离子注入钒酸钇光波导及其平板光子晶体结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导波光学理论主要研究光波在介质光波导结构中的传播,包括光波导器件的设计、制备和光波导器件之间的连接、耦合等相关知识。光波导结构是导波光学的主要研究对象之一,很多无源器件,比如光耦合器、光调制器、光电探测器等的工作原理都是建立在光波导的基础之上的。光波导是折射率高的区域被折射率低的区域包裹的结构。光波导的制备方法很多,比如薄膜沉积、离子交换、离子扩散、离子注入、飞秒激光直写等,我们制备光波导采用的是离子注入的方法。离子注入方法制备的光波导大致分为两种类型:一种是轻离子注入,以H和He离子为代表;另外一种是重离子注入,主要是O离子、Si离了、Cu离子等为代表。一般认为,这两种类型的离子注入晶体材料形成的光波导的机理不同。普遍认为,轻离子注入晶体材料以后会在离子射程末端形成一个折射率降低的损伤层(位垒区),而晶体表面的折射率几乎不发生明显的变化,这样在损伤层和空气之间就可以形成波导结构;重离子注入过程中不但会在离子射程末端形成一个折射率降低的损伤层,而且由于电子能量的沉积作用,在晶体表面也会形成折射率增加的区域,这样在损伤区和空气之间也可以形成波导结构,并且重离子注入形成的折射率增加型波导结构对光波的约束能力比轻离子注入形成的“位垒型”波导结构对光波的约束能力更强。
     光子晶体(Photonic Crystals)是介电常数(折射率)呈现周期性排列的结构。晶体材料中,电子在周期性电势场的作用下具有电子能带、导带、价带和电子带隙。周期性的介电常数场对光波的作用与周期性的电势场对电子的作用类似,光子晶体的概念也是类比电子晶体的概念提出的。在光子晶体中,当两种介质的排列周期和折射率的差值满足一定条件的时候,可以出现“光子带隙”(Photonic Band Gap,也称为光子禁带)。频率位于光子晶体带隙的光波在该光子晶体结构中不能传播,如果所有偏振态的光在各个方向上都不能传播,此时的带隙称为“完全带隙”(Full Photonic Band Gap);如果只是某种偏振态的光不能在某个方向上传播,此时的带隙称为“模式带隙”。频率处于光子晶体带隙的光波不能在其中传播,频率处于带隙以外的光波可以在其中传播。如果我们人为的在完美光子晶体结构中引入某种缺陷,就可能在原来带隙的位置上引入一个缺陷态,频率处于缺陷态的光就可以在这种具有缺陷的光子晶体中传播。利用光子晶体的这个性质,我们可以改变光子晶体结构的尺寸、缺陷的尺寸和缺陷的形状等物理参数来控制某个频率段的光在光子晶体中的传播。光子晶体可以制备出单色性和方向性好的单模发光二极管、低损耗的光子晶体光纤、光子晶体波导、发光效率高且零阈值的光子晶体激光器、光子晶体滤波器、光子晶体分束器、适用于短波波段的光子晶体反射镜、分辨率很高的光子晶体超棱镜、高效率的光子晶体微波天线等,除此之外,光子晶体还可以改善太阳能电池的光电转换效率等。
     制备光子晶体的方法很多,比如微机械钻孔法、介质棒堆积法、电子束曝光法、电化学刻蚀法、自组装方法、激光全息技术、晶片熔融法等。虽然这些方法在光子晶体的制备中取得了可喜的成果,但是这些方法制备三维光子晶体的时候存在制备效率低和精确定位难等问题。这些问题的存在大大限制了三维光子晶体器件的应用。与三维光子晶体结构相比,二维的平板光子晶体结构也可以在三维空间内对光波进行约束和限制,而且大大减小了制备的难度。二维的平板光子晶体结构把光子晶体中带隙的约束和光波导中折射率差的约束结合起来,在波导平面内靠带隙对光进行约束,在与波导平面垂直的方向上靠折射率差形成的全反射原理对光进行约束。
     钒酸钇晶体(YVO4)是一种优良的人工晶体。该晶体的透过波段宽(0.4~5μm),热稳定性高(熔点~1810℃),机械加工性能好,双折射性大(在633nm波长下ne-no=0.222),可以制备成光纤隔离器、环形器、置换器、偏振光分束器等。重要的是,YVO4掺杂稀土离子以后可以做为激光器的增益介质。例如掺Nd3+以后的Nd:YVO4激光晶体具有泵浦阈值低,吸收和发射截面大,吸收谱线宽,吸收系数对温度的变化不灵敏等优点。
     以前有利用离子注入的方法在YV04和Nd:YVO4上制备多模光波导的报道,但是多模光波导存在模式色散,而且多模光波导的损耗比单模光波导的损耗大。为了避免多模光波导的缺点,我们利用He离子注入和氧离子注入的方法在钒酸钇(YVO4)和掺钕的钒酸钇(Nd:YVO4)晶体上制备了单模平面光波导结构,利用Ar离子束刻蚀技术制备了脊型光波导结构,然后利用聚焦离子束技术(FIB)在YVO4光波导的基础上制备了Cubic和Hexagon单元的光子晶体结构,从而得到准三维的YVO4平板光子晶体结构,并研究了束流条件和结构参数对光子晶体的影响。我们还尝试利用Smart Cut方法把YVO4晶体和低折射率的SiO2衬底结合在一起,从而得到折射率差较大的平面光波导结构。我们还利用平面波展开法(PWE)和时域有限差分法(FDTD)模拟了"YVO4on SiO2"结构的平板光子晶体的能带图和透射谱,研究了结构参数对带隙的影响。本文的主要内容如下:
     1.He离了注入YVO4制备单模光波导
     利用能量为400keV、500keV,剂量为3x1016ions/cm2的He离子分别在室温条件下和液氮条件下(77K),注入z切的YVO4晶体,制备了633nm波长下的单模平面光波导结构。然后利用光刻和Ar离子束刻蚀相结合的方法在YV04晶体上制备了脊型光波导结构。使用光强计算法(ICM)模拟了光波导在退火前后的折射率分布。运用卢瑟福背散射和沟道(RBS/C)技术研究了He离子注入YVO4产生的损伤情况,研究了热退火处理对YVO4光波导中导模特性的影响。
     2.多能量轻离子(He离了和质子)注入Nd:YVO4制备平面波导
