelmann H, Darmon E, Noone D, Veening JW, Westers H, Bron S, Kuipers OP, Devine KM, Hecker M, van Dijl JM. The extracellular proteome of Bacillus subtilis under secretion stress conditions. Mol Microbiol 2003;49(1):143-56.
    119.Sleator RD, Hill C. A novel role for the LisRK two-component regulatory system in listerial osmotolerance. Clin Microbiol Infect 2005;11(8):599-601.
    120. Wilson RL, Brown LL, Kirkwood-Watts D, Warren TK, Lund SA, King DS, Jones KF, Hruby DE. Listeria monocytogenes 10403S HtrA is necessary for resistance to cellular stress and virulence. Infect Immun 2006;74(1):765-8.
    121.Wonderling LD, Wilkinson BJ, Bayles DO. The htrA (degP) gene of Listeria monocytogenes 10403S is essential for optimal growth under stress conditions. Appl Environ Microbiol 2004;70(4):1935-43.
    122. Danese PN, Snyder WB,Cosma CL, Davis LJ, Silhavy TJ. The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. Genes Dev 1995;9(4):387-98.
    123.Heusipp G, Nelson KM, Schmidt MA, Miller VL. Regulation of htrA expression in Yersinia enterocolitica. FEMS Microbiol Lett 2004;231(2):227-35.
    124. Mascher T, Zahner D, Merai M, Balmelle N, de Saizieu AB, Hakenbeck R. The Streptococcus pneumoniae cia regulon:CiaR target sites and transcription profile analysis. J Bacteriol 2003;185(1):60-70.
    125.Sebert ME, Palmer LM, Rosenberg M, Weiser JN. Microarray-based identification of htrA, a Streptococcus pneumoniae gene that is regulated by the CiaRH two-component system and contributes to nasopharyngeal colonization. Infect Immun 2002;70(8):4059-67.
    126. Westers H, Westers L, Darmon E, van Dijl JM, Quax WJ, Zanen G. The CssRS two-component regulatory system controls a general secretion stress response in Bacillus subtilis. Febs J 2006;273(16):3816-27.
    127.Cotter PD, Emerson N, Gahan CG, Hill C. Identification and disruption of lisRK, a genetic locus encoding a two-component signal transduction system involved in stress tolerance and virulence in Listeria monocytogenes. J Bacteriol 1999;181(21):6840-3.
    128.Cotter PD, Guinane CM, Hill C. The LisRK signal transduction system determines the sensitivity of Listeria monocytogenes to nisin and cephalosporins. Antimicrob Agents Chemother 2002;46(9):2784-90.
    129.Johnson K, Charles I, Dougan G, Pickard D, O'Gaora P, Costa G, Ali T, Miller I, Hormaeche C. The role of a stress-response protein in Salmonella typhimurium virulence. Mol Microbiol 1991;5(2):401-7.
    130.Cortes G, de Astorza B, Benedi VJ, Alberti S. Role of the htrA gene in Klebsiella pneumoniae virulence. Infect Immun 2002;70(9):4772-6.
    131.Pedersen LL, Radulic M, Doric M, Abu Kwaik Y. HtrA homologue of Legionella pneumophila: an indispensable element for intracellular infection of mammalian but not protozoan cells. Infect Immun 2001;69(4):2569-79.
    132.Biswas S, Biswas I. Role of HtrA in surface protein expression and biofilm formation by Streptococcus mutans. Infect Immun 2005;73(10):6923-34.
    133.Bearson S, Bearson B,Foster JW. Acid stress responses in enterobacteria. FEMS Microbiol Lett 1997;147(2):173-80.
    134.Cotter PD, Hill C. Surviving the acid test:responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 2003;67(3):429-53,table of contents.
    135.Hill C, O'Driscoll B, Booth I. Acid adaptation and food poisoning microorganisms. Int J Food Microbiol 1995;28(2):245-54.
    136. Foster JW. Salmonella acid shock proteins are required for the adaptive acid tolerance response. J Bacteriol 1991;173(21):6896-902.
    137. Foster JW,Park YK, Bang IS, Karem K, Betts H, Hall HK, Shaw E. Regulatory circuits involved with pH-regulated gene expression in Salmonella typhimurium. Microbiology 1994;140(Pt2):341-52.
    138.O'Driscoll B,Gahan C, Hill C. Two-Dimensional Polyacrylamide Gel Electrophoresis Analysis of the Acid Tolerance Response in Listeria monocytogenes LO28. Appl Environ Microbiol 1997;63(7):2679-2685.
    139.Portnoy DA, Jacks PS, Hinrichs DJ. Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 1988;167(4):1459-71.
    140.Banks ER, Allen SD, Siders JA, O'Bryan NA. Characterization of anaerobic bacteria by using a commercially available rapid tube test for glutamic acid decarboxylase. J Clin Microbiol 1989;27(2):361-3.
    141.Cozzani I, Misuri A, Santoni C. Purification and general properties of glutamate decarboxylase from Clostridium perfringens. Biochem J 1970;118(1):135-41.
    142.Waterman SR, Small PL. Identification of sigma S-dependent genes associated with the stationary-phase acid-resistance phenotype of Shigella flexneri. Mol Microbiol 1996;21(5):925-40.
    143.Small PL, Waterman SR. Acid stress, anaerobiosis and gadCB:lessons from Lactococcus lactis and Escherichia coli. Trends Microbiol 1998;6(6):214-6.
    144. Cotter PD, O'Reilly K, Hill C.Role of the glutamate decarboxylase acid resistance system in the survival of Listeria monocytogenes LO28 in low pH foods. J Food Prot 2001;64(9):1362-8.
    145.Cotter PD, Gahan CG, Hill C. A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol Microbiol 2001;40(2):465-75.
    146.Begley M, Gahan CG, Hill C. Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl Environ Microbiol 2002;68(12):6005-12.
    147. Olier M, Rousseaux S, Piveteau P, Lemaitre JP, Rousset A, Guzzo J. Screening of glutamate decarboxylase activity and bile salt resistance of human asymptomatic carriage, clinical, food, and environmental isolates of Listeria monocytogenes. Int J Food Microbiol 2004;93(1):87-99.
    148.Higuchi T, Hayashi H, Abe K. Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. J Bacteriol 1997;179(10):3362-4.
    149.Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couve E, de Daruvar A, Dehoux P, Domann E, Dominguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian KD, Fsihi H, Garcia-del Portillo F, Garrido P, Gautier L, Goebel W, Gomez-Lopez N, Hain T, Hauf J, Jackson D, Jones LM, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueno E, Maitournam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Perez-Diaz JC, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, Tierrez A, Vazquez-Boland JA, Voss H, Wehland J, Cossart P. Comparative genomics of Listeria species. Science 2001;294(5543):849-52.
    150.Bhagwat AA. Regulation of the glutamate-dependent acid-resistance system of diarrheagenic Escherichia coli strains. FEMS Microbiol Lett 2003;227(1):39-45.
    151.Ma Z, Gong S, Richard H, Tucker DL, Conway T, Foster JW.GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12.Mol Microbiol 2003;49(5):1309-20.
