仿青蛙跳跃机器人的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿生跳跃机器人研究是机器人领域的一个前沿性课题。由于机器人不仅具备生物体结构和行为方式合理、灵活和高效的特征,其跳跃运动方式还能适应不同地表,实现跨越沟渠和障碍,具有活动范围广、躲避风险能力强的特点,展现了优异的移动能力,因此适合在非结构化、不可预测的环境里代替人类完成侦察、探测、救险和反恐等任务,有着重要的理论研究意义和广阔的应用前景。青蛙跳跃具有爆发性强、距离远的特点,拥有这种能力的跳跃机器人将能轻松越过障碍,并且具有很好的环境适应性。因此本文选择以青蛙为研究对象,进行仿青蛙跳跃机器人的研究。
     青蛙跳跃运动的轨迹和姿态变化规律是研究仿生机器人生物运动机理的基础,针对其运动信息难以获得的问题,提出了一种空间运动轨迹提取方法,在进行透视效果和迭代修正后,可得到关节点的三维坐标。针对逐点逐帧分析造成计算量大的问题,建立了一套采集程序,最终可输出青蛙各点位置、速度和加速度曲线及其各个关节角随时间的变化曲线。在对该方法的正确性进行验证后,进行了青蛙跳跃轨迹提取实验,获得了青蛙质心和各关节运动信息。然后基于对青蛙跳跃运动的观察和获取的运动信息,对青蛙的解剖学生物特征,跳跃运动特征和关节轨迹进行分析,得出了后肢关节轨迹变化的相似性、起跳阶段脚掌跗跖关节的重要功能以及前后肢在跳跃过程中各自的作用。通过动力学仿真研究了其跳跃运动过程中的力学规律,所得到的分析结果将用于仿青蛙跳跃机器人的设计和控制。
     基于对青蛙生物特征和跳跃运动机理的分析,对复杂的关节、骨骼结构进行简化,提出了一种面向跳跃运动的机构模型,并进行仿青蛙跳跃机器人设计。机器人前肢简化为一个主动肩关节和一个被动肘关节,从而实现其着陆支撑缓冲和姿态调整的功能。后肢采用五杆机构作为腿部主体,并增加脚掌和被动跗跖关节以保证跳跃和着陆时的稳定性,髋关节具有后摆和外摆两个自由度以调整跳跃的姿态、方向和轨迹。机器人可以调整多种起跳姿态以满足不同的跳跃要求;其合理的质量分布有利于提高能量转化效率;后肢通过单电机分时控制实现跳跃、空中收腿和能量调节动作,具有较高的功率密度;后肢五杆机构具有与青蛙跳跃时相似的力学规律,起跳时通过与脚掌配合,可以降低提前离开地面的可能,从而降低了能量损耗。
     运动学和动力学分析是机器人姿态调整、跳跃轨迹规划和实时控制的基础。对机器人准备和跳跃的各个阶段进行了正、逆运动学分析,建立了运动学方程,研究了腾空阶段机器人前后肢末端的运动空间。针对机器人前后肢结构复杂、不利于动力学分析的问题,基于虚功原理对其行了简化,建立了前肢和后肢运动模型,然后对机器人起跳、腾空和着陆三个阶段以及离地和触地两个瞬时进行了动力学分析,建立了起跳阶段后肢动力学方程、腾空阶段机器人运动方程、着陆阶段前肢动力学方程、离地瞬时起跳判据和触地瞬时翻转判据,并通过仿真验证了运动学和动力学方程的正确性。
     机器人的跳跃轨迹规划是使其运动满足指标要求的重要手段,是跳跃机器人完整路径规划的基础。针对动力学方程多变量和非线性造成轨迹规划算法复杂的问题,首先对机器人跳跃轨迹进行分析,然后提出了基于遗传算法的机器人跳跃轨迹多参数多目标规划方法,建立了机器人跃过各种典型地形应满足的约束条件,以跳跃稳定性、安全性、能量消耗和水平跳跃距离为目标函数,对机器人跨越水平沟渠的跳跃进行了轨迹规划实验,通过动力学计算和仿真验证了该方法的有效性。
     最后,采用分级和模块化思想,设计了机器人上位机进行运动规划、嵌入式控制器进行关节控制的控制系统,然后对机器腿单元跳跃、机器人姿态调整和机器人水平跳跃做了实验研究,并且将机器人跳跃与青蛙跳跃过程进行对比分析,实验结果表明了以仿生学方法提取出的机构模型的有效性、仿青蛙跳跃机器人结构设计的合理性和理论分析的正确性。
The research on biomimetic jumping robot is a forward positional task in robot field. The robot owns the feature of reasonable, agile and high-efficiency in structure and movement like biosome, whose jumping movement could adjust to different ground, realize getting across cannal and obstacle. The robot reveals excellent ability on movement territory and avoiding risk, so it is suitable to achieve the task such as spying, detecting, rescue, anti-terror and so on in non-frame and indeterminism circumstance instead of human. It is important for theory research and has wide application prospect. Frog’s jumping movement has the characteristic of strong burst and long distance, the robot that owns this ability could cross obstacle easily and has good adaptability for circumstance. Therefore, this paper selects frog as study target to do research on frog-like jumping robot.
