GNAS1 T393C单核苷酸多态性与肺癌生存及放化疗副反应相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的分析GNAS1T393C多态性与晚期肺癌患者总生存率的相关性。
     方法2010年3月-2012年3月94例病理证实的Ⅲ-Ⅳ期接受放疗或化疗的肺癌患者。提取患者全血基因组DNA,应用PCR扩增目的基因片段,sanger双脱氧测序方法分析GNAS1T393C位点的单核酸多态性基因型。应用SPSS12.0软件Kanlan-Meier生存分析临床因素及基因型与晚期肺癌患者生存的相关性。
     结果本组研究94例病例中位年龄为58.6岁,随访至2012年3月,中位生存期为14个月。1年、2年总生存率分别为61%和35%。单因素分析显示并发基础疾病的患者影响生存期下降,P=0.03;GNAS1T393C三种基因型TT,TC和CC间生存率有显著差异,P<0.01;携带等位基因C的患者生存率明显低于等位基因T携带者,P<0.01。
     结论GNAS1T393C多态性与肺癌总生存率相关,携带等位基因C的肺癌患者预后差。可能成为晚期肺癌生存的预测因素,需要扩大样本量进行更深入的研究。
     目的分析GNAS1T393C多态性与吉西他滨、培美曲塞、紫杉类药物化疗后血液毒性和消化道毒性的相关性。
     方法2010年3月-2012年3月在我院接受吉西他滨、培美曲塞、紫杉类药物化疗的肿瘤患者各54例、36例、64例。应用PCR扩增目的基因片段,sanger双脱氧测序方法分析GNAS1T393C位点单核酸多态性的基因型。研究终点为基因型与化疗药物毒性的相关性。临床因素及基因型与化疗药物毒性的相关性采用SPSS12.0软件卡方检验或Fish精确检验。
     结果单因素分析显示不吸烟患者接受吉西他滨治疗后容易发生血液毒性,P=0.041; GNAS1T393C多态性与吉西他滨药物毒性无明显相关性。培美曲塞化疗后副反应发生率相对较低,而且多种临床因素均不影响其副反应的发生率。不同GNAS1T393C基因型与紫杉类药物血液毒性显著相关,P=0.023;等位基因T患者接受紫杉类药物化疗后更容易发生骨髓抑制,P=0.017。而且女性接受紫杉类化疗后容易发生骨髓抑制,P=0.008。
     结论GNAS1T393C等位基因T携带者与紫杉类化疗药物的血液毒性相关,可能成为其药物毒性的预测因素,需要扩大样本量进行更深入的研究。
     目的分析GNAS1T393C多态性与肺癌放疗疗效、血液毒性、放射性食管炎和放射性肺炎的相关性。
     方法2010年3月-2012年3月经病理证实的Ⅲ-Ⅳ期接受放疗的肺癌患者67例。应用PCR扩增目的基因片段,sanger双脱氧测序方法分析GNAS1T393C位点单核酸多态性的基因型。应用SPSS12.0软件卡方检验或Fish精确检验分析临床因素及基因型与肺癌放疗疗效、血液毒性、放射性食管炎和放射性肺炎的相关性。
     结果本组研究病例中位年龄为61岁。单因素分析显示同时使用化疗可以增加肺癌放疗疗效,P=0.045,但是相应的骨髓抑制发生率增加,P=0.004。肺鳞癌患者更容易发生放射性肺炎,P=0.015;GNAS1T393C等位基因T携带者发生放射性肺炎的比例明显高于等位基因C携带者,P=0.035。
     结论GNAS1T393C等位基因T与放射性肺炎相关,可能成为的其预测因素,需要扩大样本量进行更深入的研究。
     目的比较GNAS1T393C不同基因型对恶性肿瘤患者生存率的影响,为恶性肿瘤预后评估提供生物分子标记。
     方法系统检索MEDLINE、EMBASE.生物医学文献数据库(CBMdisc)、ASCO论文集、EMBASE、COchrane图书管等数据库,收集国内外已发表和未发表的GNAS1T393C多态性与肿瘤预后相关性文献,无语种限制。纳入符合要求的文献,提取不同基因型患者生存资料,应用Revman4.2软件进行meta分析GNAS1T393C不同基因型与恶性肿瘤患者生存率的相关性。
     结果纳入符合条件的文献12篇,总例数为2343例,其中TT型526例(22.5%),TC型1128例(48.1%),CC型689例(29.4%)。Meta分析结果显示TT基因型恶性肿瘤患者的五年生存率显著高于CC基因型患者(P=0.0005),合并比值比(OR)及其95%可信区间(95%CI)为1.53(1.21,1.95);而且TT基因型恶性肿瘤患者的五年生存率也显著高于TC基因型患者(P=0.01),合并比值比(OR)及其95%可信区间(95%CI)为1.38(1.08,1.77);但是TC与CC基因型恶性肿瘤患者五年生存率间的差异不具有统计学意义(P=0.88),合并比值比(OR)及其95%可信区间(95%CI)为1.02(0.82,1.26)。
     结论GNAS1T393C多态性与多种恶性肿瘤生存具有相关性,CC基因型对于绝大多数肿瘤是预后不好的标记,上述结果需要进一步大样本验证研究。
Objective To examine the possible relationship between SNP of GNAS1T393C and outcomes of advanced lung cancer.