    152. Conte MP, Petrone G, Di Biase AM, Longhi C, Penta M, Tinari A, Superti F, Fabozzi G, Visca P, Seganti L. Effect of acid adaptation on the fate of Listeria monocytogenes in THP-1 human macrophages activated by gamma interferon. Infect Immun 2002;70(8):4369-78.
    153.Becker LA, Evans SN, Hutkins RW, Benson AK. Role of sigma(B) in adaptation of Listeria monocytogenes to growth at low temperature. J Bacteriol 2000;182(24):7083-7.
    154. Ferreira A, O'Byrne CP, Boor KJ. Role of sigma(B) in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl Environ Microbiol 2001;67(10):4454-7.
    155.Ferreira A, Sue D, O'Byrne CP, Boor KJ. Role of Listeria monocytogenes sigma(B) in survival of lethal acidic conditions and in the acquired acid tolerance response. Appl Environ Microbiol 2003;69(5):2692-8.
    156. Sue D, Fink D, Wiedmann M, Boor KJ. sigmaB-dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment. Microbiology 2004;150(Pt 11):3843-55.
    157. Wiedmann M, Arvik TJ, Hurley RJ, Boor KJ. General stress transcription factor sigmaB and its role in acid tolerance and virulence of Listeria monocytogenes. J Bacteriol 1998;180(14):3650-6.
    158.Helmann JD, Chamberlin MJ. Structure and function of bacterial sigma factors. Annu Rev Biochem 1988;57:839-72.
    159.van Schaik W, Abee T. The role of sigmaB in the stress response of Gram-positive bacteria--targets for food preservation and safety. Curr Opin Biotechnol 2005;16(2):218-24.
    160. Kazmierczak MJ, Mithoe SC, Boor KJ, Wiedmann M. Listeria monocytogenes sigma B regulates stress response and virulence functions. J Bacteriol 2003;185(19):5722-34.
    161.Kazmierczak MJ,Wiedmann M, Boor KJ. Contributions of Listeria monocytogenes sigmaB and PrfA to expression of virulence and stress response genes during extra-and intracellular growth. Microbiology 2006;152(Pt 6):1827-38.
    162.De Biase D, Tramonti A, Bossa F, Visca P. The response to stationary-phase stress conditions in Escherichia coli:role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 1999;32(6):1198-211.
    163.Erol I, Jeong KC, Baumler DJ, Vykhodets B, Choi SH, Kaspar CW. H-NS controls metabolism and stress tolerance in Escherichia coli O157:H7 that influence mouse passage. BMC Microbiol 2006;6:72.
    164. Garner MR, Njaa BL, Wiedmann M, Boor KJ. Sigma B contributes to Listeria monocytogenes gastrointestinal infection but not to systemic spread in the guinea pig infection model. Infect Immun 2006;74(2):876-86.
    165. Cotter PD, Gahan CG, Hill C. Analysis of the role of the Listeria monocytogenes F0F1-AtPase operon in the acid tolerance response. Int J Food Microbiol 2000;60(2-3):137-46.
    166.Penefsky HS, Cross RL.Structure and mechanism of FoFl-type ATP synthases and ATPases. Adv Enzymol Relat Areas Mol Biol 1991;64:173-214.
    167. Sebald W, Friedl P, Schairer HU, Hoppe J. Structure and genetics of the H+-conducting FO portion of the ATP synthase. Ann N Y Acad Sci 1982;402:28-44.
    168.Harold FM, Pavlasova E, Baarda JR. A transmembrane pH gradient in Streptococcus faecalis: origin, and dissipation by proton conductors and N,N'-dicyclohexylcarbodimide. Biochim Biophys Acta 1970;196(2):235-44.
    169. Shibata C, Ehara T, Tomura K, Igarashi K, Kobayashi H. Gene structure of Enterococcus hirae (Streptococcus faecalis) F1F0-ATPase, which functions as a regulator of cytoplasmic pH. J Bacteriol 1992;174(19):6117-24.
    170. Feniouk BA, Junge W. Regulation of the F0F1-ATP synthase:the conformation of subunit epsilon might be determined by directionality of subunit gamma rotation. FEBS Lett 2005;579(23):5114-8.
    171.Dunn SD, Tozer RG, Zadorozny VD. Activation of Escherichia coli Fl-ATPase by lauryldimethylamine oxide and ethylene glycol:relationship of ATPase activity to the interaction of the epsilon and beta subunits. Biochemistry 1990;29(18):4335-40.
    172. Laget PP, Smith JB.Inhibitory properties of endogenous subunit epsilon in the Escherichia coli F1 ATPase. Arch Biochem Biophys 1979;197(1):83-9.
    173.Feniouk BA, Suzuki T, Yoshida M. The role of subunit epsilon in the catalysis and regulation of FOF1-ATP synthase. Biochim Biophys Acta 2006;1757(5-6):326-38.
    174.Hain T, Steinweg C, Kuenne CT, Billion A, Ghai R, Chatterjee SS, Domann E, Karst U, Goesmann A, Bekel T, Bartels D, Kaiser O, Meyer F, Puhler A, Weisshaar B, Wehland J, Liang C, Dandekar T, Lampidis R, Kreft J, Goebel W, Chakraborty T. Whole-genome sequence of Listeria welshimeri reveals common steps in genome reduction with Listeria innocua as compared to Listeria monocytogenes. J Bacteriol 2006;188(21):7405-15.
    175.Csonka LN, Hanson AD. Prokaryotic osmoregulation:genetics and physiology. Annu Rev Microbiol 1991;45:569-606.
    176. Csonka LN. Physiological and genetic responses of bacteria to osmotic stress.Microbiol Rev 1989;53(1):121-47.
    177. Sleator RD, Hill C. Bacterial osmoadaptation:the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 2002;26(1):49-71.
    178.Horn C, Jenewein S, Sohn-Bosser L, Bremer E, Schmitt L. Biochemical and structural analysis of the Bacillus subtilis ABC transporter OpuA and its isolated subunits. J Mol Microbiol Biotechnol 2005;10(2-4):76-91.
    179.Morbach S, Kramer R. Structure and function of the betaine uptake system BetP of Corynebacterium glutamicum:strategies to sense osmotic and chill stress. J Mol Microbiol Biotechnol 2005;10(2-4):143-53.
    180. Nagata S, Maekawa Y, Ikeuchi T, Wang YB, Ishida A. Effect of compatible solutes on the respiratory activity and growth of Escherichia coli K-12 under NaCl stress. J Biosci Bioeng 2002;94(5):384-9.
    181.Smiddy M, Sleator RD, Patterson MF, Hill C, Kelly AL. Role for compatible solutes glycine betaine and L-carnitine in listerial barotolerance. Appl Environ Microbiol 2004;70(12):7555-7.
    182.Patchett RA, Kelly AF, Kroll RG. Effect of sodium chloride on the intracellular solute pools of Listeria monocytogenes. Appl Environ Microbiol 1992;58(12):3959-63.
    183.Bayles DO, Wilkinson BJ. Osmoprotectants and cryoprotectants for Listeria monocytogenes. Lett Appl Microbiol 2000;30(1):23-7.
