基于四轮协调的电动轮车辆纵横向耦合动力学控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与内燃机汽车和单电机驱动电动汽车相比,轮毂电机驱动的电动轮车在动力源配置、底盘结构和车辆操控性等方面具有独特的技术特点和优势,是电动汽车发展的一个独特方向。轻量化、集成化、高性能的电动轮车是未来理想的一种清洁、节能、安全型电动汽车。本论文利用电动轮车各电动轮的转速和转矩可独立控制的特点,研究电动轮车纵横向动力学耦合关系及耦合控制,以提高电动轮车的操纵稳定性。
     结合电动轮车各电动轮转矩可独立控制的特点,建立了涉及左右轮纵向力差的3自由度、4自由度线性车辆动力学模型和16自由度非线性车辆动力学模型,据此分析了左右轮纵向力差形成的横摆力矩影响车辆横摆角速度,从而间接影响车辆横向运动的间接纵横向动力学耦合,和左右前轮纵向力差形成的前轮绕主销转向力矩影响前轮转角,从而直接影响车辆横向运动的直接纵横向动力学耦合。将“魔术公式”经验轮胎模型,微分校正单点预瞄最优曲率驾驶员模型,根据能量宏表达方法建立的电驱动系统能量宏表达EMR和最大控制结构MCS模型,与16自由度非线性车辆动力学模型相结合形成电动轮车整车系统模型,可对电动轮车进行综合性能仿真。
     电动轮车可利用各电动轮转速可独立控制的特点实现电子差速。在利用阿克曼转向模型对车辆转向时的四轮差速关系进行理论分析的基础上,提出了通过推行转向试验确定四轮差速关系的方法。将电机转速前馈控制和反馈增量式PID控制结合应用对轮边电机进行调速控制,通过四路并行的轮边电机调速控制,使各轮转速满足四轮差速关系。据此开发了应用于电动轮车实车的电子差速控制方法,多种工况的实车试验验证了所提出的基于推行转向试验确定四轮差速关系的电动轮车电子差速控制方法的有效性。
     电动轮车可利用左右轮纵向力差实现直接横摆力矩控制。通过合理分配各轮转矩,利用左右轮纵向力差形成的地面对车辆的附加横摆力矩,以间接纵横向动力学耦合方式提高车辆操纵稳定性。在确定左右轮纵向力差的方法上,研究了基于前轮转角前馈的直接横摆力矩控制和基于横摆角速度反馈的直接横摆力矩控制,两者均可改善车辆操纵稳定性,但后者比前者具有更好的适应性和抗干扰性。通过实际电动轮车横摆力矩控制试验,验证了左右轮驱动力差形成的附加横摆力矩可影响车辆横摆角速度,从而影响车辆的转向性能。
     电动轮车可利用左右前轮纵向力差实现差力主动转向。提出了差力主动转向的概念,即通过左右前轮纵向力差形成的前轮绕主销转向力矩使前轮主动转向。通过对转向电动轮和转向机构进行运动学和动力学分析,研究了电动轮车差力主动转向机理。通过合理分配左右前轮转矩,利用左右前轮纵向力差形成的前轮绕主销转向力矩影响前轮转角,以直接纵横向动力学耦合方式提高车辆操纵稳定性。在确定左右轮纵向力差的方法上,研究了基于线性二次型输出跟踪控制的差力主动转向与直接横摆力矩联合控制,可充分发挥两者优点,改善车辆操纵稳定性。通过实际电动轮车差力主动转向试验,验证了左右前轮差力驱动形成的前轮转向力矩可使前轮主动转向,从而影响车辆的转向性能。通过实际电动轮车差力主动转向和横摆力矩联合控制试验,验证了差力主动转向使前轮产生主动转角的同时,反向横摆力矩可削弱差力主动转向引起的整车横摆角速度,减少了差力主动转向时存在的过多转向趋势。
     综上所述,本论文利用电动轮车各电动轮可独立控制的特点,对基于四轮协调的电动轮车纵横向耦合动力学及控制进行了理论研究和仿真分析,并通过实车试验验证了所述电动轮车电子差速控制、直接横摆力矩控制和差力主动转向控制的有效性,该研究成果对电动轮车研发具有参考和借鉴价值。
Compared with the internal combustion engine vehicle and the electric vehicle driven by a single motor, the motor-wheel driving electric vehicle with hub motor has, the unique technical characteristics and the advantage on drive unit configuration, chassis structure and vehicle handling stability, and then is a unique development direction of the electric vehicle. The lightweight, integrated and high performance motor-wheel driving electric vehicle will be a kind of clean, energy saving and safe ideal electric vehicle in the future. According to the feature that the speed and torque of each motor-wheel can be controlled independently, the longitudinal and lateral dynamic coupling relation and coupling control of the motor-wheel driving electric vehicle are researched in this dissertation in order to improve its handling stability.