     Methods and Materials Between March2010and March2012,genomic DNA was extracted from whole blood of94advanced lung cancer patients confirmed by pathology in this study. Allelic discrimination of GNAS1was performed by quantitative real-time polymerase chain reaction. Genetyping was correlated with survival of advanced lung cancer. The Kaplan-Meier method and log-rank test were used to assess the prognostic significance of the clinical factors and genotypes for survival. Cox forward-stepwise regression model was chosen to assess genetic risk factors in multivariate analyses.
     Results Median age was58.6years(rang,31to80years), By the last follow-up time in March,2012, overall median survival was14months; the1-,2-year ovrall survival were61%and35%. At univriate analysis, the overall survival received benefit from TT genetype of GNAS1T393C(P=0.001).
     Conclusions Genetic polymorphism in the GNAS1T393C was related to outcomes of advaced lung cancer, which may be a prognostic factor. The results needed large sample research to identify.
     Objective To examine the possible relationship between SNP of GNAS1T393C and side effects of gemcitabine, pemetrexed and paclitaxel.
     Methods and Materials Between March2010and March2012,genomic DNA was extracted from whole blood of54,36,64patients underwent chemotherapy of gemcitabine, pemetrexed and paclitaxel. respectively. Allelic discrimination of GNAS1was performed by quantitative real-time polymerase chain reaction. Genetyping was correlated with side effects of gemcitabine, pemetrexed and paclitaxel. The endpoint was grade>3chemothrapy-induced hematological and digestive toxicity. The Chi-square criterion method and log-rank test were used to assess the significance of the clinical factors and genotypes for side effects of chemothrapy.
     Results Median age was60years(rang26to75years). At univriate analysis, non-smokers had myelosuppression after receiving gemcitabine (P=0.041); The female had hematotoxicity after receiving paclitaxel(P=0.008); Allele T carrier in GNAS1T393C gene had hematotosicity after recerving paclitaxel (P=0.017).
     Conclusions Genetic polymorphism in the GNAS1T393C was related to hematotosicity of paclitaxel. The results needed large sample research to identify.
     Objective To examine the possible relationship between SNP of GNAS1T393C and curative effect of radiotherapy and radiation-induced hematological toxicity, esophagitis and pneumonia.
     Methods and Materials Between March2010and March2012,genomic DNA was extracted from whole blood of65advaced lung cancer patients underwent radiotherapy. Allelic discrimination of GNAS1was performed by quantitative real-time polymerase chain reaction. Genetyping was correlated with curative effect of radiotherapy and radiation-induced hematological toxicity, esophagitis and pneumonia. The endpoint was grade>3hematological toxicity and grade>2radiation-induced esophagitis and pneumonia. The Chi-square criterion method and log-rank test were used to assess the significance of the clinical factors and genotypes for curative effect of radiotherapy and radiation-induced hematological toxicity, esophagitis and pneumonia.
     Results Median age was61years(rang35to80years). At univriate analysis, chemotherapy could augment the efficacy of radiotherapy in lung cancer (P=0.045); But the hematotoxicity increased(P=0.004); Squanae type and allele T carrier in GNAS1T393C gene occure radio-induced lung injury more(P-0.015,P=0.035).
     Conclusions Genetic polymorphism in the GNAS1T393C was related to radio-induced lung injury, which may be a prognostic factor. The results needed large sample research to identify.
     Objective To evaluate the relationship between SNP of GNAS1T393C and outcomes of cancer.
     Methods and Materials We searched The Cochrane Library, MEDL1NE, EMBASE, CBM. Using a defined search strategy, randomized controlled trails and controlled clinical trials of comparing were identified. Meta-analysis was done using the Cochrane collaboration's Revman4.2.
     Results Twelve controlled clinical articles were included. Five hundred and twelvety-six (22.5%) patients displayed a TT genotype,1128(48.1%) for a CT genotype and689(29.4%) for a CC genotype.The meta-analysis showed that:the five-years survival rate of TT genotype group was significantly higher than CC genotype group [OR=1.53,95%CI (1.21,1.95), P=0.005], which was also higher than TT genotype group[OR=1.38,95%C1(1.08,1.77), P=0.01]. But the difference of survival rate between CT genotype group and CC genotype group was not significant[OR=1.02,95%C1(0.82,1.26), P=0.88].
     Conclusions Genetic polymorphism in the GNAS1T393C was related to outcomes of advaced lung cancer. CC genotype may be a prognostic factor. The results needed large sample research to identify.
引文
1. Mathiaux, J., et al., Role of DNA repair gene polymorphisms in the efficiency of platinum-based adjuvant chemotherapy for non-small cell lung cancer. Mol Diagn Ther,2011. 15(3):p.159-66.