     为了加宽位垒,我们利用450keV、500keV、550keV三个能量的He离子同时注入z切Nd:YVO4晶体,制备了单模平面光波导结构,测试了平面波导的暗模特性和近场光学分布。比较了Nd:YVO4晶体注入前后的透射谱、RBS/C谱、共聚焦拉曼(Raman)谱。我们还利用480keV、490keV、500keV三个能量的质子同时注入的方法,分别在x切和z切Nd:YVO4晶体上制备了平面光波导结构。测试了不同切向的Nd:YVO4晶体注入前后的RBS/C谱和共聚焦Raman谱。我们发现,Nd:YVO4晶体的沟道产额与其切向有关,z切Nd:YVO4晶体的沟道产额明显比x切Nd:YVO4晶体的沟道产额低。我们在He离子和质子注入的Nd:YVO4的波导区都发现了新的Raman峰,说明离子注入使得Nd:YVO4晶体的晶向发生了微小的变化,离子注入引起了晶体的部分非晶化。
     3.氧离子注入YVO4(Nd:YVO4)制备单模平面光波导结构
     我们利用能量为1MeV,剂量分别为0.5×1015ions/cm2、1.0×1015ions/cm2、1.5×1015ions/cm2的氧离子分别注入x切和z切的YV04晶体制备了633nm波长下的单模平面光波导结构。研究了注入剂量对导模有效折射率的影响。为了研究注入能量的影响,我们利用剂量为1.5×1015ions/cm2,能量分别为2MeV和3MeV的氧离子注入x切的Nd:YVO4晶体,得到了1539nm波长下的单模平面光波导结构,研究了注入能量对波导暗模特性的影响。我们还比较了不同能量的氧离子注入Nd:YVO4的透射谱,我们发现氧离子注入以后Nd:YVO4的吸收带边发生了红移,注入能量越高,红移越明显,且注入能量越高,透过率越低,这是因为注入能量越高,注入越深,产生的色心越多。
     4.在YVO4光波导上制备光了晶体结构
     利用聚焦离子束技术在YVO4光波导的基础上制备了Cubic单元和Hexagonal单元的光子晶体结构。研究了束流条件、刻蚀深度、反应气体、周期、填充系数(占空比)对光子晶体结构的影响。我们发现:由于Hexagon单元比Cubic单元的光子晶体的填充系数大,所以Hexagon单元的光子晶体结构更容易出现孔壁坍塌现象;随着束流的增大,刻蚀速率增加,但是刻蚀精度下降;再沉积作用使得实际的刻蚀深度总是小于预设的刻蚀深度,而且再沉积作用使得大周期光子晶体结构的孔洞底部趋于平坦,对于周期较小的光子晶体结构,再沉积作用使得预期的圆柱形孔洞结构变成了圆锥形。
     5.尝试利用Smart Cut方法制备"YVO4on SiO2'’结构。
     利用He离子注入YV04,在离子的射程末端形成一个损伤层,把注入后的YVO4样品用压力的作用固定到Si02上,利用热处理过程中的热膨胀作用把表层的YV04晶体Bonding到Si02上。我们使用金相显微镜观察了SiO2上YV04的表面形貌,利用原子力显微镜(AFM)测量了薄膜的厚度,我们还用卢瑟福背散射技术证实了Si02上YVO4的成分。利用平面波展开法(PWE)和时域有限差分法(FDTD)计算了‘'YVO4on SiO2"结构的平板光子晶体的带隙图和透射谱,研究了结构参数对带隙的影响。
The main contents of Wave Guiding Optics are transmission characteristics and propagation phenomenon of light in waveguides, in addition, designing, fabrication and connection of optical waveguide devices. The key object of Wave Guiding Optics is planar optical waveguide, which is the basic struture of many passive components, such as optical couplers, light modulator, photo-detector, and so on. Optical waveguides consist of a square or rectangular core surrounded by a cladding with lower refractive index than that of the core. There were several methods to fabricate waveguide, such as, deposition of thin film, ion exchange, ion diffusion, ion implantation, femoto-second laser writing, and so on. We used ion implantation in our experiment. Ion implantation includes light ion implantation with large fluence (such as H and He ion) and heavy ion implantation with low fluence (such as O, Si, and Cu ion, etc). Generally speaking, the formation mechanisms of two types of wavegudes are different. In the waveguide formed by light ion implantation, a damage area with lower refractive index (optical barrier) generated by nulear energy deposition at the end of ion range, and a waveguide structure formed between air and the optical barrier. In the waveguide formed by hearvy ion implantation, not only an optical barrier forms at the end of ion range, but also an increase of refractive index occurs in the near-surface region.