    184. Beumer RR, Te Giffel MC, Cox LJ, Rombouts FM, Abee T. Effect of exogenous proline,
    betaine, and carnitine on growth of Listeria monocytogenes in a minimal medium. Appl Environ Microbiol 1994;60(4):1359-63.
    185.Sleator RD, Gahan CG, Hill C. A postgenomic appraisal of osmotolerance in Listeria monocytogenes. Appl Environ Microbiol 2003;69(1):1-9.
    186. Bieber LL. Carnitine. Annu Rev Biochem 1988;57:261-83.
    187.Verheul A, Glaasker E, Poolman B, Abee T. Betaine and L-carnitine transport by Listeria monocytogenes Scott A in response to osmotic signals. J Bacteriol 1997;179(22):6979-85.
    188.Fraser KR, Harvie D, Coote PJ, O'Byrne CP. Identification and characterization of an ATP binding cassette L-carnitine transporter in Listeria monocytogenes. Appl Environ Microbiol 2000;66(11):4696-704.
    189. Ko R, Smith LT. Identification of an ATP-driven, osmoregulated glycine betaine transport system in Listeria monocytogenes. Appl Environ Microbiol 1999;65(9):4040-8.
    190. Patchett RA, Kelly AF, Kroll RG. Transport of glycine-betaine by Listeria monocytogenes. Arch Microbiol 1994;162(3):205-10.
    191.Sleator RD, Gahan CG, Abee T, Hill C. Identification and disruption of BetL, a secondary glycine betaine transport system linked to the salt tolerance of Listeria monocytogenes LO28. Appl Environ Microbiol 1999;65(5):2078-83.
    192. Sleator RD, Francis GA, O'Beirne D, Gahan CG, Hill C. Betaine and carnitine uptake systems in Listeria monocytogenes affect growth and survival in foods and during infection. J Appl Microbiol 2003;95(4):839-46.
    193.Sleator RD,Gahan CGM, O'Driscoll B, Hill C. Analysis of the role of betL in contributing to the growth and survival of Listeria monocytogenes LO28. Int J Food Microbiol 2000;60(2-3):261-8.
    194. Gerhardt PN, Smith LT, Smith GM. Sodium-driven, osmotically activated glycine betaine transport in Listeria monocytogenes membrane vesicles. J Bacteriol 1996;178(21):6105-9.
    195.Gerhardt PN, Tombras Smith L, Smith GM. Osmotic and chill activation of glycine betaine porter II in Listeria monocytogenes membrane vesicles. J Bacteriol 2000;182(9):2544-50.
    196.Ko R, Smith LT, Smith GM. Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J Bacteriol 1994;176(2):426-31.
    197.Mendum ML, Smith LT. Characterization of glycine betaine porter I from Listeria monocytogenes and its roles in salt and chill tolerance. Appl Environ Microbiol 2002;68(2):813-9.
    198.Sheehan VM, Sleator RD, Fitzgerald GF, Hill C. Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118.Appl Environ Microbiol 2006;72(3):2170-7.
    199.Angelidis AS, Smith LT, Hoffman LM, Smith GM. Identification of opuC as a chill-activated and osmotically activated carnitine transporter in Listeria monocytogenes. Appl Environ Microbiol 2002;68(6):2644-50.
    200. Sleator RD, Wouters J, Gahan CG, Abee T, Hill C. Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes. Appl Environ Microbiol 2001;67(6):2692-8.
    201.Verheul A, Rombouts FM, Beumer RR, Abee T. An ATP-dependent L-carnitine transporter in Listeria monocytogenes Scott A is involved in osmoprotection. J Bacteriol 1995;177(11):3205-12.
    202.Wemekamp-Kamphuis HH, Wouters JA, Sleator RD, Gahan CG, Hill C, Abee T. Multiple deletions of the osmolyte transporters BetL, Gbu, and OpuC of Listeria monocytogenes affect virulence and growth at high osmolarity. Appl Environ Microbiol 2002;68(10):4710-6.
    203.Sleator RD, Wood JM, Hill C. Transcriptional regulation and posttranslational activity of the betaine transporter BetL in Listeria monocytogenes are controlled by environmental salinity. J Bacteriol 2003;185(24):7140-4.
    204.Angelidis AS, Smith GM. Three transporters mediate uptake of glycine betaine and carnitine by Listeria monocytogenes in response to hyperosmotic stress. Appl Environ Microbiol 2003;69(2):1013-22.
    205.Smith LT. Role of osmolytes in adaptation of osmotically stressed and chill-stressed Listeria monocytogenes grown in liquid media and on processed meat surfaces. Appl Environ Microbiol 1996;62(9):3088-93.
    206.Peddie BA, Lever M, Hayman CM, Randall K, Chambers ST. Relationship between osmoprotection and the structure and intracellular accumulation of betaines by Escherichia coli. FEMS Microbiol Lett 1994;120(1-2):125-31.
    207. Cetin MS, Zhang C, Hutkins RW, Benson AK. Regulation of transcription of compatible solute transporters by the general stress sigma factor, sigmaB, in Listeria monocytogenes. J Bacteriol 2004;186(3):794-802.
    208.Fraser KR, Sue D, Wiedmann M, Boor K, O'Byrne CP. Role of sigmaB in regulating the compatible solute uptake systems of Listeria monocytogenes:osmotic induction of opuC is sigmaB dependent. Appl Environ Microbiol 2003;69(4):2015-22.
    209. Becker LA, Cetin MS, Hutkins RW, Benson AK. Identification of the gene encoding the alternative sigma factor sigmaB from Listeria monocytogenes and its role in osmotolerance. J Bacteriol 1998;180(17):4547-54.
    210.Milohanic E, Glaser P, Coppee JY, Frangeul L, Vega Y, Vazquez-Boland JA, Kunst F, Cossart P, Buchrieser C. Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol 2003;47(6):1613-25.
    211.Kappes RM, Kempf B, Bremer E. Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis:characterization of OpuD.J Bacteriol 1996;178(17):5071-9.
    212. Akbar S, Lee SY, Boylan SA, Price CW. Two genes from Bacillus subtilis under the sole control of the general stress transcription factor sigmaB.Microbiology 1999;145 (Pt 5):1069-78.
    213.Maul B,Volker U, Riethdorf S, Engelmann S, Hecker M. sigma B-dependent regulation of gsiB in response to multiple stimuli in Bacillus subtilis. Mol Gen Genet 1995;248(1):114-20.
    214. Sanchez-Campillo M, Dramsi S, Gomez-Gomez JM, Michel E, Dehoux P, Cossart P, Baquero F, Perez-Diaz JC. Modulation of DNA topology by flaR, a new gene from Listeria monocytogenes. Mol Microbiol 1995;18(5):801-11.
    215.Peterson JA, Lorence MC, Amarneh B.Putidaredoxin reductase and putidaredoxin. Cloning, sequence determination, and heterologous expression of the proteins. J Biol Chem 1990;265(11):6066-73.
    216.Reddy P, Peterkofsky A, McKenney K. Translational efficiency of the Escherichia coli adenylate cyclase gene:mutating the UUG initiation codon to GUG or AUG results in increased gene expression. Proc Natl Acad Sci U S A 1985;82(17):5656-60.