    2. Feng, J., et al., XPA A23G polymorphism is associated with the elevated response to platinum-based chemotherapy in advanced non-small cell lung cancer. Acta Biochim Biophys Sin (Shanghai),2009.41(5):p.429-35.
    3. Bartolucci, R., et al., XPG mRNA expression levels modulate prognosis in resected non-small-cell lung cancer in conjunction with BRCA1 and ERCC1 expression. Clin Lung Cancer,2009.10(1):p.47-52.
    4. Tufman, A. and R.M. Huber, Biological markers in lung cancer:A clinician's perspective. Cancer Biomark,2010.6(3-4):p.123-35.
    5. Colic, M., et al.,8-Chloro-cAMP modulates apoptosis of thymocytes and thymocyte hybridoma. Transplant Proc,2001.33(3):p.2347-9.
    6. Diaz, A., M. Danon, and J. Crawford, McCune-Albright syndrome and disorders due to activating mutations of GNAS1. J Pediatr Endocrinol Metab,2007.20(8):p.853-80.
    7. Aldred, M.A. and R.C. Trembath, Activating and inactivating mutations in the human GNAS1 gene. Hum Mutat,2000.16(3):p.183-9.
    8. Bastepe, M. and H. Juppner, Identification and characterization of two new, highly polymorphic loci adjacent to GNAS1 on chromosome 20q13.3. Mol Cell Probes,2000.14(4):p.261-4.
    9. Yasuda, K., et al., T393C polymorphism of GNAS1 associated with the autonomic nervous system in young, healthy Japanese subjects. Clin Exp Pharmacol Physiol,2004.31(9):p. 597-601.
    10. Mantovani, G., et al., Analysis of GNAS1 and PRKAR1A gene mutations in human cardiac myxomas not associated with multiple endocrine disorders. J Endocrinol Invest,2009.32(6):p. 501-4.
    11. Rickard, S.J. and L.C. Wilson, Analysis of GNAS1 and overlapping transcripts identifies the parental origin of mutations in patients with sporadic Albright hereditary osteodystrophy and reveals a model system in which to observe the effects of splicing mutations on translated and untranslated messenger RNA. Am J Hum Genet,2003.72(4):p.961-74.
    12. Parkin, D.M., et al., Global cancer statistics,2002. CA Cancer J Clin,2005.55(2):p.74-108.
    13. Sasco, A.J., M.B. Secretan, and K. Straif, Tobacco smoking and cancer:a brief review of recent epidemiological evidence. Lung Cancer,2004.45 Suppl 2:p. S3-9.
    14. Lababede, O., M. Meziane, and T. Rice, Seventh edition of the cancer staging manual and stage grouping of lung cancer:quick reference chart and diagrams. Chest,2011.139(1):p.183-9.
    15. Frey, U.H., et al., The T393C polymorphism of the G alpha s gene (GNAS1) is a novel prognostic marker in bladder cancer. Cancer Epidemiol Biomarkers Prev,2005.14(4):p.871-7.
    16. Idziaszczyk, S., et al., Analysis of the frequency of GNAS1 codon 201 mutations in advanced colorectal cancer. Cancer Genet Cytogenet,2010.202(1):p.67-9.
    17. Weinstein, L.S., et al., Minireview:GNAS1:normal and abnormal functions. Endocrinology, 2004.145(12):p.5459-64.
    18. Klenke, S., W. Siffert, and U.H. Frey, A novel aspect of GNAS1 imprinting:higher maternal expression of Galphas in human lymphoblasts, peripheral blood mononuclear cells, mammary adipose tissue, and heart. Mol Cell Endocrinol,2011.341(1-2):p.63-70.
    19. Wroblewski, J.M. and J.R. Yannelli, Identification of HLA-CW3, GNAS1 and IMPA as cytotoxic T-lymphocyte (CTL) target antigens using an allogeneic mixed lymphocyte tumor cell culture (MLTC) system and subsequent cDNA library screening. Cancer Biother Radiopharm, 2007.22(2):p.206-22.
    20. Lopez De Jesus, M., et al., Cyclic AMP-dependent and Epac-mediated activation of R-Ras by G protein-coupled receptors leads to phospholipase D stimulation. J Biol Chem,2006.281(31):p. 21837-47.
    21. Kae, H., et al., Cyclic AMP signalling in Dictyostelium:G-proteins activate separate Ras pathways using specific RasGEFs. EMBO Rep,2007.8(5):p.477-82.
    22. Shinohara, N., et al., The significance of Ras guanine nucleotide exchange factor, son of sevenless protein, in renal cell carcinoma cell lines. J Urol,1997.158(3 Pt 1):p.908-11.
    23. Eisenhardt, A., et al., Lack of association of the genotype in the GNAS1 Fok 1 polymorphism and prostate cancer. Urol Int,2011.87(1):p.80-6.
    24. Wang, W., et al., Cell signaling through the protein kinases cAMP-dependent protein kinase, protein kinase Cepsilon, and RAF-1 regulates amphotropic murine leukemia virus envelope protein-induced syncytium formation. J Biol Chem,2005.280(17):p.16772-83.
