掺Er:Al_2O_3和掺Er:nc-Si/SiO_2材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全光网络和光子集成技术的发展,掺铒光波导放大器(EDWA:Er Doped Waveguide Amplifier)作为较新的研究领域,正在受到越来越多科研工作者的重视。本论文采用离子束辅助沉积和离子注入法开展了掺Er:Al_2O_3薄膜和掺Er:nc-Si/SiO_2材料的研究。
     实验采用离子束辅助沉积和离子注入法制备了掺铒Al_2O_3薄膜,研究了不同退火温度下,样品的成分、结构、表面形貌和化学价态。随退火温度的升高,Er离子被激活,样品的光致发光强度随退火温度升高而上升。样品在700℃退火下,折射率和粗糙度都达到最小值,影响了透射谱中此样品的透射峰强度和光吸收损耗,并影响了光致发光谱。论文对材料发光机理进行了一些探讨。有关微观结构的具体变化,及对材料光致发光机理的影响需要系统的研究。实验还采用Xe离子轰击的方法制备了非晶的Al_2O_3薄膜,研究了轰击对样品表面形貌的影响。
     论文还利用离子注入方法制备了纳米颗粒直径为2~4nm的nc-Si/SiO_2材料,制备的Si纳米晶颗粒周围分布着大量的非晶硅。随退火温度升高,非晶硅层减少,晶化加强。
     论文制备了掺铒nc-Si/SiO_2材料。研究了材料的微观结构,并测量了样品的光致发光谱,研究了材料的微观结构和掺Er后材料发光强度随测量温度的变化。实验对材料的发光机理进行了深入的探讨,发现存在于非晶氧化硅及其界面上的光激活Er离子,通过非晶硅与纳米硅相耦合,非晶硅的存在影响了纳米硅与Er离子间的能量传递,对Polman等人的纳米硅与Er的强耦合模型提出了改进。
     最后,论文初步开展了联合沉积法制备掺Er薄膜材料的工作。
With the development of optical communication and integrated optoelectronics, Er Doped Waveguide Amplifier (EDWA) has become the hotspot in the field of optical fiber communication and optoelectronics. We prepared Er-doped Al2O3 Films and Er-doped nc-SiO2 Films, and studied their characterization.
    Er-doped Al2O3 Films were prepared by Ion Beam Enhanced Deposition (IBED) and Ion Implantation. After different annealing temperature, we examined the composition, surface morphology, structure and chemical value. Er3+ ions were activated gradually and photoluminescence intensity increased with the annealing temperature. Annealed at 700℃, refractive index and surface roughness reached the least, which affected optical transmission spectra, optical absorption loss, and photoluminescence intensity. This thesis discussed the PL mechanism.
    We also prepared Er-doped nc-SiO2 Films by Ion Implantation. After different annealing temperature, the microstructure and photoluminescence were investigated. We discussed the PL mechanism in-depth, and made conclusions that Er ions lied in amorphous Si and coupled with nc-Si through a-Si, which affected the energy transfer from nc-Si to Er. We ameliorated Polman's model.
    Finally, the paper developed the co-sputtering technology to prepare Er-doped films.
引文
[1] 黄德修等,全光信息网络中的某些关键半导体光电子器件,半导体学报3,2000,P209
    [2] 赵玉兰等,国外光集成/光电集成技术的发展,光通信研究 5,1998,P52
    [3] P. G. Kik, A. Polman, MRS Bulletin 23(4),48, April, 1998
    [4] A. Polman, Appl. Phys. Rev. 1997, 82(1):1-39
    [5] Ennen H et al., Appl. Phys. Lett., 1983, No43, P943
    [6] J. Michel et al., J. Appl. Phys., 1991, 70(5), P2672
    [7] W. J. Miniscalco, J. Lightwave Technol., 1991, No9, P234
    [8] G. N. van den Hoven, E. Snoeks, A. Polman., Appl. Phys. Lett 1993, 62(24), P3065-3067
    [9] G. N. van den Hoven, R. J. I. M. Koper, A. Polman. Net Optical Gain at 1.53μm in Er-doped Al_2O_3 Waveguide on Silicon Appl. Phys. Lett. 1996, 68(14):1886-1888
    [10] S. Hu, Progress in Nature Science,1996,6(6), P746
    [11] C. E. Chryssou et al., IEE J. Quantum Electronics, 1998,34(2),P282
    [12] S. K. Lazarouk et al., Appl. Phys. Lett., 1998,73(16),P2272
    [13] M. Steplkhova et al., Appl. Phys. Lett., 1999,74(4),P537
    [14] D. F. de Sousa et al., J. Appl. Phys., 1999,85(5), P2502
    [15] E. M. Yeatman et al., Optics Communication, 1999,164,P19
    [16] D. J. Kyle etc., Nuclear Instrument and Methods in Phys. Research B, 1999,149,P447
    [17] A. Kozanecki et al., J. Alloys and Compounds, 2000,300-301,P61
    [18] Q. Xiang et al., Thin Solid Films,2000(370):P243
    [19] C. Strohhofer et al., J. Appl. Phys., 2001, 90(9), P4314
    [20] R. Serna et al., J. Appl. Phys., 2001, 90(10), P5120
    [21] A. Benn, Lightwave Europe March 2002
    [22] www.lightwave_europe.com
    