    217.Duche O, Tremoulet F, Glaser P, Labadie J. Salt stress proteins induced in Listeria monocytogenes. Appl Environ Microbiol 2002;68(4):1491-8.
    218.Duche O, Tremoulet F, Namane A, Labadie J. A proteomic analysis of the salt stress response of Listeria monocytogenes. FEMS Microbiol Lett 2002;215(2):183-8.
    219. Esvan H, Minet J, Laclie C, Cormier M. Proteins variations in Listeria monocytogenes exposed to high salinities. Int J Food Microbiol 2000;55(1-3):151-5.
    220.Okada Y, Makino S, Tobe T, Okada N, Yamazaki S.Cloning of rel from Listeria monocytogenes as an osmotolerance involvement gene. Appl Environ Microbiol 2002;68(4):1541-7.
    221.Gardan R, Cossart P, Labadie J. Identification of Listeria monocytogenes genes involved in salt and alkaline-pH tolerance. Appl Environ Microbiol 2003;69(6):3137-43.
    222.Gardan R, Duche O, Leroy-Setrin S, Labadie J. Role of ctc from Listeria monocytogenes in osmotolerance. Appl Environ Microbiol 2003;69(1):154-61.
    223.Brondsted L, Kallipolitis BH, Ingmer H, Knochel S.kdpE and a putative RsbQ homologue contribute to growth of Listeria monocytogenes at high osmolarity and low temperature. FEMS Microbiol Lett 2003;219(2):233-9.
    224. Kallipolitis BH, Ingmer H. Listeria monocytogenes response regulators important for stress tolerance and pathogenesis. FEMS Microbiol Lett 2001;204(1):111-5.
    225.Sleator RD, Gahan CG, Hill C. Identification and disruption of the proBA locus in Listeria monocytogenes:role of proline biosynthesis in salt tolerance and murine infection. Appl Environ Microbiol 2001;67(6):2571-7.
    226.Sleator RD, Gahan CG, Hill C. Mutations in the listerial proB gene leading to proline overproduction:effects on salt tolerance and murine infection. Appl Environ Microbiol 2001;67(10):4560-5.
    227. Begley M, Hill C, Gahan CG. Identification and disruption of btlA, a locus involved in bile
    tolerance and general stress resistance in Listeria monocytogenes. FEMS Microbiol Lett 2003;218(1):31-8.
    228.Taylor CM, Beresford M, Epton HA, Sigee DC, Shama G, Andrew PW, Roberts IS.Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence. J Bacteriol 2002;184(3):621-8.
    229.Mechold U, Cashel M, Steiner K, Gentry D, Malke H. Functional analysis of a relA/spoT gene homolog from Streptococcus equisimilis. J Bacteriol 1996;178(5):1401-11.
    230.Sarubbi E, Rudd KE, Xiao H, Ikehara K, Kalman M, Cashel M. Characterization of the spoT gene of Escherichia coli. J Biol Chem 1989;264(25):15074-82.
    231.Wendrich TM, Marahiel MA. Cloning and characterization of a relA/spoT homologue from Bacillus subtilis. Mol Microbiol 1997;26(1):65-79.
    232.Gowrishankar J. Identification of osmoresponsive genes in Escherichia coli:evidence for participation of potassium and proline transport systems in osmoregulation. J Bacteriol 1985;164(1):434-45.
    233.Brody MS, Vijay K, Price CW. Catalytic function of an alpha/beta hydrolase is required for energy stress activation of the sigma(B) transcription factor in Bacillus subtilis. J Bacteriol 2001:183(21):6422-8.
    234.Kempf B, Bremer E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 1998;170(5):319-30.
    235.Gentry DR, Hernandez VJ, Nguyen LH, Jensen DB,Cashel M. Synthesis of the stationary-phase sigma factor sigma s is positively regulated by ppGpp. J Bacteriol 1993;175(24):7982-9.
    236. Kvint K, Farewell A, Nystrom T. RpoS-dependent promoters require guanosine tetraphosphate for induction even in the presence of high levels of sigma(s). J Biol Chem 2000;275(20):14795-8.
    237. Zhang S, Haldenwang WG. RelA is a component of the nutritional stress activation pathway of the Bacillus subtilis transcription factor sigma B.J Bacteriol 2003;185(19):5714-21.
    238.Hammer BK, Swanson MS.Co-ordination of legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol Microbiol 1999;33(4):721-31.
    239. Lou Y, Yousef AE. Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Appl Environ Microbiol 1997;63(4):1252-5.
    240. Browne N, Dowds BC. Heat and salt stress in the food pathogen Bacillus cereus. J Appl Microbiol 2001;91(6):1085-94.
    241.Browne N, Dowds BC. Acid stress in the food pathogen Bacillus cereus. J Appl Microbiol 2002;92(3):404-14.
    242.Casey PG, Condon S. Sodium chloride decreases the bacteriocidal effect of acid pH on Escherichia coli O157:H45. Int J Food Microbiol 2002;76(3):199-206.
    243.Flahaut S, Hartke A, Giard JC, Auffray Y. Alkaline stress response in Enterococcus faecalis: adaptation, cross-protection, and changes in protein synthesis. Appl Environ Microbiol 1997;63(2):812-4.
    244. O'Driscoll B, Gahan CG, Hill C. Adaptive acid tolerance response in Listeria monocytogenes: isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl Environ Microbiol 1996;62(5):1693-8.
    245.Faleiro ML, Andrew PW, Power D. Stress response of Listeria monocytogenes isolated from cheese and other foods. Int J Food Microbiol 2003;84(2):207-16.
    246.Gahan CG, O'Driscoll B,Hill C.Acid adaptation of Listeria monocytogenes can enhance survival in acidic foods and during milk fermentation. Appl Environ Microbiol 1996;62(9):3128-32.
    247.Koutsoumanis KP, Kendall PA, Sofos JN. Effect of food processing-related stresses on acid tolerance of Listeria monocytogenes. Appl Environ Microbiol 2003;69(12):7514-6.
    248.van Schaik W,Gahan CG, Hill C. Acid-adapted Listeria monocytogenes displays enhanced tolerance against the lantibiotics nisin and lacticin 3147. J Food Prot 1999;62(5):536-9.
    249. Ito M, Guffanti AA, Oudega B, Krulwich TA. mrp, a multigene, multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to Na+ and in pH homeostasis. J Bacteriol 1999;181(8):2394-402.
    250. Krulwich TA, Ito M, Guffanti AA. The Na(+)-dependence of alkaliphily in Bacillus. Biochim Biophys Acta 2001;1505(1):158-68.
    251.Bonazzi M, Lecuit M, Cossart P. Listeria monocytogenes internalin and E-cadherin:from structure to pathogenesis.Cell Microbiol 2009.
    252.Cossart P, Toledo-Arana A. Listeria monocytogenes, a unique model in infection biology:an overview. Microbes Infect 2008;10(9):1041-50.
    253.Bierne H, Sabet C, Personnic N, Cossart P. Internalins:a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes. Microbes Infect 2007;9(10):1156-66.
    254. Cabanes D, Dehoux P, Dussurget O, Frangeul L, Cossart P. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol 2002;10(5):238-45.