    25. Piiper, A., et al., Pertussis toxin inhibits cholecystokinin-and epidermal growth factor-induced mitogen-activated protein kinase activation by disinhibition of the cAMP signaling pathway and inhibition of c-Raf-1. Mol Pharmacol,2000.58(3):p.608-13.
    26. Skretting, G., et al., Expression of the V264M TFPI mutant in endothelial cell cultures may involve mRNA stability. Thromb Res,2009.123(6):p.851-5.
    27. Weiss, U., et al., Neuroendocrine secretory protein 55 (NESP55):alternative splicing onto transcripts of the GNAS1 gene and posttranslational processing of a maternally expressed protein. Neuroendocrinology,2000.71(3):p.177-86.
    28. Eijkelkamp, N., et al., Low nociceptor GRK.2 prolongs prostaglandin E2 hyperalgesia via biased cAMP signaling to Epac/Rapl, protein kinase Cepsilon, and MEK/ERK. J Neurosci, 2010.30(38):p.12806-15.
    29. Dumaz, N. and R. Marais, Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft fur Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels. FEBS J,2005.272(14):p.3491-504.
    30. Larsen, H., et al., Evaluation of the optimal duration of chemotherapy in phase Ⅱ trials for inoperable non-small-cell lung cancer (NSCLC). Ann Oncol,1995.6(10):p.993-7.
    31. Marino, P., et al., Chemotherapy vs supportive care in advanced non-small-cell lung cancer. Results of a meta-analysis of the literature. Chest,1994.106(3):p.861-5.
    32. Albain, K.S., et al., Survival determinants in extensive-stage non-small-cell lung cancer:the Southwest Oncology Group experience. J Clin Oncol,1991.9(9):p.1618-26.
    33. Gemcitabine shows promise as combination agent in NSCLC. Oncology (Williston Park),1996. 10(9):p.1311.
    34. Ratanatharathorn, V., et al., Paclitaxel and carboplatin in combination in the treatment of advanced non-small-cell lung cancer (NSCLC):a preliminary study. J Med Assoc Thai,1998. 81(10):p.763-71.
    35. Bonomi, P., et al., Comparison of survival and quality of life in advanced non-small-cell lung cancer patients treated with two dose levels of paclitaxel combined with cisplatin versus etoposide with cisplatin:results of an Eastern Cooperative Oncology Group trial. J Clin Oncol, 2000.18(3):p.623-31.
    36. Boeckmann, L., et al., Modulation of the efficacy of temozolomide and dacarbazine melanoma treatment by DNA-repair factors in vivo and in vitro. Int J Clin Pharmacol Ther,2009.47(1):p. 33-5.
    37. Middleton, M.R. and G.P. Margison, Improvement of chemotherapy efficacy by inactivation of a DNA-repair pathway. Lancet Oncol,2003.4(1):p.37-44.
    38. Majsterek, I., et al., Does the bcr/abl-mediated increase in the efficacy of DNA repair play a role in the drug resistance of cancer cells? Cell Biol Int,2002.26(4):p.363-70.
    39. Chen,Z.,et al.,[Anti-tumor efficacy of chloroethyl-3-sarcosinamide-1-nitrosourea in a human lung cancer xenograft model with DNA repair gene expressions.]. Zhongguo Fei Ai Za Zhi, 2000.3(5):p.359-362.
    40. Iranzo, V., et al., Chemotherapy-induced neutropenia does not correlate with DNA repair gene polymorphisms and treatment efficacy in advanced non-small-cell lung cancer patients. Clin Lung Cancer,2011.12(4):p.224-30.
    41. Buesa, J.M., et al., Phase Ⅰ clinical trial of fixed-dose rate infusional gemcitabine and dacarbazine in the treatment of advanced soft tissue sarcoma, with assessment of gemcitabine triphosphate accumulation. Cancer,2004.101(10):p.2261-9.
    42. Tonato, M., A.M. Mosconi, and C. Martin, Safety profile of gemcitabine. Anticancer Drugs, 1995.6 Suppl6:p.27-32.
    43. Curtin, NJ. and A.N. Hughes, Pemetrexed disodium, a novel antifolate with multiple targets. Lancet Oncol,2001.2(5):p.298-306.
    44. Hajek, R., J. Vorlicek, and M. Slavik, Paclitaxel (Taxol):a review of its antitumor activity in clinical studies Minireview. Neoplasma,1996.43(3):p.141-54.
    45. Gottesman, M.M., et al., Genetic analysis of the multidrug transporter. Annu Rev Genet,1995. 29:p.607-49.
    46. Tsuruo, T., et al., Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res,1981. 41(5):p.1967-72.
    47. Hoffmeyer, S., et al., Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A,2000.97(7):p.3473-8.
    48. Tanabe, M., et al., Expression of P-glycoprotein in human placenta:relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J Pharmacol Exp Ther,2001.297(3): p.1137-43.
    49. Kurata, Y., et al., Role of human MDR1 gene polymorphism in bioavailability and interaction of digoxin, a substrate of P-glycoprotein. Clin Pharmacol Ther,2002.72(2):p.209-19.