     Photonic crystal is structure with periodic dielectric arrangement. Photonic crystal is optical analogue of crystal. Crystal is a periodic arrangement of atoms or molecules, which presents a periodic potential to electrons propataing through it. In some case, the periodic potential prohibits the propagation of certain electron waves. In photonic crystal, the atoms or molecules are replaced by macroscopic media with diffrent dielectric constans, and the periodic potential is replaced by a periodic dielectric function. We can design and construct photonic crystal with photonic band gaps, which prevent light propagating in certain directions with specified frequencies. If, for some frequency, a photonic crystal prohibits the propagation of light of any polarization from any direction, we say that the photonic crystal has a full photonic band gap. Within the photonic band gap, no modes are allowed; the density of states is zero. By perturbing the arrangement of the photonic crystal, we can create localized mode that have frequencies within the gap. Considering the inhibited spontaneous emission of the photonic band gap, we can fabricate photonic crystal emitting diode with good monochromaticity; Photonic crystal can be used to design ideal photonic crystal fibers, photonic crystal waveguide, photonic crystal laser, photonic crystal filter, photonic crystal splitter, photonic crystal superprism, and solar cells, etc.
     There are several methods to fabricate photonic crystal, such as the mechanical drilling method, accumulating of dielectric medium, electron beam lithography, self-assembly method, and laser holographic lithography. Although the fabrication of three dimensional photonic crystals has gained great achievements, there are still many problems, such as accuracy, the high cost, and application etc. Fabrication of three dimensional photonic crystals is very difficult. However, photonic crystal slab is much easier to made, which combines the two dimension photonic crystal structure with planar waveguide. Photonic crystal slab has only two dimensional periodic dielectric arrangements and using index guiding in the third direction.
     Yttrim orthovanadate (YVO4) is a good artificial crystal, with wide transparency (0.4μm to5μm), good temperature stability, excellent physical performance and mechanical properties, large birefringence (Δn=0.222at0.633nm). It can be used to produce ideal optical components such as fiber optical isolators, circulators, beam displacers and other polarizing optical devices. Nd:YVO4is an excellent material for laser application because of its advantageous spectral characteristics, such as greater laser emission cross section, lower laser threshold, and higher efficiency.
     There have been YVO4and Nd:YVO4waveguides formed by ion implantation previously, however, multimode optical waveguides exhibit modal dispersion resulting from multiple spatial modes, while, single mode waveguides have narrower modal dispersion. Therefore, single mode waveguides are better at retaining the fidelity of each light pulse and single mode waveguides have larger bandwidth than multimode waveguides. In this work, we made single mode planar waveguide in YVO4and Nd:YVO4by He and oxygen ion implantation. We fabricated the ridge waveguide on the planar waveguide by photolithographic technique and Ar ion beam etching. On the planar and ridge waveguide, we made photonic crystal structure by focus on ion beam (FIB) technique. We tried bonding YVO4on SiO2substrate by smart cut method. We simulated the band diagram of photonic crytal slab structure of "YVO4on SiO2" using the plane wave expansion method and the finite difference time domain method. The main results of this thesis are shown as following:
     1. The single mode planar waveguide in YVO4formed by He ion implantation
     We fabricated single mode planar waveguide in z-cut YVO4by400keV,500keV He ion implantation in fluence of3×1016ions/cm2at room temperature or at liquid nitrogen temperature (77K). We investigated annealing behavior of the guiding mode and near-field image in the waveguide by prism-coupling method and end-face coupling method respectively. The Rutherford Backscattering/Channeling (RBS/C) technique was used to investigate the damage reduction after annealing treatments. We reconstructed the refractive index profiles in the waveguide under different condition by applying intensity calculation method (ICM).
     2. Planar waveguide formed by muli-energy light ion (He and H) implantation
     We fabricated single mode planar waveguide in z-cut Nd:YVO4by multi-energy (450,500,550keV) He ion implantation to total fluence of4.5×1016ions/cm2at room temperature. We aslo fabricated planar waveguides in Nd:YVO4by multi-energy (480,490,500keV) proton implantation to a total fluence of4.5×1016ions/cm2at room temperature. Damage behaviors of Nd:YVO4waveguides after implantation were investigated by the RBS/C technique. We investigated optical properties of Nd:YVO4before and after ion implantation by measuring transmission, confocal micro-luminescence,and confocal Raman spectra. Absorption bands and the photoluminescence features of the bulk Nd:YVO4crystal have been preserved after ion implantation. In Raman spectra, most of peak positions and peak widths had no obvious change before and after ion implantation.
     3. Single planar waveguide in YVO4(Nd:YVO4) formed by oxygen ion plantation
     In order to investigate the effect of ion fluence, we made single planar waveguide by1MeV oxygen ion implantation in fluence of0.5×1015ions/cm2.1.0×1015ions/cm2, and1.5×1015ions/cm2, respectively. To investigate the effect of ion energy, we fabricated single planar waveguide by2MeV and3MeV oxygen ion implantation, respectively. We also compared the transmission spectra of Nd:YVO4waveguides formed by different energy. We found that the absorption band edge has some red shift after oxygen ion implantation, and the red shift is more obvious for higher energy. The transimission coefficient decrease with the increase of energy. The reason was that more color centers form for higher energy when the oxygen ion range is deeper.