    255.Bierne H, Cossart P. InlB,a surface protein of Listeria monocytogenes that behaves as an
    invasin and a growth factor. J Cell Sci 2002;115(Pt 17):3357-67.
    256.Bonazzi M, Lecuit M, Cossart P. Listeria monocytogenes Internalin and E-cadherin:From Bench to Bedside. Cold Spring Harbor Perspect Biol 2009;1(4):a003087.
    257. Braun L, Dramsi S, Dehoux P, Bierne H, Lindahl G, Cossart P. InlB:an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol Microbiol 1997;25(2):285-94.
    258.Schubert WD, Urbanke C, Ziehm T, Beier V, Machner MP, Domann E, Wehland J, Chakraborty T, Heinz DW. Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 2002;111(6):825-36.
    259.Shen Y, Naujokas M, Park M, Ireton K. InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 2000;103(3):501-10.
    260. Nightingale KK, Ivy RA, Ho AJ, Fortes ED, Njaa BL, Peters RM, Wiedmann M. inlA premature stop codons are common among Listeria monocytogenes isolates from foods and yield virulence-attenuated strains that confer protection against fully virulent strains. Appl Environ Microbiol 2008;74(21):6570-83.
    261.Van Stelten A, Nightingale KK. Development and implementation of a multiplex single-nucleotide polymorphism genotyping assay for detection of virulence-attenuating mutations in the Listeria monocytogenes virulence-associated gene inlA. Appl Environ Microbiol 2008;74(23):7365-75.
    262.Engelbrecht F, Chun SK, Ochs C, Hess J, Lottspeich F, Goebel W, Sokolovic Z. A new PrfA-regulated gene of Listeria monocytogenes encoding a small, secreted protein which belongs to the family of internalins. Mol Microbiol 1996;21(4):823-37.
    263.Rajabian T, Gavicherla B, Heisig M, Muller-Altrock S, Goebel W, Gray-Owen SD, Ireton K. The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria. Nat Cell Biol 2009;11(10):1212-8.
    264.Sabet C, Lecuit M, Cabanes D, Cossart P, Bierne H. LPXTG protein InlJ, a newly identified internalin involved in Listeria monocytogenes virulence. Infect Immun 2005;73(10):6912-22.
    265.Sabet C, Toledo-Arana A, Personnic N, Lecuit M, Dubrac S, Poupel 0, Gouin E, Nahori MA, Cossart P, Bierne H. The Listeria monocytogenes virulence factor InlJ is specifically expressed in vivo and behaves as an adhesin. Infect Immun 2008;76(4):1368-78.
    266. Kirchner M, Higgins DE. Inhibition of ROCK activity allows InlF-mediated invasion and increased virulence of Listeria monocytogenes. Mol Microbiol 2008;68(3):749-67.
    267. Autret N, Dubail I, Trieu-Cuot P, Berche P, Charbit A. Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infect Immun 2001;69(4):2054-65.
    268.Bergmann B,Raffelsbauer D,Kuhn M,Goetz M,Hom S,Goebel W. InlA-but not InlB-mediated internalization of Listeria monocytogenes by non-phagocytic mammalian cells needs the support of other internalins. Mol Microbiol 2002;43(3):557-70.
    269.Pilgrim S, Kolb-Maurer A, Gentschev I, Goebel W, Kuhn M. Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and loss of actin-based motility. Infect Immun 2003;71(6):3473-84.
    270. Milohanic E, Jonquieres R, Cossart P, Berche P, Gaillard JL. The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor. Mol Microbiol 2001;39(5):1212-24.
    271.Dramsi S, Bourdichon F, Cabanes D, Lecuit M, Fsihi H, Cossart P. FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol Microbiol 2004;53(2):639-49.
    272.Alvarez-Dominguez C, Vazquez-Boland JA, Carrasco-Marin E, Lopez-Mato P, Leyva-Cobian F. Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect Immun 1997;65(1):78-88.
    273.Suarez M, Gonzalez-Zorn B, Vega Y, Chico-Calero I, Vazquez-Boland JA. A role for ActA in epithelial cell invasion by Listeria monocytogenes. Cell Microbiol 2001;3(12):853-64.
    274. Cabanes D, Dussurget O, Dehoux P, Cossart P. Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Mol Microbiol 2004;51(6):1601-14.
    275.Engelbrecht F, Dickneite C, Lampidis R, Gotz M, DasGupta U, Goebel W. Sequence comparison of the chromosomal regions encompassing the internalin C genes (inlC) of Listeria monocytogenes and L. ivanovii. Mol Gen Genet 1998;257(2):186-97.
    276. Gonzalez-Zorn B,Dominguez-Bernal G, Suarez M, Ripio MT, Vega Y, Novella S, Rodriguez A, Chico I, Tierrez A, Vazquez-Boland JA. SmcL, a novel membrane-damaging virulence
    factor in Listeria. Int J Med Microbiol 2000;290(4-5):369-74.
    277.Gonzalez-Zorn B,Dominguez-Bernal G, Suarez M, Ripio MT, Vega Y, Novella S, Vazquez-Boland JA. The smcL gene of Listeria ivanovii encodes a sphingomyelinase C that mediates bacterial escape from the phagocytic vacuole. Mol Microbiol 1999;33(3):510-23.
    278.Openshaw AE, Race PR, Monzo HJ, Vazquez-Boland JA, Banfield MJ. Crystal structure of SmcL, a bacterial neutral sphingomyelinase C from Listeria. J Biol Chem 2005;280(41):35011-7.
    279.Engelbrecht F, Dominguez-Bernal G, Hess J, Dickneite C, Greiffenberg L, Lampidis R, Raffelsbauer D, Daniels JJ, Kreft J, Kaufmann SH, Vazquez-Boland JA, Goebel W. A novel PrfA-regulated chromosomal locus, which is specific for Listeria ivanovii, encodes two small, secreted internalins and contributes to virulence in mice. Mol Microbiol 1998;30(2):405-17.
    280.Steinweg C, Kuenne CT, Billion A, Mraheil MA, Domann E, Ghai R, Barbuddhe SB,Karst U, Goesmann A, Puhler A, Weisshaar B, Wehland J, Lampidis R, Kreft J, Goebel W, Chakraborty T, Hain T. The complete genome sequence of L. seeligeri, a non-pathogenic member of the genus Listeria. J Bacteriol.
    281.Chico-Calero I, Suarez M, Gonzalez-Zorn B,Scortti M, Slaghuis J, Goebel W, Vazquez-Boland JA. Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc Natl Acad Sci U S A 2002;99(1):431-6.
    282.Tilney LG, Portnoy DA. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 1989;109(4 Pt 1):1597-608.
    283.Mounier J, Ryter A, Coquis-Rondon M, Sansonetti PJ. Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco-2. Infect Immun 1990;58(4):1048-58.
    284. Chakraborty T, Ebel F, Domann E, Niebuhr K, Gerstel B, Pistor S, Temm-Grove CJ, Jockusch BM, Reinhard M, Walter U, et al. A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells.Embo J 1995;14(7):1314-21.
    285.Niebuhr K, Ebel F, Frank R, Reinhard M, Domann E, Carl UD, Walter U, Gertler FB,Wehland J, Chakraborty T. A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. Embo J 1997;16(17):5433-44.