    50. Jiko, M., et al., Pharmacokinetics and pharmacodynamics of paclitaxel with carboplatin or gemcitabine, and effects of CYP3A5 and MDR1 polymorphisms in patients with urogenital cancers. Int J Clin Oncol,2007.12(4):p.284-90.
    51. Sugimoto, Y., et al., Breast cancer resistance protein:molecular target for anticancer drug resistance and pharmacokinetics/pharmacodynamics. Cancer Sci,2005.96(8):p.457-65.
    52. de Jong, F.A., et al., ABCG2 pharmacogenetics:ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res.2004.10(17):p.5889-94.
    53. Kasuya, K., et al., Prediction of a Side Effect and Efficacy of Adjuvant Chemotherapy with Gemcitabine for Post Operative Patient of Pancreatic Cancer by a Genetic Polymorphism Analysis. Hepatogastroenterology,2011.59(117).
    54. Hogle, W.P., The state of the art in radiation therapy. Semin Oncol Nurs,2006.22(4):p.212-20.
    55. Barbera, L., et al., Estimating the benefit and cost of radiotherapy for lung cancer. Int J Technol Assess Health Care,2004.20(4):p.545-51.
    56. Kozin, S.V., et al., Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res,2010.70(14):p.5679-85.
    57. Das, U.N., Radiation resistance, invasiveness and metastasis are inflammatory events that could be suppressed by lipoxin A4. Prostaglandins Leukot Essent Fatty Acids,2012.86(1-2):p.3-11.
    58. Wang, J., et al., Upregulation and spatial shift in the localization of the mannose 6-phosphate/insulin-like growth factor Ⅱ receptor during radiation enteropathy development in the rat. Radiother Oncol,1999.50(2):p.205-13.
    59. Bentzen, S.M., Preventing or reducing late side effects of radiation therapy:radiobiology meets molecular pathology. Nat Rev Cancer,2006.6(9):p.702-13.
    60. Moskalev, A., Radiation-induced life span alteration of Drosophila lines with genotype differences. Biogerontology,2007.8(5):p.499-504.
    61. Hayashi, T., et al., Radiation-induced apoptosis of stem/progenitor cells in human umbilical cord blood is associated with alterations in reactive oxygen and intracellular pH. Mutat Res, 2004.556(1-2):p.83-91.
    62. Biaglow, J.E., et al., Radiation response of cells during altered protein thiol redox. Radiat Res, 2003.159(4):p.484-94.
    63. Morales, A., et al., Oxidative damage of mitochondrial and nuclear DNA induced by ionizing radiation in human hepatoblastoma cells. Int J Radiat Oncol Biol Phys,1998.42(1):p.191-203.
    64. Li, L., M. Story, and R.J. Legerski, Cellular responses to ionizing radiation damage. Int J Radiat Oncol Biol Phys,2001.49(4):p.1157-62.
    65. Rupnow, B.A., et al., Direct evidence that apoptosis enhances tumor responses to fractionated radiotherapy. Cancer Res,1998.58(9):p.1779-84.
    66. Lee, J.C., et al., Dietary flaxseed prevents radiation-induced oxidative lung damage, inflammation and fibrosis in a mouse model of thoracic radiation injury. Cancer Biol Ther,2009. 8(1):p.47-53.
    67. Vagane, R., et al., Radiological and functional assessment of radiation-induced pulmonary damage following breast irradiation. Acta Oncol.2008.47(2):p.248-54.
    68. Jaal, J. and W. Dorr, Radiation induced late damage to the barrier function of small blood vessels in mouse bladder. J Urol.2006.176(6 Pt 1):p.2696-700.
    69. von Zallinger, C. and K. Tempel, [Chronic damage in domestic animals after ionizing radiation (review)]. Berl Munch Tierarztl Wochenschr.1998.111(11-12):p.457-63.
    70. Jeggo, P.A., A.M. Carr, and A.R. Lehmann, Cloning human DNA repair genes. Int J Radiat Biol, 1994.66(5):p.573-7.
    71. Li, Z., et al., The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. Cell,1995.83(7):p.1079-89.
    72. Savitsky, K., et al., The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum Mol Genet,1995.4(11):p.2025-32.
    73. Damaraju, S., et al., Association of DNA repair and steroid metabolism gene polymorphisms with clinical late toxicity in patients treated with confonnal radiotherapy for prostate cancer. Clin Cancer Res,2006.12(8):p.2545-54.
    74. Isomura, M., et al.,1L12RB2 and ABCA1 genes are associated with susceptibility to radiation dermatitis. Clin Cancer Res,2008.14(20):p.6683-9.
    75. Giotopoulos, G., et al., The late radiotherapy normal tissue injury phenotypes of telangiectasia, fibrosis and atrophy in breast cancer patients have distinct genotype-dependent causes. Br J Cancer,2007.96(6):p.1001-7.
    76. Yang, L., et al.. Estimation and projection of the national profile of cancer mortality in China: 1991-2005. Br J Cancer,2004.90(11):p.2157-66.