     4. Photonic crystal structure fabricated on YVO4waveguide by FIB
     We fabricated photonic crystal structure in cubic and hexagon unit on YVO4waveguide by focused ion beam (FIB) technique. We investigated effects of ion beam condition, depth, gas, and structure size. We found that collapse is more prone to happen in the hexagon unit photonic crystal sturcure; the etching rate increase along with the increase of the beam; Because of the redeposition effect, the actual etching depth is always less than the default etching depth; the auxiliary gas can not significantly improve etching shape; the etching time grow with the increase of the photonic crystal structure size; the redeposition makes the hole bottom tend to be flat for larger size photonic crystal structure, and the redeposiont make the expected cylindrical holes to be conical for smaller size photonic crystal structure; collapse tend to happen for larger filling fraction, and conical holes prone to happen in smllaer filling fraction.
     5. Fabrication of "YVO4on SiO2" by smart cut method
     We tried bonding YVO4on SiO2substrate by smart cut method, and then, we observed the surface morphology of YVO4on SiO2by optical microscope, we measured the depth of the YVO4film by AFM (Atomic Force Microscopy). In addition, we analysed the composition of film on SiO2by the Rutherford Backscattering technique. We simulated the band diagram of photonic crystal slab structure of "YVO4on SiO2" using the plane wave expansion method (PWE) and the finite difference time domain method (FDTD).
引文
1.蔡伯荣:集成光学,电子科技大学出版社,1990
    2.陈益新:集成光学,上海交大出版社,1985
    3.梁民基:集成光学,科学出版社,1982
    4.王殖东:集成光学,科学出版社,1980
    5.[口]西原浩:集成光学,科学出版社,2004
    6.范崇成,彭吉虎:导波光学,北京理工大学出版社,1988
    7.[澳]A.W.斯奈德, J.D.洛夫:光波导理论,人民邮电出版社,1991
    8.丁么明,宋立新,于华清,周传磷:光波导与光纤通信基础,高等教育出版社,2005
    9.马春生,刘式墉:光波导模式理论,吉林大学出版社,2006
    10.李玉权,崔敏:光波导理论与技术,人民邮电出版社,2002
    11.吴重庆:光波导理论(第2版),清华大学出版社,2004
    12.曹庄琪:导波光学,科学出版社,2007
    13.秦政坤,马春生:光波导简明教程,高等教育出版社,2011
    14.叶培大,吴彝尊:光波导技术基本理论,人民邮电出版社,1981
    15.徐森禄:光波导及其应用,浙江大学出版社,1990
    16.石守勇:光波导原理,高等教育出版社,1989
    17.方俊鑫:光波导技术物理基础,上海交通大学出版社,1987
    18.[法]克勒尔,J.J.:光波导和集成光学简介,人民邮电出版社,1985
    19.[美]塔米尔:集成光学,科学出版社,1982
    20.[美]R.G.汉斯伯格:集成光学导论,国防工业出版社,1981
    21. K. Kawano, and T. Kitoh, Introduction to Optical Waveguide Analysis:Solving Maxwell's Equations and the Schrodinger Equation (John Wiley & Sons, Inc., New York,2001)
    22. K. Okamoto, Fundamentals of Optical Waveguides (Second Edition) (Elsevier, New York,2006)
    23.黄昆,韩汝琦:固体物理学,高等教育出版社,1985
    24. S. John, Phys. Rev. Lett.58,2486 (1987)
    25. E. Yablonovitch, Phys. Rev. Lett.58,2059 (1987)
    26. E. Yablonovitch, Phys. Rev. Lett.63,1950 (1989)
    27. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals:Molding the flow of Light (Second Edition), (Princeton University Press, Princeton,2008)
    28. D. Hondros, and P. Debye, Ann. der Physik 337,465 (1910)
    29. N. S. Kapany, and J. J. Burke, Optical Waveguides (Academic Press, New York, 1972)
    30. S. E. Miller, The Bell System Technical Journal 48,2059 (1969)
    31. J. T. Tippett, Optica and electro-optical information processing. (M. I. T. Perss, Cambrige, Mass.,1965)
    32. J. M. Lourtioz, H. Benisty, V. Berger, J. M. Gerard, and D. Maystre, A. Tchelnolov, Photonic Crystals:Towards Nanoscale Photonic Devices, (Springer, Berlin,2008)
    33. I.P. Kaminow, and J.R. Carruthers, Appl. Phys. Lett.22,326 (1973)
    34. J.M. Hammer, and W. Phillips, Appl. Phys. Lett.24,545 (1974)
    35. R.V. Schmidt, and I.P. Kaminow, Appl. Phys. Lett.25,458(1974)
    36. R.D. Standley, and V. Ramaswamy, Appl. Phys. Lett.25,711 (1974)
    37. C. Ziling, L. Pokrovskii, N. Terpugov, I. Savatinova, M. Kuneva, S. Tonchev, M. N. Armenise, and V. M. N. Passaro, J. Appl. Phys.73,3125 (1993)