     According to the feature that the torque of each motor-wheel can be controlled independently, three degree of freedom, four degree of freedom vehicle linear dynamic model and sixteen degree of freedom vehicle nonlinear dynamic model involving the longitudinal force difference between left and right wheels are built. In terms of these models, this dissertation researches the longitudinal and lateral dynamic indirect coupling relation that the longitudinal force difference between left and right wheels forms the yaw moment to affect the vehicle yaw rate and then indirectly affects the vehicle lateral motion, and the longitudinal and lateral dynamic direct coupling relation that the longitudinal force difference between left and right front-wheels forms the steering torque to rotate the front-wheel round its king pin and to change the front-wheel steering angle and then directly affects the vehicle lateral motion. The "Magic Formula" empirical tyre model, the differential adjusting single point preview optimal curvature driver model, the electric drive system EMR (Energetic Macroscopic Representation) and MCS (Maximum Control Structure) model and the sixteen degree of freedom vehicle nonlinear dynamic model are integrated into the system model of the motor-wheel driving electric vehicle to simulate its comprehensive performance.
     According to the feature that the speed of each motor-wheel can be controlled independently, the motor-wheel driving electric vehicle can realize the electronic differential. The differential relationship among four wheels is analyzed according to the Ackerman steer model, and then the method for determining the differential relationship through the push and steer test is proposed. The feedforward control and the incremental PID feedback control are combined to regulate the motor speed. Each motor speed can meet the differential relationship through four parallel control of motor speed regulation. Hereby, the electronic differential control method applied to the real motor-wheel driving electric vehicle is developed. This electronic differential control based on the differential relationship determined through the push and steer test for the in-wheel motor drive electric vehicle is validated through the road tests of different conditions.
     The motor-wheel driving electric vehicle can realize the direct yaw-moment control by means of the longitudinal force difference between left and right wheels. Through the reasonable torque distribution among four motor-wheels, the longitudinal force difference between left and right wheels forms the additional yaw moment applied to the vehicle by the ground to improve the vehicle handling stability in the mode of the longitudinal and lateral dynamic indirect coupling. In order to determine the reasonable longitudinal force difference between left and right wheels, the direct yaw-moment control based on the feedforward of the front-wheel steering angle or the feedback of the vehicle yaw rate is researched. These two methods can improve the vehicle handling stability, but the latter is better than the former on the adaptability and the anti interference performance. The yaw-moment control test of the real motor-wheel driving electric vehicle validates that the longitudinal force difference between left and right wheels can form the additional yaw moment to affect the vehicle yaw rate and the vehicle steering performance.
     The motor-wheel driving electric vehicle can realize the differential drive active steering by means of the longitudinal force difference between left and right front-wheels. This dissertation puts forward the concept of the differential drive active steering that the longitudinal force difference between left and right front-wheels forms the steering torque to rotate the front-wheel round its king pin and to make the front-wheel steer actively. The mechanism of the differential drive active steering is researched through the kinematic and dynamic analysis of the steering motor-wheel and the steering mechanism. Through the reasonable torque distribution between left and right front-wheels, the longitudinal force difference between left and right front-wheels forms the steering torque to rotate the front-wheel round its king pin and to change the front-wheel steering angle in order to improve the vehicle handling stability in the mode of the longitudinal and lateral dynamic direct coupling. In order to determine the reasonable longitudinal force difference between left and right wheels, the combined control of the differential drive active steering and the direct yaw-moment control based on the linear quadratic output tracking control is researched. This combined control can fully exert each advantage to improve the vehicle handling stability. The differential drive active steering test of the real motor-wheel driving electric vehicle validates that the longitudinal force difference between left and right front-wheels can form the steering torque to make the front-wheel steer actively and then affect the vehicle steering performance. The combined control test of the differential drive active steering and the direct yaw-moment control of the real motor-wheel driving electric vehicle validates that when the longitudinal force difference between left and right front-wheels makes the front-wheel steer actively, the reverse yaw-moment can weaken the vehicle yaw rate caused by the differential drive active steering so that the trend of oversteering during the differential drive active steering is reduced.
