开关变换器的数字控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开关变换器的控制技术是建立在模型之上的,由于开关调节系统是一个高阶-离散-非线性-时变的病态控制系统,要建立精确的解析模型很困难。传统的控制方法是建立在低频小信号分析上的、所采用的控制技术应用于大信号条件下的系统可能是不稳定的。目前,开关调节系统的非线性控制技术或先进的控制策略已成为研究热点之一,但这些优越的控制策略一般用模拟电路很难实现或根本无法实现。研究开关变换器的数字控制,无论在技术上还是在实际应用上都有十分重要的意义。论文以Buck变换器为例对开关调节系统的模拟控制和数字控制进行了深入分析和研究。
     模拟控制是传统控制方式,论文以能量守恒为基本思想,用三端开关器件模型法,研究连续导电模式下非理想变换器的模型,建立了Buck变换器的小信号精确模型,用实验和仿真的方法验证了模型的正确性。在此基础上对电压控制和峰值电流控制型开关调节系统进行了仿真与实验研究,取得了有意义的研究成果。
     开关变换器发展趋势是高频化、模块化、数字化、绿色化。因此,数字控制是高频功率开关变换器控制技术的发展方向,许多学者和研究者正致力于开关变换器的全数字控制的研究,其中开关变换器的控制策略是数字控制技术的核心。论文针对传统控制技术存在过冲和调节时间不能相互协调的问题,运用电容平衡原则推导了突增或突降负载时的控制算法,仿真和实验结果表明该控制算法能明显改善DC-DC变换器动态性能。
     主电路和控制电路的硬件设计直接影响到开关变换器的运行性能。论文介绍了开关变换器数字控制系统的主电路、控制电路、采样调理电路、数字驱动电路、辅助电源等的硬件设计。研制了输出功率为60W的基于TMS320F2000系列DSP的开关调节数字控制实验样机,为以后研究先进的开关变换器数字控制策略提供了实验平台。基于该实验平台,介绍了用C语言对开关变换器的软启动、数字PI控制和电容电荷平衡控制进行软件设计的流程图以及完成的数字控制实验研究,并对各种实验数据进行了比较与分析,给出了相应的结论。
The control technique of switching converter is based on its model. As the switching regulation system is a high order, discrete, nonlinear, time-varying, ill-conditioned control system and difficult to build exact resolution model. The traditional control technique is for low frequency small-signal, so it's maybe unstable for big-signal systems. The nonlinear and other advanced control strategies for the switching converter have gotten more and more attentions, but it's too hard to realize those strategies on analog circuits. So it's meaningful to study the digital control of switching converter both in technique and practice. Taking the Buck converter for example, this paper deeply analyzes and studies on analog and digital control of the switching regulation system.
     Analog control is the traditional control method. Based on conversation of energy, this paper studies the non-ideal converter model at the continuous conducting mode, builds the small signal precise model of the Buck converter and validates the veracity of the model in experiment and simulation by the three-terminal switching device model. On this foundation, the paper simulates and experimentally studies the voltage control and peak current control switching modulation system and gets useful research results.
     Switching converter is developing to high frequency, modularization, digital and green, so the digital control is the developing direction of high frequency power switching converter. Now a lot of scholars and investigators are studying on the whole digital control of the switching converter, and the core is the control strategy. According to the traditional control's problem that overshoot and regulating time are not mutual coordination, this paper deduces the control arithmetic when the load increases or decreases suddenly based on the capacitance balance principle. The simulation and experiment results indicate that this control arithmetic improves the dynamic performance of DC-DC converter effectively.
     The hardware design of main circuit and control circuit will affect the running performances of the switching converter directly. This paper introduces the hardware design of the main circuit, control circuit, sample adjusting circuit, digital driving circuit and assistant power supply of switching converter's digital control system. An experimental prototype of switching regulation digital control based on the DSP of TMS320F2000 is developed and its output power is 60W. This prototype can be used as an experimental platform for the new advanced digital control strategy. Base on this prototype, the paper introduces the flowchart of the software design by C including soft-starting, digital PI control and capacitance charge balance control for the switching converter, the finished research of the digital control experiments, analyzes and compares the experiment data and gives the corresponding conclusion.
引文
[1]Fengyan Wang,Songrong Wu,Jianping Xu.Small Signal Analysis of Boost Converter Utilizing V~2 Control Technique[C].International Conference on Communications Circuits and Systems,2002(6):1711-1715.
    [2]Fengyan Wang,Songrong Wu,Jianping Xu,Junfeng Xu.Modeling and Simulation ofV~2Controlled Switching Converters[C].International Conference on Communications Circuits and Systems,2003(11 ):613-617.
    [3]王风岩。快速瞬态响应电压调节器控制方法的研究[D].西南交通大学博士论文.2005年.