    38. R. Ramponi, M. Marangoni, and R. Osellame, Appl. Phys. Lett.78,2098 (2001)
    39. D. T. Y. Wei, W. W. Lee, and L. R. Bloom, Appl. Phys. Lett.25,329 (1974)
    40. G. L. Destefanis, P.D. Townsend, and J. P. Gailliard, Appl. Phys. Lett.32,293 (1978)
    41. Z. Y. Yin, and B. K. Garside, Appl. Opt.21,4324 (1982)
    42. T. Yamashiki, and K. Tsuda, Opt. Lett.28,316 (2003)
    43. E. Kapon,and R. Bhat, Appl. Phys. Lett.50,1628 (1987)
    44. F. Bruno, M. d. Guidice, R. Recca, F. Testa, Appl. Opt.30,4560 (1991)
    45. K. M. Wang, B. R. Shi, N. Cue, Y. Y. Zhu, R. F. Xiao, F. Lu, W. Li, and Y. G. Liu,, Appl. Phys. Lett.73,1020 (1998)
    46.肖定全,朱建国,朱基亮,中林:薄膜物理与器件,国防工业出版社,2011
    47.北京市辐射中心,北京师范大学低能核物理研究所离子注入研究室:离子注入原理与技术,北京出版社,1982
    48.[美]朱唯干:背散射分析技术,原子能出版社,1978
    49.王贻华,胡正琼:离子注入与分析基础,航空工业出版社,1992
    50. P. D. Townsend, Optical effects of ion implantation, (Cambrige University Press, New York,1994)
    51. J. H. Harris, R. Shubert, and J.N. Polyky, J. Opt. Soc. Am.60,1007 (1970)
    52. H. Kogelnik, and T. P. Sosonwski, The Bell System Technical Journal 49,1602 (1970)
    53. D. Hall, A. Yariv, and E. Garmire, Opt. Commun.1,403 (1970)
    54. D. B. Ostrowsky, R. Poirier, L. M. Reiber, and C. Deverdun, Appl. Phys. Lett. 22,463(1973)
    55. P. K. Tien, R. J. Martin, R. Wolfe, R. C. Craw, and S. L. Blank, Appl. Phys. Lett. 21,394(1972)
    56. U. Koren, T. L. Koch, H. Presting, and B. I. Miller, Appl. Phys. Lett.50,368 (1987)
    57. S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, and R. G. Hunsperger, Appl. Phys. Lett.22,46(1973)
    58. M. Kobayashi, H. Terui, and K. Egashira, Appl. Phys. Lett.32,300 (1978)
    59. D. B. Ostrowsky, R. Poirier, L. M. Rieber, C. Deverdun, Appl. Phys. Lett.22,463 (1973)
    60.唐天同,王兆宏:集成光学,科学出版社,2005
    61.顾文琪:电子束曝光微纳加工技术,北京工业大学出版社,2004
    62. E. Reichmanis, and L. F. Thompson, Microelectronic Engineering 13,3 (1991)
    63.崔铮:微纳米加工技术及其应用(第二版),高等教育出版社,2009
    64. P. Hahmann, O. Fortagne,50 years of electron beam lithography:contircution from Germany, in 34th International Confernence on Micro & Nano Engineering 2008
    65. S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, and J. Nishii, Appl. Sur. Sci.197-198,705 (2002)
    66. A. Ovsianikov, A. Ostendorf, and B. N. Chichokov, Appl. Sur. Sci.253,6599 (2007)
    67.唐天同,王兆宏:微纳加工科学原理,电子工业出版社,2010
    68. K. Ariga, H. S. Nalwa, Bottom-up Nanofabrication:Supramolecules, Self-Assembiles, and Organized Films, (American Scientific Publisher,2007)
    69. G. M. Whitesides, J. P. Mathias, and C. T. Seto, Science 254,1312 (1991)
    70. A. Blanco, E. Chomski, S. Grabtchcak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. Driel, Nature 405,437 (2000)
    71. T. Ding, K. Song, K. Clays, and C. H. Tung, Adv. Mater.21.1936 (2009)
    72. E. M.Purcell, Phys. Rev.69,681 (1946)
    73. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Phys. Rev. Lett.71,2022(1993)
    74.温熙森,温激鸿,郁殿龙,王刚,刘耀宗,韩小云:声子晶体,国防工业出版社,2009
    75. R. D. Meade, Phys. Rev. B 44,13772 (1991)
    76. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. Lett.67,3380 (1991)
    77. A. Mekis, J. C.Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett.77,3787 (1996)
    78. S.Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, J. D. Joannopoulos, Science,282, 274(1998)
    79. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett.21,1547 (1996)
    80. Y. Kalra, and R. K. Sinha, Opt. Quant. Eletron.37,889 (2005)
    81. X. Meng, G. Gomard, O. E. Daif, E. Druard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. R. Cabarrocas, and C. Seassal, Sol. Energy Mat. Sol. C.95, S32 (2011)
    82. K. M. Leung, Phys. Rev. Lett.65,2446 (1990)
    83. K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett.65,3152 (1990)
    84. E. Yablonovitch, Phys. Rev. Lett.67,2295 (1991)
    85. P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammous, Appl. Phys. Lett.64,687 (1994)