    
    [23] http://www.169.com/
    [24] 肖海波等,世界产品与技术 2003,10:49
    [25] 周必忠等,光谱学与光谱分析 1994,6
    [26] 雷红兵等,红外与毫米波学报 1997,1
    [27] 谢大弢等,光谱学与光谱分析 1998,18(2):177
    [28] 雷红兵等,半导体学报 1998,19(5):332
    [29] 万均等,物理学报 1998,47
    [30] 雷红兵等,半导体学报 1999,20(1):67
    [31] 陈维德等,发光学报 1999,20(1):55
    [32] 雷红兵等,半导体学报 2000,21(3):232
    [33] 陈维德等,半导体学报 2000,21(10):988
    [34] 巢明等,大连理工大学学报 2001,1
    [35] 冉冰等,光电子.激光 2001,4
    [36] Q. Y. Zhang et al. Surface and Coatings Technology, 2002(158-159):538-543
    [37] P. G. Kik, A. Polman Cooperative upconversion as the gain-limiting factor in Er doped miniature Al_2O_3 optical waveguide amplifiers J. Appl. Phys 2003,93:5008-5012
    [38] G. N. van den Hoven, E. Snoeks, A.Polman., J. Appl. Phys 1996, 79(3), P1258-1266
    [39] Chu-Chi Ting, San-Yuan Chen J. Appl. Phys 2001, 90(11), P5564-5569
    [40] Huang Lihui, Liu Xiangren, Xu Wu, et al. J. Appl. Phys 2001, 90(11), P5550-5553
    [41] M. K. Smit, G. A. Acket, C. J. Van Der Laan. Al_2O_3 Films for Integrated Optics Thin Solid Films 1986,138:171
    [42] 赵文军 掺Er光波导Al_2O_3薄膜的微观状态研究 大连理工大学硕士毕业论文 2000,6
    [43] 朱唯干,背散射分析技术,原子能出版社,邹世昌,林成鲁译
    [44] R. M. Bradley, J. M. E. Harper, D. A. Smith Theory of thin-film orientation by ion bombardment during deposition J. Appl. Phys 1986,60:4160-4164
    [45] D. Dobrev, Thin Solid Films, 1982,92:41-53
    [46] W. Ensinger Growth of thin films with preferential crystallographic orientation by
    
    ion bombardment during deposition Surf. Coat. Technol 1994,65:90-105
    [47] Feng Zhang, Zhihong Zheng, Xingzhao Ding et al. J. Vac. Sci. Technol. 1997(15): 1824-1827
    [48] Pasquale F. D., Zoboli M. Analysis of Erbium-doped Waveguide Amplifiers by a full- Vectorial finite-element method IEEE J. Lightwave Technol., 1993,11 (10): 1565-1573
    [49] M.Jimenez de Castro, R. Serna, J.A. Chaos. Influence of Defects on the Photoluminescence of Pulsed-laser Deposited Er-doped Amorphous Al_2O_3 Films Phys. Res B 2000, 166:793-797
    [50] R.Serna, M.Jimenez de Castro, J. A. Chaos. the Role of Er~(3+)-Er~(3+) Separation on the Luminescence of Er-doped Al_2O_3 Films Prepared by Pulsed Laser Deposition Appl. Phys. Lett. 1999, 75(26): 4073-4075
    [51] Y. Chen, M. M. Abraham. Radiation Damage in Al_2O_3 Crystals Implanted with 3.8 Mev Fe~(2+) Ions Phys. Res. B 1991, 59/60:1163-1166
    [52] M.A. Marcus and A. Polman. Local Structure around Er in Silica and Sodium Silicate Glasses J. Non- Cryst. Solids 1991 (136): 260
    [53] G.N. van den Hoven and A. Polman, E. Alves, M.F. da Silva, and A.A. Melo, J.C. Soares Lattice Site and Photoluminescence of Erbium Implanted in α- Al_2O_3 J. Mater. Res. 1997, 12(5): 1401-1404
    [54] F. Namavar, F. Lu, Clive H. et al. Visible and infrared (1.54μm) emission From Er-implanted porous Si for photonic applications [J]. J. Elec. Mate. 1996, 25: 43-49.
    [55] H. A. Lopez, P. M. Fanchet, S. Chen et al. Infrared LEDs and Microcavities based on erbium-doped silicon nanocomposites[J]. Mat. Sc. Eng. B. 2001, 81: 91-96.
    [56] M. Stepikhova, W. Jantsch, G. Kocher. et al. Direct excitation spectroscopy of Er centers in porous silicon [J]. Appl. Phys. Lett. 1997, 71: 2975-2977.
    [57] S. Coffa, G. Franzo, A. polman. Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si [J]. Phys. Rev. B. 1994, 49: 16313-16320.
    [58] M. L. Brongersma, A. Polman Tuning the emission wavelength of Si nanocrystalls
    
    in SiO_2 by oxidation [J]. Appl. Phys. Lett. 1998, 72: 2577-2580.
    [59] P.Bruesch, Th.Stockmeier, and F.stucki. Physical properties of semi-insulating polycrystalline silicon [J]. J. Appl. Phys. 1993, 73: 7677-7689.
    [60] Thomas D. Chen, Marlene Platero, M. Agarwal et al. The temperature dependence of radiative and nonradiative processes at Er-O centers in Si [J]. Phys. B. 1999, 273-274: 322-325.
    [61] P.G. Kik, M.L. Brongersma and A. Polmam. Strong exciton-erbium coupling in Si nanocrystal-doped SiO_2 [J]. Appl. Phys. Lett. 2000, 76: 2325-2327.
    [62] www.agilent.com
    [63] 林志浪,程新利,王永进等 低损耗SOI单模光波导的制备《中国激光》2004(31) 增刊:230-232
    [64] 纪越峰 光波分复用系统 北京邮电大学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700