     Considering that the trajectory and the stance of frog jumping movement are the basis of the research on the biological jumping mechanism of biomimetic robot design, a new method of trajectory extraction from animal’s movement is presented. And the 3D coordinate of the joint is obtained after perspective effect and iteration correction. To overcome the shortcoming of large amount of calculation, a program is designed to deal with the video images. And finally the curve of position, velocity and acceleration of each point and the angle of each joint of frog are exported. After the validation of this method, the frog movement information of center of mass and joint is obtained by experiment. Based on the observation and obtained movement information, the jumping movement characteristics and the joint trajectory are analyzed. we find the similar trajectories of hindlimb joints during jump, the important effect of foot during take-off phase and the role of forelimb and hindlimb during jump phase. The force during jump is stuied by dynamic simulation. The analysis result will be used for design and control of frog jumping robot.
     Based on the analysis of biological characteristics and jumping movement mechanism, frog’s complex joint and skeleton structure is simplified. A mechanical model is put forward and the frog jumping robot is designed. The robot’s forelimb is simplified as one active shoulder joint and one passive elbow joint for the function of supporting and stance adjusting. The 5-bar lingkage mechanism is used as the main part of the hindlimb, the foot and passive tarsometa-tarsal joint are added for guaranteing the stability of jumping and landing. The two DOFs of coxa joint are used for adjusting the pose, direction and trajectory of jump. The robot could achieve multi-stance to satisfy different demand for jump. The reasonable distribution of quality is helpful for improving efficiency. The hindlimb could realize the movement of jump, leg constriction in air and energy adjusting by single motion, which owns high density of actuator. The 5-bar linkage mechanism of hindlimb cooperated with foot has similar process of the thrust force with frog during take-off phase, which possesses the advantages of low likehood of premature lift-off and low energy loss.
     The kinematic and dynamic analysis is the base of robot stance adjusting, jumping trajectory planning and real-time control. After direct and inverse kinematic analysis on each phase of robot movement, the kinematic equation is established and the movement space of limb’s terminal during aerial phase is studied. The complex forelimb and hindlimb of robot are simplified with virtual work principle for dynamics analysis. Based on the movement model of four limbs, the hindlimb dynamics equation during take-off pahse, the robot kinematics equation during aerial phase, the forelimb dynamics equation during landing pahse, the take-off judgement at off-ground instantaneous and the eversion judgement at touchdown instantaneous are eatablished through the dynamic analysis of whole jump process of robot. The kinematic and dynamic equations are verified by simulation.
     The jumping trajectory planning is the important method to make robot movement satisfied with the target demand. It is also the base of path planning for jumping robot. Considering that non-line dynamics equation with multi-variable make trajectory planning algorithm to be complex, we first analyze the jumping trajectory, then bring forward the trajectory planning method for multi-parameter and multi-target based on genetic algorithm. The conditions for crossing typical terrain are established. Under the target function of jump stability, security, energy consuming and horizontal distance, the trajectroy planning experiment about crossing canal is done. The method’s availability is verified by dynamic computing and simulation.
