功率分流式无级变速器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以适用于发动机前置前驱经济型轿车的功率分流式无级变速器(Power SplitContinuously Variable Transmission,PSCVT)作为研究对象。按照先整体,后部件的研究思路,首先对该变速器的整体方案进行了设计并通过性能仿真验证了其结构及性能参数设计的合理性和正确性;然后运用理论与试验相结合的方法对PSCVT的核心部件——带式无级变速单元的调节方式、力学分析及速比控制进行了深入研究。主要内容包括以下几个方面:
     1.PSCVT总体方案设计与参数优化。针对应用对象的结构布置特点,在运动学及力学分析的基础上,完成了PSCVT总体方案设计;运用优化理论方法对变速器主要性能参数及各主要零部件的结构参数进行了优化设计;应用虚拟样机技术完成了PSCVT各部件的三维建模和整个变速器的总体装配及箱体结构的设计。
     2.PSCVT的性能仿真研究。为了评价PSCVT本身及其与整车匹配性能,通过对汽车性能仿真软件Advisor的二次开发,搭建了针对PSCVT性能评价的整车动力及经济性能仿真平台;对设计的变速器进行数学建模,并针对所选车型在该仿真平台上进行了仿真计算。
     3.无级变速单元全电调节方式的提出与设计实现。无级变速单元作为PSCVT的核心部件,其性能决定着整个变速器的性能。在分析对比现有无级变速器调节方式优、缺点的基础上,提出了一种采用双电机分别调节无级变速单元主、从动带轮工作半径以实现速比精确调节的全电调节新方案并对该方案进行了工程化设计和原理样机研制。
     4.全电调节无级变速单元传动过程中的力学分析。为了给无级变速单元的夹紧力控制、速比执行机构的设计及执行电机的选型和控制提供理论依据,对其传动过程中的受力进行了分析,根据得到的无级变速单元力学模型并结合功率分流式无级变速器中无级变速单元的工作特性,通过仿真计算得到了其主、从动带轮动盘夹紧力与传递转矩的关系以及两者随速比变化的规律。
     5.PSCVT速比控制研究。通过对无级变速单元速比变化率以及整车动力学的建模和仿真计算,得到了速比变化率对整车性能的影响关系;从提高汽车性能的目的出发,制定了合理的速比控制策略,并对基于角位移改变无级变速单元速比的执行电机控制进行了研究,设计了模糊滑模变结构控制器。
     6.全电调节无级变速单元的试验研究。对无级变速单元全电调节方案进行了工程化设计和原理样机研制,设计了针对全电调节无级变速单元性能测试的试验台架,对该方案的可行性进行了试验验证。试验内容包括无级变速单元速比与执行电机转角关系测试、无级变速单元传递效率随不同夹紧力位置的变化规律、其转矩和转速损失随负载转矩的变化规律、无级变速单元的转矩传递容量等稳态测试以及通过控制执行电机转角对制定的特定目标速比进行跟踪调节的可行性验证。
A power split continuously variable transmission (PSCVT) with two-stage step-up gearbox concept in the context of the mini car with engine of FF application was presented in this dissertation. The scheme of PSCVT was designed and verified by simulation. The continuously variable unit(CVU), as the key part of PSCVT was researched deeply by means of combination of simulation calculation and prototyping test. The research was performed as follows:
     1. PSCVT scheme design. Firstly, the whole scheme of PSCVT was studied and analysised based on the kinematics and mechanics according to the configuration characteristic of the application objection; Secondly, the main PSCVT performance parameters were optimized and confirmed by means of mechanical optimization methodology. Finally, the three-dimension modeling and assembly of the whole gearbox were done and the gearbox configuration was optimized by dint of virtual prototype technology.
     2. PSCVT performance simulation research. PSCVT mathematic model was established and embedded into the simulation software Advanced Vehicle Simulator (ADVISOR) to finish the whole vehicle modeling with the purpose of estimating the performance PSCVT itself and matching between PSCVT and the whole vehicle. The simulation was carried out according to the chosen vehicle under different driving cycles.