     In short, according to the feature that each motor-wheel can be controlled independently, the longitudinal and lateral coupling dynamic and its control of the motor-wheel driving electric vehicle based on the coordination of four wheels are researched and analyzed, and the proposed electronic differential control, direct yaw-moment control and differential drive active steering control are validated through the test of the real motor-wheel driving electric vehicle. These research results can be used as reference for the research and development of the motor-wheel driving electric vehicle.
引文
[1]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社,2002.
    [2]Watts A, Vallance A, Whitehead A, et al. The technology and economics of in-wheel motors[J]. SAE International Journal of Passenger Cars-Electronic and Electrical Systems,2010,3(2):37-54.
    [3]“十二五”国家高技术研究发展计划(863计划)现代交通技术领域电动汽车关键技术与系统集成(一期)重大项目课题申请指南[EB/OL]. (2010-10-28)http://www.863.gov.cn/news/1010/28/1010283763.htm.
    [4]宁国宝.电动车轮边驱动系统的发展[J].上海汽车,2006(11):2-6.
    [5]Shimizu H, Ishitani H, Yoshimoto K, et al. Development of a high-performance electric vehicle "IZA"[J]. JSAE Review,1993,14(2):76-80.
    [6]Shimizu H, Kawakami K, Kondo Y. Evolution and future development of the small EV "Luciole"[C]. EVS14,1997.
    [7]Matsugaura S, Kawakami K, Shimizu H, et al. Advanced direct drive system for new concept electric vehicle "KAZ"[C]. EVS18,2001.
    [8]Matsugaura S, Kawakami K, Shimizu H. Evaluation of performances for the in-wheel drive system for the new concept electric vehicle "KAZ"[C]. EVS19,2002.
    [9]Hori Y. Future vehicle driven by electricity and control-Research on four wheel motored "UOT Electric March II"[C]. International Workshop on Advanced Motion Control, Maribor, Slovenia,2002:1-14.
    [10]Kodama S, Hori Y. Skid prevention for EVs based on the emulation of torque reduction characteristics of separately-excited DC motor-Experimental validation by "UOT CADWELL EV" driven by BLDC motors[J]. IEEJ Transactions on Industry Applications,2006,126(3):248-254.
    [11]Kawashima K, Uchida T, Hori Y. Vehicle stabilizing control using small EV powered only by ultra capacitor[C]. International Workshop on Advanced Motion Control, Istanbul, Turkey,2006:585-589.
    [12]Hori Y. Future vehicle society based on electric motor, capacitor and wireless power supply[C].2010 International Power Electronics Conference, Sapporo, Japan, 2010:2930-2934.
    [13]佚名.《三菱汽车》推出带电动轮的混驱CT概念车[J].汽车与配件,2007(3):25.
    [14]杨妙梁.通用(GM)集团的最新环保技术[J].汽车与配件,2004(15):32-36.
    [15]变革未来城市个人交通解决方案—通用汽车EN-V电动联网概念车[EB/OL]. http://www.gmchina.com:7001/tech/in/env.jsp.
    [16]张怀东,白雪峰.美军“影子RST-V"越野车简介[J].汽车运用,2005(3):14.
    [17]同济大学新能源汽车工程中心,万钢.四轮驱动电动汽车结构.中国,CN2600278[P].2004-01-21.
    [18]同济大学新能源汽车工程中心,万钢.可安装多种制动盘的外转子轮毂电机.中国,CN 1607711[P].2005-04-20.
    [19]上海燃料电池汽车动力系统有限公司,万钢.多电机轮边独立驱动的电动车动力控制系统及方法.中国,CN101168352[P].2008-04-30.
    [20]上海燃料电池汽车动力系统有限公司,万钢.四轮驱动燃料电池汽车的内转子型一体化电动轮结构.中国,CN200951715[P].2007-09-26.
    [21]上海燃料电池汽车动力系统有限公司,万钢.复合轴行星架输出型外转子轮毂电机结构.中国,CN200953505[P].2007-09-26.