     Finally, the control system is desigened based on hierarchical and modularization strategy, which includes upper computer for movement trajectory planning and embedded controller for joint control. Then the experiment about the robot leg, stance adjusting and horizontal jump is implemented, and the jump process is compared with frog. The experiment result proves that the mechanism modle extracted with biomimetic method is valid, and the mechanical design of the frog jumping robot is reasonable and the theory analysis is accurate.
引文
1谭定忠,王叶兰,王启明,曹日起.弹跳式机器人的发展现状.机械工程师, 2005, (3):30-31
    2刘壮志,席文明,朱剑英.弹跳式机器人研究.机器人, 2003, 25(6):568-573
    3李保江,朱剑英.弹跳式机器人研究综述.机械科学与技术, 2005, 24(7):803-807
    4许宏岩,付宜利,王树国,刘建国.仿生机器人的研究.机器人, 2004, 26(3):283-288
    5张秀丽,郑浩峻.机器人仿生学研究综述.机器人, 2002, 24(2):188-192
    6 R. T. M'Closkey, J. W. Burdick. Periodic motion of a hopping robot with vertical and forward motion. International Journal of Rohotics Research, May, 1993, 12(3):197-218
    7 M. H. Raibert. Legged robots that balance. Cambridge, The MIT Press, 1986
    8 D. E. Koditschek, M. Buhler. Analysis of a simplified hopping robot. International Journal of Robotics Research, 1991,10(6):587-605
    9 G. Pratt. Legged robots at MIT-What's new since Raibert. Clawar News, 2000, 4:4-7
    10 C. K. Black, K. M. Lynch. Planning and control for planar batting and hopping. Proceedings of the 36th Annual Allerton Conference on Communications, Control and Computing, 1998, 15:724-733
    11 Z. Li, R. Montgomery. Dynamics and optimal control of a legged robot in flight phase. IEEE Conference on Robotics and Automation, Cincinnati, OH, May 1990:1816-1821
    12 D. E. Koditschek, M. Bühler. Analysis of a simplified hopping robot. International Journal of Robotics Research, December 1991, 10(6): 587-605
    13 V. V. Lapshin. Dynamics and control of a hopping machine. Izv. AN SSSR, Mekh. Tverd. Tela, 1984, 5:34-42
    14 V. V. Lapshin, Motion control of a legged machine in the supportless phase of hopping. International Journal of Robotics Research, August 1991, 10(4):327-337
    15 V. B. Larin. Control of a hopping machine 1. Selection of a program trajectory. Izv. AN SSSR, Mekh. Tverd. Tela, 1979, 6:27-32
    16 V. B. Larin. Control of a hopping machine 2. Stabilization of program motion.Izv. AN SSSR, Mekh. Tverd. Tela, 1980, 1:32-40
    17 J. Hodgins, M. H. Raibert. Biped gymnastic.4th International Symposium on Robotics Research, 1988:5-14
    18 M. H. Raibert. Dynamic stability and resonance in a legged hopping machine. Conference on Theory and Practice of Robots and Manipulators, 1983:352-367
    19 M. D. Berkemeier, R. S. Fearing. Sliding and hopping gaits for the underactuated acrobot. IEEE Transaction on Robotics and Automation, 1998, 14(4):629-634
    20 A. D. Luca, G. Oriolo. Stabilization of the acrobot via iterative state steering. IEEE Conference on Robotics and Automation, 1998:3581-3587
    21 J. Hauser, R. M. Murray. Nonlinear contorllers for non-integrable systems: the acrobot example. American Control Conference, 1990:669-671
    22 F. Saito, T. Fukuda, F. Arai. Swing and locomotion control for a two-Link brachiation robot. IEEE Control System Magazine, 1994:5-12