     3. Electromechanical CVU pulley actuation scheme research and design. As the key part of PSCVT, CVU plays an important role to the whole transmiison performance. An electromechanical CVT pulley actuation system for the variable pulley set (variator) was presented based on the analysis on the other actuation systems for speed ratio control of CVT, and the engineering design as well as prototype manufacture were finished.
     4. Electromechanical pulley actuation CVU force analysis. The force working on CVU was analyzed and force model was obtained with the purpose of buildbing up theory foundation for the CVU design, the choice as well as the control of actuation motors used for speed ratio shifting and clamping control. The relationship between the pulley clamping force with the torque transmitted by CVU was verified under different speed ratios and the influence that the shape of the instantaneous belt configuration playing to the pulley clamping force was obtained by simulation and calculation to the force model based on the transmission characteristics of PSCVT.
     5. PSCVT ratio control research. The influence that speed ratio changing rate playing to the vechle performance was obtained by modeling and simulation calculation to the vechile dynamics. To improve the vehicle performance, the ratio control strategy was established and sliding mode variable structure fuzzy controller for the angle displacement of motor which was used to changing the speed ratio of CVU was designed.
     6. Experiment research on electromechanical pulley actuation CVU. The test rig was established for the electromechanical pulley actuation CVU prototype performance test and the experiment study was done to verify the feasibility of the scheme.The test was comprised of stable test and dynamic test. The former contained the test on relationship between the CVU speed ratio and the motor angle, the law between the CVU transmission efficiency and clamping force, the law between the torque loss as well as the speed loss and the load respectively and the transmission capability of CVU, and the latter was the test on the CVU speed ratio control from initialization to the goal by controlling the motor angle.
引文
[1]产业综合报道.2007年中国汽车产量为世界第三[EB/OL].http://www.caijing.com.en/2008-04-03/100055120.html.
    [2]汽车在线.2020年全国民用汽车保有量将飙升至1.4亿辆[EB/OL].http://news.7car.com.cn/c/2004/9/15/a146163.htm.
    [3]姜湘南.2003~2004年国内微型客车市场形势分析与预测[J].汽车情报,2004(7):10-20.
    [4]李永钧.2004年中国汽车市场展望[J].汽车情报,2004(2):4-6.
    [5]发展改革委,建设部等.关于鼓励发展节能环保型小排量汽车意见[EB/OL].http://www.gov.cn/gongbao/content/2006/content_212067.htm.
    [6]中华人民共和国国家环境保护总局.大气环境保护标准[EB/OL].http://www.zhb.gov.cn/tech/hjbz/bzwb/dqhjbh/.
    [7]魏英俊.新型车用功率分流式自动变速器的研究[D].南京:南京理工大学,2005.
    [8]许允峰.新型车用功率分流式无级变速系统的控制与仿真[D].南京:南京理工大学,2003.
    [9]梁清林.车用功率分流式无级变速系统的设计与建模[D].南京:南京理工大学,2003.
    [10]Miguel M.Gomez.A Continuously Variable Power-Split Transmission in a Hybrid-Electric Sport Utility Vehicle[D].West Virginia University,West Virginia,2003.
    [11]付铁军,周云山,张宝生.金属带式无级变速器电液控制系统的试验研究[J].汽车工程,2003(4):384-388.
    [12]王旭东,张仁海,周美兰.干式复合带无级自动变速器系统与速比电机控制策略的研究[J].汽车技术,2004(5):4-7.
    [13]K.G.O.van de Meerakker,P.C.J.N.Rosielle,B.Bonsen.Design of an Eleetromeehanical Ratio and Clamping Force Actuator for a Metal V-belt Type CVT[C].2004 International Continuously Variable and Hybrid Transmission Congress,UC Davis,2004.
    [14]T.W.G.L.Klaassen,B.Bonsen,K.G.O.van de MeerakkerB.G.Vroemen.Control-Oriented Identification of an Electromechanieally Actuated Metal V-belt CVT[C].2004 International Continuously Variable and Hybrid Transmission Congress,UC Davis,2004:1-6.