    286.Bitar AP, Cao M, Marquis H. The metalloprotease of Listeria monocytogenes is activated by intramolecular autocatalysis.J Bacteriol 2008;190(1):107-11.
    287.O'Neil HS, Forster BM, Roberts KL, Chambers AJ, Bitar AP, Marquis H. The propeptide of the metalloprotease of Listeria monocytogenes controls compartmentalization of the zymogen during intracellular infection. J Bacteriol 2009;191(11):3594-603.
    288.Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, Barthelemy M, Vergassola M, Nahori MA, Soubigou G, Regnault B,Coppee JY, Lecuit M, Johansson J, Cossart P. The Listeria transcriptional landscape from saprophytism to virulence. Nature 2009;459(7249):950-6.
    289. Freitag NE, Port GC, Miner MD.Listeria monocytogenes-from saprophyte to intracellular pathogen. Nat Rev Microbiol 2009;7(9):623-8.
    290.Johansson J, Mandin P, Renzoni A, Chiaruttini C, Springer M, Cossart P. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 2002;110(5):551-61.
    291. Mandin P, Fsihi H, Dussurget O, Vergassola M, Milohanic E, Toledo-Arana A, Lasa I, Johansson J, Cossart P. VirR, a response regulator critical for Listeria monocytogenes virulence. Mol Microbiol 2005;57(5):1367-80.
    292.Thedieck K, Hain T, Mohamed W, Tindall BJ, Nimtz M, Chakraborty T, Wehland J, Jansch L. The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on Listeria monocytogenes. Mol Microbiol 2006;62(5):1325-39.
    293.Bierne H, Garandeau C, Pucciarelli MG, Sabet C, Newton S, Garcia-del Portillo F, Cossart P, Charbit A. Sortase B,a new class of sortase in Listeria monocytogenes. J Bacteriol 2004;186(7):1972-82.
    294.Bierne H, Mazmanian SK, Trost M, Pucciarelli MG, Liu G, Dehoux P, Jansch L, Garcia-del Portillo F, Schneewind O, Cossart P. Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Mol Microbiol 2002;43(4):869-81.
    295.Borezee E, Pellegrini E, Beretti JL, Berche P. SvpA, a novel surface virulence-associated protein required for intracellular survival of Listeria monocytogenes.Microbiology 2001;147(Pt 11):2913-23.
    296. Cotter PD, Draper LA, Lawton EM, Daly KM, Groeger DS, Casey PG, Ross RP, Hill C. Listeriolysin S, a novel peptide haemolysin associated with a subset of lineage I Listeria monocytogenes.PLoS Pathog 2008;4(9):e1000144.
    297.Boerlin P, Rocourt J, Piffaretti JC. Taxonomy of the genus Listeria by using multilocus enzyme electrophoresis. Int J Syst Bacteriol 1991;41(1):59-64.
    298.Vaneechoutte M, Boerlin P, Tichy HV, Bannerman E, Jager B,Bille J. Comparison of PCR-based DNA fingerprinting techniques for the identification of Listeria species and their use for atypical Listeria isolates. Int J Syst Bacteriol 1998;48 Pt 1:127-39.
    299.Collins MD, Wallbanks S, Lane DJ, Shah J, Nietupski R, Smida J, Dorsch M, Stackebrandt E. Phylogenetic analysis of the genus Listeria based on reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol 1991;41(2):240-6.
    300. Graham TA, Golsteyn-Thomas EJ, Thomas JE, Gannon VP. Inter-and intraspecies comparison of the 16S-23S rRNA operon intergenic spacer regions of six Listeria spp. Int J Syst Bacteriol 1997;47(3):863-9.
    301.Sallen B,Rajoharison A, Desvarenne S, Quinn F, Mabilat C. Comparative analysis of 16S and 23S rRNA sequences of Listeria species. Int J Syst Bacteriol 1996;46(3):669-74.
    302.Bordenstein SR, Reznikoff WS.Mobile DNA in obligate intracellular bacteria. Nat Rev Microbiol 2005;3(9):688-99.
    303.Sorensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S.Studying plasmid horizontal transfer in situ:a critical review. Nat Rev Microbiol 2005;3(9):700-10.
    304. Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 2005;3(9):711-21.
    305.Frost LS, Leplae R, Summers AO, Toussaint A. Mobile genetic elements:the agents of open source evolution. Nat Rev Microbiol 2005;3(9):722-32.
    306.Hain T, Steinweg C, Chakraborty T. Comparative and functional genomics of Listeria spp. J Biotechnol 2006;126(1):37-51.
    307. Cai S, Wiedmann M. Characterization of the prfA virulence gene cluster insertion site in non-hemolytic Listeria spp.:probing the evolution of the Listeria virulence gene island. Curr Microbiol 2001;43(4):271-7.
    308.Johnson J, Jinneman K, Stelma G, Smith BG, Lye D, Messer J, Ulaszek J, Evsen L, Gendel S, Bennett RW, Swaminathan B, Pruckler J, Steigerwalt A, Kathariou S, Yildirim S, Volokhov D, Rasooly A, Chizhikov V, Wiedmann M, Fortes E, Duvall RE, Hitchins AD. Natural atypical Listeria innocua strains with Listeria monocytogenes pathogenicity island 1 genes. Appl Environ Microbiol 2004;70(7):4256-66.
    309. Volokhov D, George J, Anderson C, Duvall RE, Hitchins AD. Discovery of natural atypical nonhemolytic Listeria seeligeri isolates. Appl Environ Microbiol 2006;72(4):2439-48.
    310.Mead PS,'Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV. Food-related illness and death in the United States. Emerg Infect Dis 1999;5(5):607-25.
    311.Liu D, Ainsworth AJ, Austin FW, Lawrence ML. Use of PCR primers derived from a putative transcriptional regulator gene for species-specific determination of Listeria monocytogenes. Int J Food Microbiol 2004;91(3):297-304.
    312.Jiang L, Ke C, Xu J, Chen J, Chen X, Chen N, Shuai J, Fang W. Listeria monocytogenes mutants carrying Newcastle disease virus F gene fused to its act A and plcB:in vitro expression and immunogenicity in chickens. Acta Biochim Biophys Sin (Shanghai) 2007;39(1):57-66.
    313.Bubert A, Kuhn M, Goebel W, Kohler S. Structural and functional properties of the p60
    proteins from different Listeria species. J Bacteriol 1992;174(24):8166-71.
    14. Nakamura H, Hatanaka M, Ochi K, Nagao M, Ogasawara J, Hase A, Kitase T, Haruki K, Nishikawa Y. Listeria monocytogenes isolated from cold-smoked fish products in Osaka City, Japan. Int J Food Microbiol 2004;94(3):323-8.
    315.Jallewar PK, Kalorey DR, Kurkure NV, Pande VV, Barbuddhe SB.Genotypic characterization of Listeria spp. isolated from fresh water fish. Int J Food Microbiol 2007;114(1):120-3.
    316.Zhu X, Long F, Chen Y, Knochel S, She Q, Shi X. A putative ABC transporter is involved in negative regulation of biofilm formation by Listeria monocytogenes. Appl Environ Microbiol 2008;74(24):7675-83.