    23 M. W. Spong. The swing up control problem for the acrobot. IEEE Control System Magazine, 1995:49-55
    24 P. Fiorini, J. Burdick. The development of hopping capabilities for small robots. Autonomous Robots, 2003, 14(2-3):239-254
    25 P. Fiorini, C. Cosma, M. Confente. Localization and sensing for hopping robots. Autonomous Robots, 2005, 18(2):185-200
    26 P. Fiorini, S. Hayati, M. Heverly, J. Gensler. A hopping robot for planetary exploration. IEEE Aerospace Conference, Snowmass, CO, March 1999, 2:153-158
    27 E. Hale, N. Schara, J. Burdick, P. Fiorini. A minimally actuated hopping rover for exploration of celestial bodies. IEEE Conference on Robotics and Automation, San Francisco, CA, 2000:420-427
    28 J. Burdick, P. Fiorini. Minimalist jumping robots for celestial exploration. The International Journal of Robotics Research, 2003, 22(7-8):653-674
    29 J. L. Pearce, P. E. Rybski, S. A.Stoeter, N. Papanikolopoulos. Dispersion behaviors for a team of multiple miniature robots. IEEE Conference on Robotics and Automation, Taipei, Taiwan, September, 2003:1158-1163
    30 S. A. Stoeter, N. Papanikolopoulos. Autonomous stair-climbing with miniature jumping robots. IEEE Transactions on Systems, Man, and Cybernetics, 2005, Part B, 35(2):313-325
    31 S. A. Stoeter, P. E. Rybski, M. Gini, N. Papanikolopoulos. Autonomous stair-hopping with scout robots. IEEE International Conference on Intelligent Robots and Systems, 2002, 721-726
    32 H. B. Brown, G. Z. Zeglin. The bow leg hopping robot. IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1998:781-786
    33 G. Z. Zeglin, H. B. Brown. Control of a bow leg hopping robot. IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1998:793~798
    34 G. Z. Zeglin. The bow leg hopping robot [PhD thesis]. Carnegie Mellon University, 1999
    35 C. Jean, Zufferey. First jumps of the 3D bow leg hopper. Micro-engineering, Diploma project report, 2001
    36 G. Z. Zeglin, H. B. Brown. First hops of the 3D Bow Leg. Proceedings of the 5th International Conference on Climbing and Walking Robots, 2002:357-364
    37 H. Tsukagoshi, M. Sasaki, A. Kitagawa, T. Tanaka. Jumping robot for rescue operation with excellent traverse ability. IEEE International Conference on Robotics and Automation, Seattle, WA, 2005:841-848
    38 http://www.sandia.gov/media/NewsRel/NR2000/hoppers.htm
    39杨煜普,耿涛,郭毓.一种新型翻转跳跃运动机器人的运动结构与轨迹规划.上海交通大学学报. 2003, 37(7):1110-1113
    40刘壮志.弹跳机器人若干关键技术研究.南京航空航天大学博士论文. 2004, 12
    41李保江.跳跃式机器人机构设计与动力学分析.南京航空航天大学博士论文. 2006, 9
    42 G. J. Zeglin. Uniroo: A one-legged dynamic hopping robot [B.S. thesis]. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1991
    43 R. R. Playter, M. H. Raibert. Control of a biped somersault in 3D. IEEE International Conference on Intelligent Robots and Systems, 1992:582-589
    44 R. R. Playter. Passive dynamics in the control of gymnastic maneuvers [PhD thesis], Department of Aeronautical and Astronautical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1994
    45 M. Ahmadi, M. Buehler. The ARL monopod II running robot: control and energetics. IEEE International Conference on Robotics and Automation, Detroit, MI, USA, 1999:1689-1694