    [15]付铁军,王建华,周云山.金属带式无级变速器夹紧力控制的研究[J].汽车技术,2006(2):17-20.
    [16]夏晶晶,何仁,张涌等.基于模糊PID的CVT夹紧力控制[J].江苏大学学报:自然科学版,2008,29(4):304-307.
    [17]薛殿伦,张友坤,郑联珠等.金属带式无级变速器的速比控制[J].农业机械学报,2003(5):8-11.
    [18]M.Yasuoka,M.Uchida,S.Katakura and T.Yoshino:“An Integrated Control Algorithm for an SI Engine and a CVT”[C].SAE Paper No.1999-01-0752,in SAE SP-1440,Transmission and Driveline Systems Symposium,SAE,1999:155-160.
    [19]Michael Henry Smith.Vehicle Powertrain Modeling and Ratio Optimization for a Continuously Variable Transmission[D].Georgia Institute of Technology,1998.
    [20]常思勤.汽车动力装置[M].北京:机械工业出版社,2006.2.
    [21]S.Sakaguchi,E.Kimura and K.Yamamoto.Development of an Engine-CVT Integrated Control System[C].SAE Paper No.1999-01-0754,in SAE SP-1440,Transmission and Driveline Systems Symposium,SAE,1999:171-179.
    [22]P.Setlur,J.R.Wagner,D.M.Dawson etc.Nonlinear Control of a Continuously Variable Transmission(CVT)for Hybrid Vehicle Powertrains[C].Proceedings of the American Control Conference Arlington,VA June 25-27,2001:1304-1309.
    [23]Setlur,J.R.Wagner,D.M.Dawson etc.Nonlinear Control of a Continuously Variable Transmission(CVT)[J].Ieee Transactions on ControL Systems Technology,2003,11(1):101-108.
    [24]王红岩,秦大同,方泳龙.无级变速传动系统的模糊控制[J].农业机械学报,2000(9):1-5.
    [25]王红岩,王立公,孙冬野.无级变速汽车的自适应模糊控制研究[J].控制理论与应用,2004(2):70-74.
    [26]周云山,于秀敏.汽车电控系统理论与设计[M].第1版.北京:北京理工大学出版社,1999.
    [27]刘振军,秦大同,胡建军.双状态无级变速车辆起步控制[J].汽车工程.2002,24(5):387-390.
    [28]刘振军,秦大同,胡建军.无级变速车辆发动机与变矩器共同工作特性[J].重庆大学学报.2002(2):14-1 7.
    [29]李明国,秦大同,胡建军等.无级自动变速汽车起步综合控制策略[J].重庆大学学报,2004(7):6-9.
    [30]魏英俊,常思勤.车辆起步过程中的磁粉离合器模糊控制技术研究[J].中国机械工 程,2005,16(11):1029-1033.
    [31]罗善明,余以道,郭迎福等.带传动理论与新型带传动[M].北京:国防工业出版社,2006.
    [32]秦大同,刘世明,王红岩等.金属带式无级变速传动的动力学分析[J].机械工程学报,2000,36(3):65-68.
    [33]孙东野,秦大同,杨亚联.金属带式无级变速传动的运动学和动力学分析[J].重庆大学学报:自然科学版,1998,21(4):1-6.
    [34]F.Sorge.A Simple Model for the Axial Thrust in V-Belt Drives[J].Journal of Mechanical Design,1996,118:589-591.
    [35]Francesco Sorge.Analysis of the Ratio Shift Transient in V-Belt Variators[C].Proceedings of the 11th World Congress in Mechanism and MachineScience,Tianjin,China,April 1-4,2004:858-862.
    [36]唐中一,于今,顾庆祥.复合传动与控制[M].第1版.重庆:重庆大学出版社,2004.
    [37]徐立友,周志立,张明柱等.拖拉机液压机械无级变速器设计[J].农业机械学报.2006(7):5-8.