    317. Buchrieser C. Biodiversity of the species Listeria monocytogenes and the genus Listeria. Microbes Infect 2007;9(10):1147-55.
    318.曾凡伟,王培玉,郭仰霖.上杭县畜、禽李斯特氏杆菌携带状况调查.预防医学文献信息,
    2000,6(3):251.
    319.Ward TJ, Gorski L, Borucki MK, Mandrell RE, Hutchins J, Pupedis K. Intraspecific phylogeny and lineage group identification based on the prfA virulence gene cluster of Listeria monocytogenes. J Bacteriol 2004;186(15):4994-5002.
    320. Doumith M, Buchrieser C, Glaser P, Jacquet C, Martin P. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J Clin Microbiol 2004;42(8):3819-22.
    321.McLauchlin J. The identification of Listeria species. Int J Food Microbiol 1997;38(1):77-81.
    322.Buncic S, Avery SM. Relationship between variations in pathogenicity and lag phase at 37 degrees C of Listeria monocytogenes previously stored at 4 degrees C.Lett Appl Microbiol 1996;23(1):18-22.
    323.Norrung B, Andersen JK. Variations in virulence between different electrophoretic types of Listeria monocytogenes. Lett Appl Microbiol 2000;30(3):228-32.
    324. Gracieux P, Roche SM, Pardon P, Velge P. Hypovirulent Listeria monocytogenes strains are less frequently recovered than virulent strains on PALCAM and Rapid' L. mono media. Int J Food Microbiol 2003;83(2):133-45.
    325.Wang S, Duan H, Zhang W, Li JW. Analysis of bacterial foodborne disease outbreaks in China between 1994 and 2005.FEMS Immunol Med Microbiol 2007;51(1):8-13.
    326.Schonberg A, Teufel P, Weise E. Serovars of Listeria monocytogenes and Listeria innocua from food. Acta Microbiol Hung 1989;36(2-3):249-53.
    327. Gasanov U, Hughes D, Hansbro PM. Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes:a review. FEMS Microbiol Rev 2005;29(5):851-75.
    328.Gilmour MW, Graham M, Van Domselaar G, Tyler S, Kent H, Trout-Yakel KM, Larios O, Allen V, Lee B, Nadon C. High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics;11:120.
    329. Rocourt J, Jacquet C, Reilly A. Epidemiology of human listeriosis and seafoods. Int J Food Microbiol 2000;62(3):197-209.
    330.Brett MS, Short P, McLauchlin J. A small outbreak of listeriosis associated with smoked mussels. Int J Food Microbiol 1998;43(3):223-9.
    331.Ericsson H, Eklow A, Danielsson-Tham ML, Loncarevic S, Mentzing LO, Persson I, Unnerstad H, Tham W. An outbreak of listeriosis suspected to have been caused by rainbow trout. J Clin Microbiol 1997;35(11):2904-7.
    332. Miettinen MK, Siitonen A, Heiskanen P, Haajanen H, Bjorkroth KJ, Korkeala HJ. Molecular epidemiology of an outbreak of febrile gastroenteritis caused by Listeria monocytogenes in cold-smoked rainbow trout. J Clin Microbiol 1999;37(7):2358-60.
    333.Hunter PR, Gaston MA.Numerical index of the discriminatory ability of typing systems:an application of Simpson's index of diversity. J Clin Microbiol 1988;26(11):2465-6.
    334.Liu D. Listeria monocytogenes:comparative interpretation of mouse virulence assay. FEMS Microbiol Lett 2004;233(1):159-64.
    335.Cocolin L, Rantsiou K, Iacumin L, Cantoni C, Comi G. Direct identification in food samples of Listeria spp. and Listeria monocytogenes by molecular methods. Appl Environ Microbiol 2002;68(12):6273-82.
    336. Vitas AI, Garcia-Jalon VA. Occurrence of Listeria monocytogenes in fresh and processed foods in Navarra (Spain). Int J Food Microbiol 2004;90(3):349-56.
    337. Gombas DE, Chen Y, Clavero RS, Scott VN.Survey of Listeria monocytogenes in ready-to-eat foods. J Food Prot 2003;66(4):559-69.
    338.Inoue S, Nakama A, Arai Y, Kokubo Y, Maruyama T, Saito A, Yoshida T, Terao M, Yamamoto S, Kumagai S. Prevalence and contamination levels of Listeria monocytogenes in retail foods in Japan. Int J Food Microbiol 2000;59(1-2):73-7.
    339. Jemmi T, Pak SI, Salman MD. Prevalence and risk factors for contamination with Listeria monocytogenes of imported and exported meat and fish products in Switzerland,1992-2000. Prev Vet Med 2002;54(1):25-36.
    340.Akman D, Duran N, Digrak M. Prevalence of Listeria species in ice cream sold in the cities of Kahramanmaras and Adana. Turk J Med Sci 2004;34:257-262.
    341.MacGowan AP, Bowker K, McLauchlin J, Bennett PM, Reeves DS.The occurrence and seasonal changes in the isolation of Listeria spp. in shop bought food stuffs, human faeces, sewage and soil from urban sources. Int J Food Microbiol 1994;21(4):325-34.
    342. Sauders BD, Durak MZ, Fortes E, Windham K, Schukken Y, Lembo AJ, Jr., Akey B, Nightingale KK, Wiedmann M. Molecular characterization of Listeria monocytogenes from natural and urban environments. J Food Prot 2006;69(1):93-105.
    343.郭仰霖,王培玉,谢登煌,曾凡伟,郭大为,张远富,温远元,阙庆华,邓富玉,李玉
    珍.新发现致病性产H2S李斯特氏菌生物学特性研究.中国人兽共患病杂志,2001,17(6):53-55.
    344. Hong E, Doumith M, Duperrier S, Giovannacci I, Morvan A, Glaser P, Buchrieser C, Jacquet C, Martin P. Genetic diversity of Listeria monocytogenes recovered from infected persons and pork, seafood and dairy products on retail sale in France during 2000 and 2001.Int J Food Microbiol 2007;114(2):187-94.
    345.de Valk H, Jacquet C, Goulet V, Vaillant V, Perra A, Simon F, Desenclos JC, Martin P. Surveillance of listeria infections in Europe. Euro Surveill 2005;10(10):251-5.
    346. Chou CH, Silva JL, Wang C. Prevalence and typing of Listeria monocytogenes in raw catfish fillets. J Food Prot 2006;69(4):815-9.
    347. Chakraborty T, Ebel F, Wehland J, Dufrenne J, Notermans S.Naturally occurring virulence-attenuated isolates of Listeria monocytogenes capable of inducing long term protection against infection by virulent strains of homologous and heterologous serotypes. FEMS Immunol Med Microbiol 1994;10(1):1-9.
    348.Herd M, Kocks C. Gene fragments distinguishing an epidemic-associated strain from a virulent prototype strain of Listeria monocytogenes belong to a distinct functional subset of genes and partially cross-hybridize with other Listeria species. Infect Immun 2001;69(6):3972-9.
    349. Personnic N, Bruck S, Nahori MA, Toledo-Arana A, Nikitas G, Lecuit M, Dussurget O, Cossart P, Bierne H. The stress-induced virulence protein InIH controls interleukin-6 production during murine listeriosis. Infect Immun.