    46 S. Hyon, T. Emura, T. Mita. Dynamics-based control of one-legged hopping robot. Journal of Systems and Control Engineering, Proceedings of the Institution of Mechanical Engineers Part I, 2003:83-98
    47 S. Hyon, S. Abe, T. Emura. Development of a biologically-inspired biped robotKenken II. Proceedings of 6th Japan-France Congress on Mechatronics and 4th Asia-Europe Congress on Mechatronics, 2003:404-409
    48 S. Hyon, S. Kamijo, T. Mita. A biologically inspired hopping robot-Kenken. Trans on RSJ, 2002, 20(4):453-462
    49 S. Hyon, T. Mita. Development of a biologically inspired hopping robot-Kenken. IEEE International Conference on Robotics and Automation, Washington DC, USA, 2002:3984-3991
    50 S. P. N. Singh, K. J. Waldron. Attitude estimation for dynamic legged locomotion using range and inertial sensors. IEEE International Conference on Robotics and Automation, 2005:1663-1668
    51 J. G. Nichol. Design for energy loss and energy control in a galloping artificial quadruped [PhD thesis], Department of Mechanical Engineering, Stanford university, 2005
    52 J. G. Nichol, S. P. N. Singh, K. J. Waldron, L. R. Palmer, D. E. Orin. System design of a quadrupedal galloping machine. The International Journal of Robotics Research, 2004, 23(10-11):1013-1027
    53 M. Yamakita, Y. Omagari, Y. Taniguchi. Jumping cat robot with kicking a wall. Journal of the Robotics Society of Japan, 1994, 6:934-938
    54 N. Ueno. A study on efficient vertical movement of robotic systems inspired by cat’s jumping [B.S. thesis]. Department of Control and Systems Engineering, Tokyo Institute of Technology, 1999
    55 M. C. Birch, R. D. Quinn, G. Hahm, S. M. Phillips, et al. Design of a cricket microrobot. IEEE International Conference on Robotics and Automation, San Francisco CA, 2000:1109-1114
    56 S. Laksanacharoen, A. Pollack, G. M. Nelson, et al. Biomechanics and simulation of cricket for microrobot design. IEEE International Conference on Robotics and Automation, San Francisco CA, 2000:1088–1094
    57 R. Niiyama, A. Nagakubo, Y. Kuniyoshi. Mowgli: a bipedal jumping and landing robot with an artificial musculoskeletal system. IEEE International Conference on Robotics and Automation, Roma, Italy, 2007:2546-2551
    58 S. H. Park. Dynamic modelling and link mechanism of mobile robot. Twenty-Fifth Southeastern Symposium on System Theory, 1993:368-372
    59余杭杞.仿蝗虫四足跳跃机器人的机构设计和运动性能分析.哈尔滨工业大学硕士论文,2006
    60马建旭,马培菘,杨保忠等.四足步行机器人中一种新型腿结构缓冲特性.上海交通大学学报, 1997, 33(7):847-850
    61葛文杰.仿袋鼠跳跃机器人运动学及动力学研究.西北工业大学博士论文, 2006
    62葛文杰,沈允文,杨方.仿袋鼠柔性跳跃机器人的驱动力特性研究.中国机械工程, 2006, 17(8):857-861
    63葛文杰,沈允文,杨方.仿袋鼠机器人跳跃运动步态的运动学研究.机械工程学报, 2006, 42(5):22-26
    64 L. Zeng, H. Matsumoto, K. Kawachi. A fringe shadow method for measuring flapping angle and torsional angle of a dragonfly wing. Measurement Science and Technology, 1996, 7:776-781
    65 L. Zeng, H. Matsumoto, K. Kawachi. Divergent-ray projection method for measuring the flapping angle, lag angle, and torsional angle of a bumblebee wing. Optical Engineering, 1996, 35:3135-3139
    66 A. P. Willmott, C. P. Ellington. Measuring the angle of attack of beating insecct wings: robust three-dimensional reconstruction form tow-dimensional images. J Exp Bio, 1997, 200:2693-2704