    [38]徐立友,周志立,张明柱等.拖拉机液压机械无级变速传动系统速比匹配策略[J].中国农业大学学报,2006,11(4):94-98.
    [39]郭晓林,苑士华,张银彩.等比式液压机械无级变速器设计与仿真研究[J].机床与液压,2006(8):155-158.
    [40]苑士华,侯国勇,张宝斌.液压机械无级变速器的变参数PID控制[J].机械工程学报,2004(7):81-84.
    [41]张宝彬,苑士华,赵然.液压机械连续无级传动的控制系统研究[J].车辆与动力技术,2003(4):1-3.
    [42]Takahisa Nagao,Ken Ichiryu and Koichi Masuzawa.Development of SATV[Super All Terrain Vehicle]and HMT[Hydro Mechanical Transmission]System[J].SAE paper.2002-01-1448.
    [43]G Mantriota.Power split continuously variable transmission systems with high effiency[J].Proc Instn Mech Engrs,2001,215(D):91-97.
    [44]G Mantriota.Infinitely variable transmissions with automatic regulation[J].Proc Instn Mech Engrs,2001,215(D):1267-1279.
    [45]V H Mucino.Design of continuously variable power split transmission systems for automotive applications[J].Proc Instn Mech Engrs Part,2001,215(D):469-478.
    [46]G Mantriota.Theoretical and experimental study of a power split continuously variable transmission system.Proc Instn Mech Engrs Part,2001,215(D):837-850.
    [47]Kuen-Bao Sheu,Long-Chang Hsieh,Hong-Sen Yan.On the System Design of Differential Transmissions for Motorcycles[J].中国机械工程学刊(台湾),1996(3):301-308.
    [48]Long-Chang Hsieh,Hong-Sen Yan.On the mechanical efficiency of continuously variable transmission with planetary gear trains[J].Int.J.of Vehicle Design.1990,11(2):176-186.
    [49]Andrew J.fox.Design and analysis of a modified power-split continuously variable transmission[D].West Virginia University,West Virginia,2003.
    [50]Christian Lauinger Martin Vornehm Andreas Englisch.500 Nm CVT LuK Components in Power Split[J].VDI BERICHTE,2002,1709:147-164.
    [51]邓润林,金国栋.IVT的转矩控制原理及Variator的建模[J].机械设计与制造,2005(1):91-93.
    [52]陈东升,刘化雪.IVT机构的传动特性分析[J].机械研究与应用,2005(2):42-43.
    [53]Serhan Ozdemir and John Scheueller.A new hybrid CVT design:CVPSTs[J].Heavy Vehicle Systems,2002,9(4):319-332.
    [54]黄向东,张小琴,罗玉涛等.功率分流双向汇流的新型复合无级变速系统[J].华南理工大学学报:自然科学版,2002,30(11):106-112.
    [55]刘涛.汽车设计[M].北京:北京大学出版社,2008.1.
    [56]袁家斌,浦海晨.基于遗传算法优化的神经网络电子邮件信息分类器的研究[J].南京理工大学学报:自然科学版,2008(2):78-82.
    [57]潘永智,艾兴,唐志涛.基于切削力预测模型的刀具几何参数和切削参数优化[J].中国机械工程,2008,19(4):428-431.
    [58]王东署 张文丙.基于遗传算法的机器人最优测量构型研究[J].中国机械工程,2008,19(3):262-265.
    [59]张军,林程,张国明.基于遗传算法的客车车身骨架优化设计[J].北京理工大学学报,2008(1):45-49.
    [60]于兰峰,王金诺.基于遗传算法和神经网络的塔机结构动态优化设计[J].中国机械工程,2008,19(1):61-63.
    [61]雷英杰,张善文,李续武.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.4.
    [62]陈晓东,何仁,杨正林.混合动力电动汽车性能仿真软件研究与开发[J].交通运输工程学报,2002,2(1):114-117.
    [63]葛安林.车辆自动变速器理论与设计[M].第1版.北京:机械工业出版社,1993.5.