    [22]上海燃料电池汽车动力系统有限公司,万钢.集成外侧盘式制动器的行星架输出型内转子一体化电动轮.中国,CN200953506[P].2007-09-26.
    [23]上海燃料电池汽车动力系统有限公司,万钢.电动轮耐久性试验台架.中国,CN201133871[P].2008-10-15.
    [24]靳立强,王庆年,张缓缓.电动轮驱动汽车差速性能试验研究[J].中国机械工程,2007,18(21):2632-2636.
    [25]北京理工大学.采用轮毂电机的混合动力总成.中国,CN1817674[P].2006-08-16.
    [26]北京航空航天大学.一种轮毂电机传动的太阳能电动车.中国,CN201665149U[P].2010-12-08.
    [27]东风电动车辆股份有限公司.由轮毂电机前驱动发动机后驱动的混合动力车.中国,CN201116074[P].2008-09-17.
    [28]东风电动车辆股份有限公司.由发动机前驱动轮毂电机后驱动的混合动力车.中国,CN201154662[P].2008-11-26.
    [29]北京清能华通科技发展有限公司.一种超微型电动车.中国,CN1948039[P].2007-04-18.
    [30]比亚迪股份有限公司.电动汽车的四轮驱动系统及驱动方法.中国,CN1982114[P].2007-06-20.
    [31]深圳先进技术研究院.采用电气系统实现混联功率分配的混合动力系统.中国,CN 101186209[P].2008-05-28.
    [32]辜承林.轮毂电机发展思考[J].电机技术,2006(3):3-6.
    [33]辜承林.电动车轮毂永磁电机实用技术探讨[J].微电机,2008,41(2):56-59.
    [34]褚文强,辜承林.电动车用轮毂电机研究现状与发展趋势[J].电机与控制应用,2007,34(4):1-5.
    [35]Bridgestone dynamic-damping in-wheel motor drive system:details[EB/OL]. (2003-09-04). http://www.bridgestone.eu/upload/album/AP_8796.pdf.
    [36]杨妙梁.普利司通公司轮毂电机新技术[J].汽车与配件,2004(32):34-38.
    [37]Michelin Active Wheel[EB/OL]. (2008-10-30). http://servicesv2.webmichelin.com/ frontnews/ servlet/ GetElement?elementCode=54609.
    [38]海棠.电动汽车革命性技术的创新设计米其林“主动车轮”新技术[J].汽车与配件,2008(52):36-37.
    [39]Siemens VDO making a case for in-wheel systems:the eCorner project[EB/OL]. (2006-09-01). http://www.greencarcongress.com/2006/09/siemens_vdo_mak.html.
    [40]Siemens VDO announces eCorner motor-in-hub concept [EB/OL]. (2006-08-10). http://www.autoblog.com/2006/08/10/siemens-vdo-announces-ecorner-motor-in-hub-co ncept/.
    [41]同济大学新能源汽车工程中心,万钢.四轮电子差速转向控制系统.CN1475390[P].2004-02-18.
    [42]浙江工业大学.电动汽车用四轮毂电机驱动实现四轮转向的电子差速转向控制系统.CN101716952A[P].2010-06-02.
    [43]Perez Pinal F J, Nunez C, Alvarez R, et al. Electric differential for traction applications[C]. Proceedings of the 2007 IEEE Vehicle Power and Propulsion Conference (VPPC 2007), Arlington, TX, United states,2007:771-776.
    [44]Haddoun A, Benbouzid M E H, Diallo D, et al. Modeling, analysis, and neural network control of an EV electrical differential [J]. IEEE Transactions on Industrial Electronics, 2008,55(6):2286-2294.
    [45]Magallan G A, De Angelo C H, Bisheimer G, et al. A neighborhood electric vehicle with electronic differential traction control[C]. Proceedings of 34th Annual Conference of the IEEE Industrial Electronics Society, Orlando, FL, United states,2008:2757-2763.
    [46]周勇,李声晋,田海波,等.四轮毂电机电动车的电子差速控制方法[J].电机与控制学报,2007,11(5):467-471.
    [47]Lee J S, Ryoo Y J, Lim Y C, et al. A neural network model of electric differential system for electric vehicle[C]. Proceedings of Industrial Electronics Conference, Nagoya, Japan,2000:83-88.