    350. Milillo SR, Wiedmann M. Contributions of six lineage-specific internalin-like genes to invasion efficiency of Listeria monocytogenes. Foodborne Pathog Dis 2009;6(1):57-70.
    351.Jaradat ZW, Bhunia AK. Adhesion, invasion, and translocation characteristics of Listeria monocytogenes serotypes in Caco-2 cell and mouse models. Appl Environ Microbiol 2003;69(6):3640-5.
    352.Rasmussen OF, Skouboe P, Dons L, Rossen L, Olsen JE. Listeria monocytogenes exists in at least three evolutionary lines:evidence from flagellin, invasive associated protein and listeriolysin O genes. Microbiology 1995;141(Pt 9):2053-61.
    353.Doumith M, Cazalet C, Simoes N, Frangeul L, Jacquet C, Kunst F, Martin P, Cossart P, Glaser P, Buchrieser C. New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays.Infect Immun 2004;72(2):1072-83.
    354.Roberts A, Nightingale K, Jeffers G, Fortes E, Kongo JM, Wiedmann M. Genetic and phenotypic characterization of Listeria monocytogenes lineage Ⅲ. Microbiology 2006;152(Pt 3):685-93.
    355.Ermolaeva S, Karpova T, Novella S, Wagner M, Scortti M, Tartakovskii I, Vazquez-Boland JA. A simple method for the differentiation of Listeria monocytogenes based on induction of lecithinase activity by charcoal. Int J Food Microbiol 2003;82(1):87-94.
    356.Lomonaco S, Decastelli L, Nucera D, Gallina S, Manila Bianchi D, Civera T. Listeria monocytogenes in Gorgonzola:subtypes, diversity and persistence over time. Int J Food Microbiol 2009;128(3):516-20.
    357.Lebrun M, Audurier A, Cossart P. Plasmid-borne cadmium resistance genes in Listeria monocytogenes are similar to cadA and cadC of Staphylococcus aureus and are induced by cadmium. J Bacteriol 1994;176(10):3040-8.
    358.Lebrun M, Loulergue J, Chaslus-Dancla E, Audurier A. Plasmids in Listeria monocytogenes in relation to cadmium resistance. Appl Environ Microbiol 1992;58(9):3183-6.
    359.Buncic S, Avery SM, Rocourt J, Dimitrijevic M. Can food-related environmental factors induce different behaviour in two key serovars,4b and 1/2a, of Listeria monocytogenes? Int J Food Microbiol 2001;65(3):201-12.
    360. Jiang LL, Xu JJ, Chen N, Shuai JB, Fang WH. Virulence phenotyping and molecular characterization of a low-pathogenicity isolate of Listeria monocytogenes from cow's milk. Acta Biochim Biophys Sin (Shanghai) 2006;38(4):262-70.
    361.Camilli A, Portnoy A, Youngman P. Insertional mutagenesis of Listeria monocytogenes with a novel Tn917 derivative that allows direct cloning of DNA flanking transposon insertions. J Bacteriol 1990;172(7):3738-44.
    362.Ragon M, Wirth T, Hollandt F, Lavenir R, Lecuit M, Le Monnier A, Brisse S. A new perspective on Listeria monocytogenes evolution. PLoS Pathog 2008;4(9):e1000146.
    363.Scortti M, Lacharme-Lora L, Wagner M, Chico-Calero I, Losito P, Vazquez-Boland JA. Coexpression of virulence and fosfomycin susceptibility in Listeria:molecular basis of an antimicrobial in vitro-in vivo paradox. Nat Med 2006;12(5):515-7.
    364. den Bakker HC, Didelot X, Fortes ED, Nightingale KK, Wiedmann M. Lineage specific recombination rates and microevolution in Listeria monocytogenes. BMC Evol Biol 2008;8:277.
    365.Alonso-Hernando A, Alonso-Calleja C, Capita R. Comparative analysis of acid resistance in Listeria monocytogenes and Salmonella enterica strains before and after exposure to poultry decontaminants. Role of the glutamate decarboxylase (GAD) system. Food Microbiol 2009;26(8):905-9.
    366. Barcelona-Andres B, Marina A, Rubio V. Gene structure, organization, expression, and potential regulatory mechanisms of arginine catabolism in Enterococcus faecalis. J Bacteriol 2002;184(22):6289-300.
    367. Bourdineaud JP, Heierli D, Gamper M, Verhoogt HJ, Driessen AJ, Konings WN, Lazdunski C, Haas D. Characterization of the arcD arginine:ornithine exchanger of Pseudomonas aeruginosa. Localization in the cytoplasmic membrane and a topological model. J Biol Chem 1993;268(8):5417-24.
    368.Degnan BA, Fontaine MC, Doebereiner AH, Lee JJ, Mastroeni P, Dougan G, Goodacre JA, Kehoe MA. Characterization of an isogenic mutant of Streptococcus pyogenes Manfredo lacking the ability to make streptococcal acid glycoprotein. Infect Immun 2000;68(5):2441-8.
    369.Gruening P, Fulde M, Valentin-Weigand P, Goethe R. Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. J Bacteriol 2006;188(2):361-9.
    370. Dong Y, Chen YY, Snyder JA, Burne RA. Isolation and molecular analysis of the gene cluster for the arginine deiminase system from Streptococcus gordonii DL1.Appl Environ Microbiol 2002;68(11):5549-53.
    371.Thompkins K, Chattopadhyay B, Xiao Y, Henk MC, Doerrler WT. Temperature sensitivity and cell division defects in an Escherichia coli strain with mutations in yghB and yqjA, encoding related and conserved inner membrane proteins. J Bacteriol 2008;190(13):4489-500.
    372.Cunin R, Glansdorff N, Pierard A, Stalon V.Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 1986;50(3):314-52.
    373.Misawa S, Aoshima M, Takaku H, Matsumoto M, Hayashi H. High-level expression of Mycoplasma arginine deiminase in Escherichia coli and its efficient renaturation as an anti-tumor enzyme. J Biotechnol 1994;36(2):145-55.
    374.Boyde TR, Rahmatullah M. Optimization of conditions for the colorimetric determination of citrulline, using diacetyl monoxime. Anal Biochem 1980;107(2):424-31.
    375.Ryan S, Begley M, Gahan CG, Hill C. Molecular characterization of the arginine deiminase system in Listeria monocytogenes:regulation and role in acid tolerance. Environ Microbiol 2009;11(2):432-45.
    376.Lucas PM, Blancato VS, Claisse O, Magni C, Lolkema JS, Lonvaud-Funel A. Agmatine deiminase pathway genes in Lactobacillus brevis are linked to the tyrosine decarboxylation operon in a putative acid resistance locus. Microbiology 2007;153(Pt 7):2221-30.
    377. Naumoff DG, Xu Y, Glansdorff N, Labedan B.Retrieving sequences of enzymes experimentally characterized but erroneously annotated:the case of the putrescine carbamoyltransferase. BMC Genomics 2004;5(1):52.
    378.Kreft J, Vazquez-Boland JA. Regulation of virulence genes in Listeria. Int J Med Microbiol 2001;291(2):145-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700