    86. U. Gruning, V. Lehmann, S. Ottow, and K. Busch, Appl. Phys. Lett.68,747 (1996)
    87. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394,251 (1998)
    88. Judith. E. G. J. Wijinhoven, and W. L. Vos, Science 281,802 (1998)
    89. S. Noda, K. Tomoda, N. Yamanoto, A. Chutinan, Science 289,604 (2000)
    90. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, Nature 404,53 (2000)
    91. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopous, E. P. Ippen and H. I. Smith, Nature 429,538 (2004)
    92. S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, Nat. Mater.8,721 (2009)
    93. T. F. Krauss, R. M. De La Rue, and S. Brand, Naure 383,699 (1996)
    94. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58,10096 (1998)
    95. T. Matsumoto, K. S. Eom, and T. Baba, Opt. Lett.31,2786 (2006)
    96. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. OBrien, P. D. Dapkus, and I. Kim, Science 284,1819(1999)
    97. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, M. Mochizuki, Science 293,1123 (2001)
    98. K. L. Jim, C. W. Leung, H. L. W. Chan, Thin Solid Films 518,101 (2010)
    99. M. Bruel, Electronics Lett.31,1201 (1995)
    100. S. R. Sakamoto, A. Jackson, and N. Dagli, IEEE Photonic Technology Letters 11, 1244 (1999)
    101. G. W. Burr, S. Diziain, and M. P. Bernal, Opt. Express 16,6302 (2008)
    102. P. Rabiei, and P. Gunter, Appl. Phys. Lett.85,4603 (2004)
    103. F. Sulser, G. Poberaj, M. Koechlin, and P. Gunter, Opt. Express 17,20291 (2009)
    104. G. Si, E. J. Teo, A. A. Bettiol, J. Teng, A. J. Danner, J. Vac. Sci. Technol. B 28, 316(2010)
    105. H. Hartung, E. B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tunnermaann, Opt. Mater.33,19 (2010)
    106.马锡英:光子晶体原理及应用,科学出版社,2010
    107.叶卫民:光子晶体导论,科学出版社,2010
    108. Z. Zhang, and S. Satpathy, Phys. Rev. Lett.65,2650 (1990)
    109. K. S. Yee, IEEE Transactions on Antennas and Propagation 14,302 (1966)
    110. K. M. Leung, J. Opt. Soc. Am. B.10,303 (1993)
    111. J. B. Pendry, and A. MacKinnon, Phys. Rev. Lett.69,2772 (1992)
    112. M. Sigalas, C. M. Soukoulis, E. N. Econonous, C. T. Chan, and K. M. Ho, Phys. Rev. B 48,14121 (1993)
    113. G. Lohmiiller, G. Schmidt, B. Deppisch, V. Gramlich, and C. Scheriner, Acta Cryst. B 29,141 (1973)
    114.黄金堂,韦玮,雷张源,王克逸,光学学报,30卷2期,557(2010)
    115. W. R. Romanowski, Cryst. Res. Technol.38,225 (2003)
    116.张玉龙,唐磊:人工晶体—生长技术、性能与应用,化学工业出版社,2005
    117. X. Z. Liu, F. Lu, F. Chen, Y. Tan, R. F. Zhang, H. P. Liu, L. Wang, and L. L. Wang, Opt. Commun.281,1529 (2008)
    118. X. Z. Liu, F. Lu, F. Chen, R. F. Zhang, H. P. Liu, L. Wang, G. Fu, and H. S. Wang, Opt. Commun.274,80 (2007)
    1.王雪林:山东大学博士学位论文,MeV重离子注入光电晶体光波导的制备和特性研究,2004
    2.王磊:山东大学博士学位论文,离子注入平面与条形光波导的优化条件研究,2007
    3. P. D. Townsend, Optical effects of ion implantation, (Cambrige University Press, New York,1994)
    4. H. Hu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, Appl. Opt.40,3759 (2001)
    5. R. M. Roth, D. Djukic, Y. S. Lee, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, Appl. Phys. Lett.89,112906 (2006)
    6. G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Gunter, Opt. Mater. 31,1054 (2009)
    7. M. Levy, R. M. Osgood, A. S. Bhalla, R. Guo, L. E. Cross, A. Kumar, S. Sankaran, and H. Bakhru, Appl. Phys. Lett.77,2124 (2000)
    8. T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, Appl. Phys. Lett.80,1046 (2002)
    9. Y. B. Park, J. L. Ruglovsky,and H. A. Atwater, Appl. Phys. Lett.85,455 (2004)
    10. F. J. Kub, K. D. Hobart, J. M. Pond, and S. W. Kirchoefer, Electron. Lett.35,477 (1999)
    11.左小彪:中国科学院化学研究所博士学位论文,低介电常数苯并环丁烯树脂的合成与性能研究,2008
    12. P. J. Chandler, and F. L. Lama, Optica Acta 33,127 (1986)
    13. X. Z. Liu, F. Lu, F. Chen, Y. Tan, R. F. Zhang, H. P. Liu, L. Wang, and L. L. Wang, Opt. Commun.281,1529 (2008)