    77. Alakus, H., et al., Association of the GNAS1 T393C polymorphism with tumor stage and survival in gastric cancer. World J Gastroenterol,2009.15(48):p.6061-7.
    78. Schmitz, K.J., et al., GNAS1 T393C polymorphism is associated with clinical course in patients with intrahepatic cholangiocarcinoma. Neoplasia,2007.9(2):p.159-65.
    79. Lehnerdt, G.F., et al., The GNAS1 T393C polymorphism predicts survival in patients with advanced squamous cell carcinoma of the larynx. Laryngoscope,2008.118(12):p.2172-6.
    80. Frey, U.H., et al., The GNAS1 T393C polymorphism is associated with disease progression and survival in chronic lymphocytic leukemia. Clin Cancer Res,2006.12(19):p.5686-92.
    81. Vashist, Y.K., et al., The GNAS1 T393C single nucleotide polymorphism predicts the natural postoperative course of complete resected esophageal cancer. Cell Oncol (Dordr),2011.34(4): p.281-8.
    82. Frey, U.H., et al., The GNAS1 T393C polymorphism predicts survival in patients with clear cell renal cell carcinoma. Clin Cancer Res,2006.12(3 Pt 1):p.759-63.
    83. Frey, U.H., et al., GNAS1 T393C polymorphism and survival in patients with sporadic colorectal cancer. Clin Cancer Res,2005.11(14):p.5071-7.
    84. Otterbach, F., et al., The T393C polymorphism in the gene GNAS1 of G protein is associated with survival of patients with invasive breast carcinoma. Breast Cancer Res Treat,2007.105(3): p.311-7.
    85. Lehnerdt, G.F., et al., Overall and relapse-free survival in oropharyngeal and hypopharyngeal squamous cell carcinoma are associated with genotypes of T393C polymorphism of the GNAS1 gene. Clin Cancer Res,2008.14(6):p.1753-8.
    86. Kaderi, M.A., et al., The GNAS1 T393C polymorphism and lack of clinical prognostic value in chronic lymphocytic leukemia. Leuk Res,2008.32(6):p.984-7.
    87. Frey, U.H., et al., GNAS1 T393C polymorphism and disease progression in patients with malignant melanoma. Eur J Med Res,2010.15(10):p.422-7.
    88. Hensing, T.A., Clinical evaluation and staging of patients who have lung cancer. Hematol Oncol Clin North Am,2005.19(2):p.219-35, v.
    89. Schreiber, G. and D.C. McCrory, Performance characteristics of different modalities for diagnosis of suspected lung cancer:summary of published evidence. Chest,2003.123(1 Suppl): p.115S-128S.
    1. Bodmer, W.F., et al., Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature,1987.328(6131):p.614-6.
    2. Cannon-Albright, L.A., et al., Assignment of a locus for familial melanoma, MLM, to chromosome 9p13-p22. Science,1992.258(5085):p.1148-52.
    3. Wooster. R., et al., Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q 12-13. Science,1994.265(5181):p.2088-90.
    4. Ponder, B.A., Cancer genetics. Nature,2001.411(6835):p.336-41.
    5. Botstein, D. and N. Risch, Discovering genotypes underlying human phenotypes:past successes for mendelian disease, future approaches for complex disease. Nat Genet,2003.33 Suppl:p.228-37.
    6. Collins, F.S., M.S. Guyer, and A. Charkravarti, Variations on a theme:cataloging human DNA sequence variation. Science,1997.278(5343):p.1580-1.
    7. Risch, N. and K. Merikangas, The future of genetic studies of complex human diseases. Science, 1996.273(5281):p.1516-7.
    8. Pritchard, J.K. and N.J. Cox, The allelic architecture of human disease genes:common disease-common variant...or not? Hum Mol Genet,2002.11(20):p.2417-23.
    9. Reich, D.E. and E.S. Lander, On the allelic spectrum of human disease. Trends Genet,2001. 17(9):p.502-10.
    10. Kruglyak, L, and D.A. Nickerson, Variation is the spice of life. Nat Genet,2001.27(3):p. 234-6.
    11. Hinds, D.A., et al., Whole-genome patterns of common DNA variation in three human populations. Science,2005.307(5712):p.1072-9.
    12. Conne, B., A. Stutz, and J.D. Vassalli, The 3' untranslated region of messenger RNA:A molecular 'hotspot' for pathology? Nat Med,2000.6(6):p.637-41.
    13. Duan, J., et al., Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet,2003.12(3):p.205-16.
    14. Hoogendoorn, B., et al., Functional analysis of human promoter polymorphisms. Hum Mol Genet,2003.12(18):p.2249-54.
    15. Pagani, F. and F.E. Baralle, Genomic variants in exons and introns:identifying the splicing spoilers. Nat Rev Genet,2004.5(5):p.389-96.
    16. Bond, G.L., W. Hu, and A. Levine, A single nucleotide polymorphism in the MDM2 gene:from a molecular and cellular explanation to clinical effect. Cancer Res,2005.65(13):p.5481-4.
    17. Gram, S.F., et al., Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type Ⅰ alpha 1 gene. Nat Genet,1996.14(2):p.203-5.