    67 L. Zeng, H. Matsumoto, S. Sunada, K. Kawachi. High-resolution method for measuring the torsional deformation of a dragonfly wing by combining a displacement probe with an acousto-optic deflector. Optical Engineering, 1996,
    35:507-513
    68于起峰,陆宏伟,刘肖.基于图像的精密测量与运动测量.科学出版社,北京, 2002.185-193
    69何真,陆宇平.昆虫飞行特性的视觉测量方法.南京理工大学学报, 2005, 10:160-163
    70梁建宏,王田苗,魏洪兴.水下仿生机器鱼的研究进展I—鱼类推进机理.机器人, 2002, 24 (2): 107-111
    71敬军,李晟.鲫鱼C形起动的运动学特征分析.实验力学, 2004, 19(3):276-282
    72吴燕峰,贾来兵.斑马鱼S型起动运动学研究.实验力学, 2007, 22(5):519-526
    73李非.背鳍/背臀鳍波动推进机理实验研究及仿真.国防科学技术大学硕士论文. 2005
    74梁建宏,王田苗,魏宏兴.仿生机器鱼技术研究进展及关键问题探讨.仿生机器人, 2003:14-19
    75 R. D. Quinn, R. E. Ritzmann. Construction of a hexapod robot with cockroach kinematics benefits both robotics and biology. Connection Science, 1998,10(3-4): 239-254
    76周欣,蒋垚,曾炳芳.步态分析在人工关节置换术后的应用意义.中国骨与关节损伤杂志, 2006, 21(5):414-416
    77 V. Lagen, G. J. Schenau. From rotation to translation: Constraints on multi-joint movements and the unique action of bi-articular muscles. Human Movement Science, 1989, 8:301-337
    78 R. L. Marsh, H. B. John-Alder. Jumping performance of hylid frogs measured with high-speed cine film. Journal of Experimental Biology, 1994, 188: 131-141
    79 G. B. Gillis, A. A. Biewener. Hindlimb extensor muscle function during jumping and swimming in the toad (Bufo marinus). Journal of Experimental Biology, 2000, 203: 3547-3563
    80 S. E. Peters, L. T. Kamel, D. P. Bashor, et al. Hopping and swimming in the leopard frog, Rana pipiens: I. Step cycles and kinematics. Journal of Morphology, 1996, 230: 1-16
    81 G. M. Nelson, R. D. Quinn, R. J. Bachmann, et al. Design and simulation of a cockroach-like hexapod robot. IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico, 1997: 1106-1111
    82 D. Kingsley. A cockroach inspired robot with artificial muscles [PhD thesis]. Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, 2005
    83 R. D. Quinn, R. E. Ritzmann. Construction of a hexapod robot with cockroach kinematics benefits both robotics and biology. Connection Science, 1998, 10 (3-4): 239-254
    84 U. Saranli, W. J. Schwind, D. E. Koditschek. Toward the control of a multi-jointed monoped runner. IEEE International Conference on Robotics and Automation, 1998:2676-2682
    85 H. C. Wong, D. E. Orin. Dynamic Control of a Quadruped Standing Jump. IEEE International Conference on Robotics and Automation, Atlanta GA, 1993, (3):346-351
    86刘延柱.跳跃运动的动力学解释.上海力学, 1986, (2):21-27
    87刘延柱,周祥玉.原地跳跃的动力学问题.上海交通大学学报, 1987, 21(3):93-99
    88刘延柱.跳跃运动的定性理论.力学学报, 1994, 26(4):477-482
    89黄真,孔令富,方跃法.并联机器人机构学理论及控制.机械工业出版社,1997
    90霍伟.机器人动力学与控制.高等教育出版社,北京, 2005
    91庞明.三肢体机器人运动规划及控制研究.哈尔滨工业大学博士论文. 2008:33-60
    92余联庆,仿马四足机器人机构分析与步态研究.华中科技大学博士论文,2007
    93田为军.德国牧羊犬步态动力学分析与仿真研究.吉林大学硕士论文, 2008
    94 S. B. Emerson, H. J. Jongh. Muscle activity at the ilio-sacral articulation of frogs. Journal of Morphology, 1980, 166: 129-144
    95刘凌云,郑光美.普通动物学.高等教育出版社,北京, 2005
    96 W. P. Lombard, F. M. Abbot. The mechanical effects produced by the contraction of individual muscles of the thigh of the frog. American Journal of Physiology, 1906, 10:1-60
    97 C. Gans, T. S. Parsons. On the origin of the jumping mechanism in frogs. Evolution, 1966, 20: 92–99