    14. X. Z. Liu, F. Lu, F. Chen, R. F. Zhang, H. P. Liu, L. Wang, G. Fu, and H. S. Wang, Opt. Commun.274,80 (2007)
    15.介万奇:晶体生长原理与技术,科学出版社,2010
    16. H. Geiger, and E. Marsden, Proc. Roy. Soc.82,495 (1909)
    17. E. Rutherford, Phil Mag.21,669 (1991)
    18. J. Stark, and G. Wendt, Ann. D. Phys.38,921 (1992)
    19. A. Turkevich, E. Franzgrote, and J. Patterson, Science 158,635 (1967)
    20.[美]朱唯干:背散射分析技术,原子能出版社,1978
    21.北京市辐射中心,北京师范大学低能核物理研究所离子注入研究室:离子注入原理与技术,北京出版社,1982
    22. J. Melngailis, J. Vac. Sci. Technol. B 5,469 (1987)
    23. S. Reyntjens, and R. Puers, J. Micromech. Microeng.11,287 (2001)
    24. S. Lindsey, and G. Hobler, Nulc. Instr. Meth. B, doi:10.1016/j.nimb.2011.08.051, (2011)
    25. A. Surpi, E. Gothelid, T. Kubart, D. Marthin, and J. Jensen, Nucl. Instrum. Meth. B 268,3142(2010)
    26. D. K. Stewart, J. A. Morgan, and B. Ward, J. Vac. Sci. Technol. B 9,2670 (1991)
    27. D. K. Stewart, A. F. Doyle, and J. D. Casey, SPIE 2437,276 (1995)
    28. F. Z Fang, Z. W. Xu, X. T. Hu, C. T. Wang, X. G. Luo, and Y. Q. Fu, CIRP Annals-Manufactruring Technolgy 59,543 (2010)
    29. J. Melngailis, C. R. Musil, E.H. Stevens, M. Utlaut, E. M. Kellogg, R. T. Post, M. W. Geis,.and R. W. Mountain, J. Vac. Sci. Technol. B 4,176 (1986)
    30. D. K. Stewart, L. A. Stern, G. Foss, G. Hughes, and P. Govil, SPIE 1263,21 (1990)
    31. J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, Mrs Bulletin 32,400 (2007)
    32. J. H. Daniel, and D. F. Moore, Sensors and Actuators A-Phys.73,201 (1999)
    33. F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, Opt. Mater.27,1421 (2005)
    34.顾文琪,马向国,李文萍:聚焦离子束微纳加工技术,北京工业大学出版社,2006
    35.I.P. Kaminow, and J.R. Carruthers, Appl. Phys. Lett.22,326 (1973)
    36. J.M. Hammer, and W. Phillips, Appl. Phys. Lett.24,545 (1974)
    37. C. Ziling, L. Pokrovskii, N. Terpugov,1. Savatinova, M. Kuneva, S. Tonchev, M. N. Armenise, and V. M. N. Passaro, J. Appl. Phys.73,3125 (1993)
    38. R. Ramponi, M. Marangoni, and R. Osellame, Appl. Phys. Lett.78,2098 (2001)
    39. D. T. Y. Wei, W. W. Lee, and L. R. Bloom, Appl. Phys. Lett.25,329 (1974)
    40. G. L. Destefanis, P.D. Townsend, and J. P. Gailliard, Appl. Phys. Lett.32,293 (1978)
    41. Z. Y. Yin, and B. K. Garside, Appl. Opt.21,4324 (1982)
    42. T. Yamashiki, and K. Tsuda, Opt. Lett.28,316 (2003)
    43. E. Kapon,and R. Bhat, Appl. Phys. Lett.50,1628 (1987)
    44. F. Bruno, M. d. Guidice, R. Recca, F. Testa, Appl. Opt.30,4560 (1991)
    45. K. M. Wang, B. R. Shi, N. Cue, Y. Y. Zhu, R. F. Xiao, F. Lu, W. Li, and Y. G. Liu, Appl. Phys. Lett.73,1020 (1998)
    46. Judith. E. G. J. Wijinhoven, and W. L. Vos, Science 281,802 (1998)
    47. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394,251 (1998)
    48. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopous, E. P. Ippen and H. I. Smith, Nature 429,538 (2004)
    49. S. Noda, K. Tomoda, N. Yamanoto, A. Chutinan, Science 289,604 (2000)
    50. E. Yablonovitch, Phys. Rev. Lett.67,2295 (1991)
    51. P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammous, Appl. Phys. Lett.64,687(1994)
    52. F. Sulser, G. Poberaj, M. Koechlin, and P. Gunter,Opt. Express 17,20291 (2009)
    53. U. Gruning, V. Lehmann, S. Ottow, and K. Busch, Appl. Phys. Lett.68,747 (1996)
    54. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, Nature 404,53 (2000)
    55.顾文琪:电子束曝光微纳加工技术,北京工业大学出版社,2004
    56.唐天同,王兆宏:微纳加工科学原理,电子工业出版社,2010
    57. B. Cakmak, T. Karacali, Z. Ren, and S. Yu, Microelectronic Engineering 87,2343 (2010)
    58. J. Schrauwen, F. V. Larer, D. V. Thourhout, and R. Baets, IEEE Photonic Technology Letters 19,816 (2007)
    59. J. Schrauwen, J. V. Lysebettens, T. Claes, K. D. Vos, P. Bienstman, D. V. Thourhout, IEEE Photonic Technology Letters 20,2004 (2008)