    [4]李乔,吴捷.自抗扰控制及其在DC-DC变换器中的应用[J].电工技术学报。2005,20(1):83-88.
    [5]Lam H K,Leung F H F,Tam P K S.Fuzzy control of DC-DC switching converters based on TS modeling approach[C].Proceedings of the 24~(th) Annual Conference of the IEEE,1998:1052-1054.
    [6]Lam H K,Lee T H,Leung F H F,Tam P K S.Fuzzy control of DC-DC switching converters:stability and robustness analysis[C].The 27~(th) Annual Conference of the IEEE Industrial Electronics Society,2001,2:899-902.
    [7]Chan H C,Chan K T,Chan C C.A Neural Network Controller for Switching Power Converters[J].IEEE PESC,2003:887-892.
    [8]蔡宣三,龚绍文编著。高频功率电子学--直流一直流变换部分[M].北京:科学出版社,1993年.
    [9]曲学基。开关电源中的稳压技术(二)[J]。USP应用,2006(11):59-63.
    [10]张卫平编著。开关变换器的建模与控制[M]。北京:中国电力出版社,2006年1月.
    [11]徐九玲,谢运箱,彭军.开关电源的新技术与发展前景[J].电气时代.2003(6):52-55.
    [12]陈素芬,张波.DC-DC变换器中非线性现象研究的发展综述[J].电源世界,2007(6):1-4.
    [13]Smedley K M,Cuk S.One-cycle Control of Switching Converters[A].Power Electronics Specialists Conference Record,22~(nd) Annual IEEE.1991.888-896.
    [14]Vorperian V.The Charge-Controlled PWM Switch[A].Power Electronics Specialists Conference Record,27~(nd) Annual IEEE.1996.533 -542.
    [15]王俊,豆飞进,穆新华.基于电荷控制方式的CCM反激PFC电路的设计[J].通信电源技术.2003(4):11-13.
    [16]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1998.
    [17]周宇飞,丘水生,伍言真.开关变换器的时变滑模控制方法研究[J].电力电子技术,2000(4):22-25.
    [18]Auzani bin Jidin,Nik Rumzi Nik Idris,Senior Member.Sliding Mode Variable Structure Control Design Principles and Application to DC Drives[C].Power and Enerqy Conference,2004:78-82.
    [19]Spiazzi G,Mattavelli P,Rossetto L.Sliding Mode Control of DC-DC Converter[A].Brazilian Power Electronics Conference(COBEP)[C].1997:59-68.
    [20]张黎,丘水生.滑模控制开关变换器的分析与实现[J].微电子学.2005,35(3):260-267.
    [21]吴磊套,杨兆华,胥布工.DC/DC开关变换器的无源控制方法[J].电工技术学报,2004,19(4):66-69.
    [22]Sira-Ramirez H,Ortega R.Passivity-Based Controllers for the Stabilization of DC-to-DC Power Converters[C].Proceedings of the 34~(th) IEEE Conference,1995:3471-3476.
    [23]杨晋,蔡丽娟.数字技术在开关电源控制中的应用和发展[J].电源世界.2006(2):6-8.
    [24]Guang Feng,Meyer E,Yan-Fei Liu.High Performance Digital Control Algorithms for DC-DC Converters Based on the Principle of Capacitor Charge Balance[C].Power Electronics Conference,2006.PESC'06.37~(th) IEEE:1-7.
    [25]贺明智,许建平,胡晓明.基于PFGA的DC/DC开关变换器的数字控制器[J].电力电子技术.2007,41(6):71-73.
    [26]陈亚爱 张卫平 周京华 刘坤.开关变换器控制技术综述[J].电气应用.2008(4):4-9.
    [27]欧阳长莲.DC/DC开关变换器的建模分析与研究[D].南京航空航天大学博士论文,2004.
    [28]陈亚爱 张卫平.用安捷伦4395A扩频测量铝电解电容器频率特性[J].中国测试技术.2007(5):44-46.
    [29]李维波编著.MATLAB在电气工程中的应用[M].北京:中国电力出版社,2006年6月.
    [30]Ron Lenk著.王正仕,张军明译.实用开关电源设计[M].北京:人民邮电出版社,2006年4月.
    [31]苏奎峰,吕强,耿庆锋,陈圣俭著.TMS320F2812原理与开发[M1.北京:电子工业出版社,2006年12月.
    [32]周志敏,周纪海,纪爱华编著.开关电源功率因数校正电路设计与应用[M].北京:人民邮电出版社,2004年11月.
    [33]Texas Instruments TMS320F28335,TMS320F28334,TMS320F28332 Digital Signal Controllers(DSCs) Data Manual.2007.
    [34]GB/T 14714-1993 微小型计算机系统设备用开关电源通用技术条件.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700