    98 M. Hildebrand. Walking and running. Belknap Press, Cambridge MA, USA, 1985: 38-57
    99 S. B. Emerson. Jumping and leaping. Belknap Press, Cambridge MA, USA, 1985: 58-72
    100 L. J. Calow, R. MCN. Alexander. A mechanical analysis of the hind leg of a frog (Rana temporaria). Journal of Zoology, London, 1973, 171:293-321
    101 R. L. MARSH, H. B. John-Alder. Jumping performance of hylid frogs measured with high-speed cine film. Journal of Experimental Biology, 1994, 188:131-141
    102赵锡芳.机器人动力学.上海交通大学出版社,上海, 1992
    103 J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Norwell, Massachusetts, USA, 1991:48-60
    104沈猛.轮式移动机器人导航控制与路径规划研究.西北工业大学博士学位论文, 2006:42-44
    105 M. R. K. Ryan. Exploiting subgraph structure in multi-robot path planning. Journal of Artificial Intelligence Research, 2008,31:497-542
    106 Y. K. Hwnag, N. Ahuja. A potential field approach to path planning. IEEE Transactions on Roboties and Automation, 1992, 8(l):23-32
    107 A. R. Willms, S. X. Yang. Real-time robot path planning via a distance propagating dynamic system with obstacle clearance. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008,38(3):884-893
    108 R. Hayashi, S. Tsujio. High-performance jumping movement by pendulum-type jumping machines. IEEE International Conference on Intelligent Robots and Systems, 2001:722-727
    109 J. K. Hodgins, M. N. Raibert. Adjusting step length for rough terrain locomotion. IEEE Transactions on Robotics and Automation, 1991, 7(3):289-298
    110 L. Bokman, J. Babic, F. C. Park. Optimal jumps for biarticular legged robots. IEEE International Conference on Robotics and Automation, 2008:226-231
    111 B. P. Wang, R. X. Hu, X. D. Zhang. Gait planning and intelligent control for a quadruped robot. Journal of Control Theory and Applications, 2009, 7(2):207-211
    112李保江.弹跳机器人动力学分析.南京航空航天大学学报, 2006, 38(1):76-80
    113周明,孙树栋.遗传算法原理及应用.国防工业出版社,北京, 2005
    114王小平,曹立明.遗传算法;理论、应用与软件实现.西安交通大学出版社, 2002
    115 G. Capi, S. Kaneko. Optimal trajectory generation for a prismatic joint biped robot using genetic algorithms. Robotics and Autonomous Systems. 2002(38):119-128
    116 O. Castillo, L. Trujillo, P. Melin. Multiple objective genetic algorithms for path-planning optimization in autonomous mobile robots. Soft Computing, 2007, 11(3):269-279
    117 W. F. Xu, Y. Liu, B. Liang. Non-holonomic path planning of a free-floating space robotic system using genetic algorithms. Advanced Robotics, 2008, 22(4):451-476
    118董春,徐文力.仿人手臂动力学控制实验平台的设计与实现.机器人, 2004, 26(1): 23-26
    119张云洲,吴成东.自主移动机器人嵌入式控制系统研究.东北大学学报, 2008, 29(01):29-32
    120黄永志,陈卫东.两轮移动机器人运动控制系统的设计与实现.机器人, 2004, 26(1): 40-44
    121 Z. X. Ji, D. Hans, Y. Y. Zhen, X. Ning,R. L. Tummala. DSP solution for wall-climber micro-robot control ysing TMS320LF2407 chip. IEEE Midwest Symposium on Circuits and Systems, 2000: 1348-1351
    122 Z. Teresa, H. John. Development of a walking machine: mechanical design and control problems. Mechatronics, 2002, 12: 737-754
    123钟新华,蔡自兴,邹小兵.移动机器人运动控制系统设计及控制算法研究.华中科技大学学报(自然科学版), 2004, 32(增刊):133-136
    124刘和平,王维俊,江渝,邓力. TMS320LF240xDSP C语言开发应用.北京航空航天大学出版社. 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700