    60. G. M. Wu, C. C. Yen, B. H. Tsai, and H. W. Chien, Surf. Coat. Tech.206,801 (2011)
    1. X. Z. Liu, F. Lu, F. Chen, Y. Tan, R. F. Zhang, H. P. Liu, L. Wang, and L. L. Wang, Opt. Commun.281,1529 (2008)
    2. X. Z. Liu, F. Lu, F. Chen, R. F. Zhang, H. P. Liu, L. Wang, G. Fu, and H. S. Wang, Opt. Commun.274,80 (2007)
    3. F. Chen, X. L. Wang, K. M. Wang, Q. M. Lu, D. Y. Shen, Opt. Lett.27,1111 (2002)
    4. C. C. Davis, Lasers and Electro-optics:Fundamentals and Engineering, first ed. (Cambridge University Press,1996)
    5. J. F. Ziegler, "computer code," SRIM http://www.srim.org.
    6. X. H. Liu, K. M. Wang, J. H. Zhao, S. M. Zhang, and M. Chen, Opt. Mater.33,424 (2011)
    7. H. R. Xia, X. L. Meng, M. Guo, L. Zhu, H. J. Zhang, and J. Y. Wang, J. Appl. Phys. 88,5134(2000)
    8. M. G. Hur, W. S. Yang, S. J. Suh, M. A. Ivanov, V. V. Kochurikhin, and D. H. Yoon, J. Cryst. Growth 237-239,745 (2002)
    9. X. Cui, J. She, K. Cui, C. Gao, C. Hou, W. Wei, and B. Peng, Chem. Phys. Lett. 489,191 (2010)
    10. K. Zou, H. Guo, M. Lu, W. Li, C. Hou, W. Wei, J. He, B. Peng, and B. Xiangli, Opt. Express 17,10001 (2009)
    11. X. H. Liu, Q. Huang, J. H. Zhao, P. Liu, X. L. Wang, J. F. Du, and N. K. Huang, Appl. Surf.Sci.257,1918(2011)
    12. H. Zhang, X. Meng, L. Zhu, C. Wang, Y. T. Chow, and M. Lu, Opt. Mater.14,25 (2000)
    13. C. Cali, F. Cornacchia, A. Di Lieto, F. Marchetti, and M. Tonelli, Opt. Mater.31, 1331 (2009)
    14. V. Buissette, A. Huignard, T. Gacoin, J. P. Boilot, P. Aschehoug, and B. Viana, Surf. Sci.532-535,444 (2003)
    15. S. A. Miller, H. H. Caspers, and H. E. Rast, Phys. Rev.168,964 (1968)
    16. I. Guedes, Y. Hirano, M. Grimsditch, N. Wakabayashi, C. K. Loong, and L. A. Boatner, J. Appl. Phys.90,1843 (2001)
    17. H. R. Xia, L. X. Li, H. J. Zhang, X. L. Meng, L. Zhu, Z. H. Yang, X. S. Liu, and J. Y. Wang, J. Appl. Phys.87,269 (2000)
    18. P.J. Chandler, and F.L. Lama, Optica Acta 33,127 (1986)
    19. M.D. Feit, and J.J.A. Fleck, Appl. Opt.18,2843 (1979)
    20. Y.F. Chen, and Y.P. Lan, Appl. Phys. B:Lasers and Optics 74,415 (2002)
    21. C.R. Shawley, C.L. Wang, and K.G. Lynn, J. Appl. Phys.99,123109 (2006)
    22. W.F. Silva, C. Jacinto, A. Benayas, J.R.V. de Aldana, G.A. Torchia, F. Chen, Y. Tan, and D. Jaque, Opt. Lett.35,916 (2010)
    1. F. Chen, X. L Wang, K. M. Wang, Q. M. Lu, B. Teng, and D. Y. Shen, Appl. Surf. Sci.191,61(2002)
    2. F. Chen, Q. M. Lu, X. L. Wang, J. H. Zhang, F. Lu, B. R. Shi, K. M. Wang, D. Y. Shen, and R. Nie, Appl. Surf. Sci.199,307 (2002)
    3. F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu. Q. M. Lu, C. E. Ruter, and D. Kip, Appl. Phys. Lett.88,071121 (2006)
    4. F. Chen, X. L. Wang, K. M. Wang, Q. M. Lu, and D. Y. Shen, Appl. Phys. Lett.80, 3473(2002)
    5. M. E. Sanchez-Morales, G. V. Vazquez, H. Marquez, J. Rickards, and R. Trejo-Luna, J. Mod. Opt.4,539 (2006)
    6. M. E. Sanchez-Morales, G. V. Vazquez, E. B. Mejia, H. Marquez, J. Rickards, and R. Trejo-Luna, Appl. Phys. B 94,215 (2009)
    7. M. E. Sanchez-Morales. G. V. Vazquez, P. Moretti. and H. Marquez, Opt. Mater.29, 840 (2007)
    8. X. H. Liu, Q. Huang, J. H. Zhao, P. Liu, X. L. Wang, J. F. Du, and D. K. Huang, Appl. Sur. Sci.257,1918(2011)
    9. H. R. Xia, X. L. Meng, M. Guo, L. zhu, H. J. Zhang, and J. Y. Wang, J. Appl. Phys. 88,5134(2000)
    1. P. R. Villeneuve, and M. Piche, Phy. Rev. B 46,4969 (1992)
    2. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Appl. Phys. Lett.61,495 (1992)
    3.臧克宽,孙晓红,李大海,刘国斌,光电技术应用,第25卷5期,51,2010
    4. K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett.65,3152 (1990)
    5. S.G. Johnson, and J.D. Joannopoulos, Opt. Express 8,173 (2001)
    6. S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B 60, 5751,(1999)
    7. K. S. Yee, IEEE Transactions on Antennas and Propagation 14,302 (1966)
    1. SII NanoTechnology Inc.:Operation Manual of SMI3050
    2.顾文琪,马向国,李文萍:聚焦离子束微纳加工技术,北京工业大学出版社,2006
    3.张少梅:山东大学博士学位论文,LiNbO3的光波导特性研究和平板光子晶体结构的制备,2011
    4. S. Lindsey, and G. Hobler, Nulc. Instr. Meth. B, doi:10.1016/j.nimb.2011.08.051, (2011)
    5. X. F. Xu, S, Yan, J. M. Xue, Y. G, Wang, K. M. Wang, and X. L. Wang, J. Vac. Sci. Technol. B 27,1851 (2009)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700