    18. Siepel, A., et al., Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res,2005.15(8):p.1034-50.
    19. Risch, N.J., Searching for genetic determinants in the new millennium. Nature,2000. 405(6788):p.847-56.
    20. Sachidanandam, R., et al., A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature,2001.409(6822):p.928-33.
    21. Venter, J.C., et al., The sequence of the human genome. Science,2001.291(5507):p.1304-51.
    22. Daly, M.J., et al., High-resolution haplotype structure in the human genome. Nat Genet,2001. 29(2):p.229-32.
    23. Patil, N., et al., Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science,2001.294(5547):p.1719-23.
    24. Carlson, C.S., et al., Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet,2004.74(1):p.106-20.
    25. Gabriel, S.B., et al., The structure of haplotype blocks in the human genome. Science,2002. 296(5576):p.2225-9.
    26. Johnson, G.C., et al., Haplotype tagging for the identification of common disease genes. Nat Genet,2001.29(2):p.233-7.
    27. Ardlie, K.G., L. Kruglyak, and M. Seielstad, Patterns of linkage disequilibrium in the human genome. Nat Rev Genet,2002.3(4):p.299-309.
    28. Clayton, D. and P.M. McKeigue, Epidemiological methods for studying genes and environmental factors in complex diseases. Lancet,2001.358(9290):p.1356-60.
    29. Collins, F.S., et al., A vision for the future of genomics research. Nature,2003.422(6934):p. 835-47.
    30. Chapman, J.M., et al., Detecting disease associations due to linkage disequilibrium using haplotype tags:a class of tests and the determinants of statistical power. Hum Hered,2003. 56(1-3):p.18-31.
    31. Clark, A.G., The role of haplotypes in candidate gene studies. Genet Epidemiol,2004.27(4):p. 321-33.
    32. Stephens, J.C., et al., Haplotype variation and linkage disequilibrium in 313 human genes. Science,2001.293(5529):p.489-93.
    33. Crawford, D.C., et al., Evidence for substantial fine-scale variation in recombination rates across the human genome. Nat Genet,2004.36(7):p.700-6.
    34. Tabor, H.K., N.J. Risch, and R.M. Myers, Candidate-gene approaches for studying complex genetic traits:practical considerations. Nat Rev Genet,2002.3(5):p.391-7.
    35. Neale, B.M. and P.C. Sham, The future of association studies:gene-based analysis and replication. Am J Hum Genet,2004.75(3):p.353-62.
    36. Hirschhorn, J.N., et al., A comprehensive review of genetic association studies. Genet Med, 2002.4(2):p.45-61.
    37. Lohmueller, K.E., et al., Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet,2003.33(2):p.177-82.
    38. de Bakker, P.I., et al., Efficiency and power in genetic association studies. Nat Genet,2005. 37(11):p.1217-23.
    39. Zondervan, K.T., L.R. Cardon, and S.H. Kennedy, What makes a good case-control study? Design issues for complex traits such as endometriosis. Hum Reprod,2002.17(6):p.1415-23.
    40. Seaman, S.R. and B. Muller-Myhsok, Rapid simulation of P values for product methods and multiple-testing adjustment in association studies. Am J Hum Genet,2005.76(3):p.399-408.
    41. Schaid, D.J., et al., Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet,2002.70(2):p.425-34.
    42. Page, G.P., et al., "Are we there yet?":Deciding when one has demonstrated specific genetic causation in complex diseases and quantitative traits. Am J Hum Genet,2003.73(4):p.711-9.
    43. Marcus, P.M., P. Vineis, and N. Rothman, NAT2 slow acetylation and bladder cancer risk:a meta-analysis of 22 case-control studies conducted in the general population. Pharmacogenetics, 2000.10(2):p.115-22.
    44. Vineis, P., et al., Current smoking, occupation, N-acetyltransferase-2 and bladder cancer:a pooled analysis of genotype-based studies. Cancer Epidemiol Biomarkers Prev,2001.10(12):p. 1249-52.
    45. Hein, D.W., Molecular genetics and function of NAT1 and NAT2:role in aromatic amine metabolism and carcinogenesis. Mutat Res,2002.506-507:p.65-77.
    46. Garcia-Closas, M., et al., NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer:results from the Spanish Bladder Cancer Study and meta-analyses. Lancet,2005. 366(9486):p.649-59.
    47. Sobti, R.C., et al., Genetic polymorphisms of CYP2D6, GSTM1, and GSTT1 genes and bladder cancer risk in North India. Cancer Genet Cytogenet,2005.156(1):p.68-73.
    48. Moore, L.E., et al., GSTM1, GSTT1, and GSTP1 polymorphisms and risk of advanced colorectal adenoma. Cancer Epidemiol Biomarkers Prev,2005.14(7):p.1823-7.
    49. Cascorbi, I., et al., Substantially reduced risk of cancer of the aerodigestive tract in subjects with variant--463A of the myeloperoxidase gene. Cancer Res,2000.60(3):p.644-9.