    [64]余志生.汽车理论[M].第3版.北京:机械工业出版社,2000.10.
    [65]曾小华,王庆年,李 骏等.基于ADVISOR2002混合动力汽车控制策略模块开发[J].汽车工程,2004,26(4):394-396.
    [66]王红岩,杨志华,白雪等.金属带式无级变速器装置带轮工作面形状与带轴向偏移的分析[J].吉林工业大学学报,1997(4):15-21.
    [67]曹建国.汽车无级变速传动系统起步控制研究及仿真[D].重庆:重庆大学,2002.
    [68]阮忠唐.机械无级变速器[M].北京:机械工业出版社.1983.
    [69]张伟华,程乃士,谢里阳.直母线锥盘金属带式无级变速器带的轴向偏移分析[J].中国机械工程,2007,18(4):1005-1007.
    [70]郭毅超,何维廉,黄宏成.金属带式CVT的钢带轴向偏移分析[J].传动技术,2001(4):43-47.
    [71]濮良贵,纪名刚.机械设计[M].第6版.北京:高等教育出版社,1996.
    [72]Bas G.Vroemen.Component Control for the Zero Inertia Powertrain[D].Eindhoven:Technische Universiteit Eindhoven,2001.
    [73]朱从鉴.带传动中弹性滑动的定量分析[J].机械传动,1996,20(1):1-6.
    [74]Carbone G.,Mangialardi L.,Mantriota G.Theoretical model of metal V-belt drives during rapid ratio changing[J].ASME Journ.of Mech.Design,2001,123:111-117.
    [75]Gerbert G.,Sorge F.Full sliding:“adhesive-like”contact of V-blets[J].ASME Journal of Mech Design,2002,124:706-712.
    [76]胡建军,秦大同,刘振军.金属带式无级变速传动速比变化特性研究[J].汽车工程,2003,25(1):25-29.
    [77]马士泽,雷雨成.金属带式无级变速器速比控制研究[J].同济大学学报,2003(2):209-211.
    [78]王红岩,方泳龙,周云山.金属带式无级变速系统动态特性的仿真分析[J].汽车技术,1999(5):1-4.
    [79]张昌凡,王耀南.滑模变结构的智能控制及其应用[J].中国电机工程学报,2001(3):27-29.
    [80]任廷志.混沌系统的一种模糊变结构控制器设计[J].系统仿真学报,2003(11):1637-1638.
    [81]SUN Yibiao,GUO Qingding and LIU Yang.Research on Fuzzy Self-learning Sliding Mode Var iable Structure Control and Its Application to Linear AC Servo System[J].CONTROL THEARY AND APPLICATIONS,2001,18(6):833-837.
    [82]杨勇,文丹,罗安等.基于多目标优化的模糊滑模变结构控制及应用[J].中南大学学报:自然科学版,2006(12):1149-1154.
    [83]孙宜标,郭庆鼎,孙艳娜.基于模糊自学习的交流直线伺服系统滑模变结构控制[J].电工技术学报,2001(2):52-56.
    [84]刘启明.模糊滑模变结构控制设计[J].复旦学报:自然科学版,2004(10):952-954.
    [85]龙英文,赵光宙.模糊滑模变结构控制在伺服系统中的应用[J].电气传动,2004(1):26-28.
    [86]王丰尧.滑模变结构控制[M].第1版.北京:机械工业出版社,1995.
    [87]郭可忠.无刷直流电动机滑模变结构控制器的设计和系统仿真[J].微特电机.1995(2):17-21.
    [88]P.A.Veenhuizen,B.Bonsen,T.W.G.L.Klaasse,etc.Pushbelt CVT efficiency improvement potential ofservo-electromechanical actuation and slip control[C].2004International Continuously Variable and Hybrid Transmission Congress,Thursday,September 23,2004-to-Saturday,September 25,2004(49).
    [89]Akehurst S,Parker D A,Vaughan N D.Potential for fuel economy improvements by reducing frictional losses in a pushing metal V-belt CVT[J].SAE Paper,2004-01-0481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700