    50. Mitrunen, K. and A. Hirvonen. Molecular epidemiology of sporadic breast cancer. The role of polymorphic genes involved in oestrogen biosynthesis and metabolism. Mutat Res,2003. 544(1):p.9-41.
    51. Hunter, D.J., et al., A candidate gene approach to searching for low-penetrance breast and prostate cancer genes. Nat Rev Cancer,2005.5(12):p.977-85.
    52. Goode, E.L., C.M. Ulrich, and J.D. Potter, Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev,2002.11(12):p.1513-30.
    53. Mohrenweiser, H.W., D.M. Wilson,3rd, and l.M. Jones, Challenges and complexities in estimating both the functional impact and the disease risk associated with the extensive genetic variation in human DNA repair genes. Mutat Res,2003.526(1-2):p.93-125.
    54. Houlston, R.S. and J. Peto, The search for low-penetrance cancer susceptibility alleles. Oncogene,2004.23(38):p.6471-6.
    55. Vineis, P., et al., CYP1A1 T3801 C polymorphism and lung cancer:a pooled analysis of 2451 cases and 3358 controls. Int J Cancer,2003.104(5):p.650-7.
    56. Rothman, N., et al., Genetic variation in TNF and IL10 and risk of non-Hodgkin lymphoma:a report from the InterLymph Consortium. Lancet Oncol,2006.7(1):p.27-38.
    57. Coussens, L.M. and Z. Werb, Inflammation and cancer. Nature,2002.420(6917):p.860-7.
    58. Lin, E.Y. and J.W. Pollard, Role of infiltrated leucocytes in tumour growth and spread. Br J Cancer,2004.90(11):p.2053-8.
    59. Bingle, L., N.J. Brown, and C.E. Lewis, The role of tumour-associated macrophages in tumour progression:implications for new anticancer therapies. J Pathol,2002.196(3):p.254-65.
    60. Shacter, E. and S.A. Weitzman, Chronic inflammation and cancer. Oncology (Williston Park), 2002.16(2):p.217-26,229; discussion 230-2.
    61. Rebbeck, T.R., et al., Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst,1998.90(16):p.1225-9.
    62. McLeod, H.L., C. Papageorgio, and J.W. Watters, Using genetic variation to optimize cancer chemotherapy. Clin Adv Hematol Oncol,2003.1(2):p.107-11.
    63. Freimuth, R.R., et al., Polymorphism discovery in 51 chemotherapy pathway genes. Hum Mol Genet,2005.14(23):p.3595-603.
    64. Deloukas, P. and D. Bentley, The HapMap project and its application to genetic studies of drug response. Pharmacogenomics J,2004.4(2):p.88-90.
    65. Yamayoshi, Y., E. Iida, and Y. Tanigawara, Cancer pharmacogenomics:international trends. Int J Clin Oncol,2005.10(1):p.5-13.
    66. McLeod. H.L., et al., Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia,2000.14(4):p.567-72.
    67. Relling, M.V., et al., Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood,1999.93(9):p.2817-23.
    68. Relling. M.V., et al.. High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet,1999.354(9172):p.34-9.
    69. Schmiegelow, K., et al., Intensification of mercaptopurine/methotrexate maintenance chemotherapy may increase the risk of relapse for some children with acute lymphoblastic leukemia. J Clin Oncol,2003.21(7):p.1332-9.
    70. Chang, T.K., et al., Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation. Pharmacogenetics,1997.7(3):p.211-21.
    71. De Maio, A., M.B. Torres, and R.H. Reeves, Genetic determinants influencing the response to injury, inflammation, and sepsis. Shock,2005.23(1):p.11-7.
    72. Lehrnbecher, T., et al.. Common genetic variants in the interleukin-6 and chitotriosidase genes are associated with the risk for serious infection in children undergoing therapy for acute myeloid leukemia. Leukemia,2005.19(10):p.1745-50.
    73. Kilpatrick, D.C., et al.. No strong relationship between mannan binding lectin or plasma ficolins and chemotherapy-related infections. Clin Exp Immunol,2003.134(2):p.279-84.
    74. Mullighan, C.G. and P.G. Bardy, Mannose-binding lectin and infection following allogeneic hemopoietic stem cell transplantation. Leuk Lymphoma,2004,45(2):p.247-56.
    75. Larsen, F., et al., Disease-associated mutations in human mannose-binding lectin compromise oligomerization and activity of the final protein. J Biol Chem,2004.279(20):p.21302-11.
    76. Takahashi, K., et al., Lack of mannose-binding lectin-A enhances survival in a mouse model of acute septic peritonitis. Microbes Infect,2002.4(8):p.773-84.
    77. Bernig, T., et al., Sequence analysis of the mannose-binding lectin (MBL2) gene reveals a high degree of heterozygosity with evidence of selection. Genes Immun,2004.5(6):p.461-76.
    78. Bernig, T., et al., An analysis of genetic variation across the MBL2 locus in Dutch Caucasians indicates that 3'haplotypes could modify circulating levels of mannose-binding lectin. Hum Genet,2005.118(3-4):p.404-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700