    [48]唐文武,陈世元,郭建龙.基于BP神经网络的电动车电子差速器设计[J].汽车工程,2007,29(5):437-440.
    [49]郭建龙,陈世元.电动车用多电机独立轮式驱动的协调运行分析[J].微特电机,2007(1):13-16.
    [50]翟丽,孙逢春,谷中丽.电子差速履带车辆转向转矩神经网络PID控制[J].农业机械学报,2009,40(2):1-5.
    [51]翟丽,董守全,罗开宇.四轮毂电机独立驱动车辆转向电子差速控制[J].北京理工大学学报,2010,30(8):901-905.
    [52]谭国俊,钱苗旺,赵忠祥,等.双电机独立驱动电动车辆电子差速控制[J].微特电机,2009(6):33-36.
    [53]重庆大学.基于滑移率控制的电动车差速转向控制方法.CN101574979[P].2009-11-11.
    [54]葛英辉,倪光正.新的轮式驱动电动车电子差速控制算法的研究[J].汽车工程,2005,27(3):340-343.
    [55]葛英辉,倪光正.新型电动车电子差速控制策略研究[J].浙江大学学报(工学版),2005,39(12):1973-1978.
    [56]赵艳娥,张建武.轮毂电机驱动电动汽车电子差速系统研究[J].系统仿真学报,2008,20(18):4767-4771.
    [57]靳立强,王庆年,张缓缓,等.电动轮驱动电动汽车差速技术研究[J].汽车工程,2007,29(8):700-704.
    [58]靳立强,王庆年,周雪虎,等.电动轮驱动汽车电子差速控制策略及仿真[J].吉林大学学报(工学版),2008,38(增刊):1-6.
    [59]Sakai S I, Sado H, Hori Y. Motion control in an electric vehicle with four independently driven in-wheel motors[J]. IEEE/ASME Transactions on Mechatronics,1999,4(1):9-16.
    [60]Sakai S I, Hori Y. Robustified model matching control for motion control of electric vehicle[C]. International Workshop on Advanced Motion Control, Coimbra, Portugal, 1998:574-579.
    [61]He P, Hori Y, Kamachi M, et al. Future motion control to be realized by in-wheel motored electric vehicle[C]. Proceedings of Industrial Electronics Conference, Raleigh, NC, United states,2005:2632-2637.
    [62]Sakai S I, Sado H, Hori Y. Dynamic driving/braking force distribution in electric vehicles with independently driven four wheels[J]. Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi),2002,138(1):79-89.
    [63]Nam K, Oh S, Hori Y. Robust yaw stability control for electric vehicles based on active steering control[C]. Proceedings of 2010 IEEE Vehicle Power and Propulsion Conference(VPPC 2010), Lille, France,2010:1-5.
    [64]Minaki R, Hoshino H, Hori Y. Driver steering sensitivity design using road reaction torque observer and viscous friction compensation to active front steering[C]. IEEE International Symposium on Industrial Electronics, Bari, Italy,2010:155-160.
    [65]Nam K, Oh S, Hori Y. Robust yaw stability control for electric vehicles based on Steering Angle-Disturbance Observer (SA-DOB) and tracking control design[C]. Proceedings of Industrial Electronics Conference, Glendale, AZ, United states, 2010:1943-1948.
    [66]Minaki R, Hori Y. Study on cornering stability control based on pneumatic trail estimation by using dual pitman arm type steer-by-wire on electric vehicle[C]. Proceedings of 2010 IEEE Vehicle Power and Propulsion Conference(VPPC 2010), Lille, France,2010:1-6.
    [67]Kawashima K, Uchida T, Hori Y. Rolling stability control of in-wheel electric vehicle based on two-degree-of-freedom control[C]. International Workshop on Advanced Motion Control, Trento, Italy,2008:751-756.
    [68]Sakai S I, Sado H, Hori Y. Anti skid control with motor in electric vehicle[C]. International Workshop on Advanced Motion Control, Nagoya, Japan,2000:317-322.
    [69]Li L, Kodama S, Hori Y. Anti-skid control for EV using dynamic model error based on back-EMF observer[C]. Proceedings of Industrial Electronics Conference, Busan, Korea, 2004:1700-1704.
    [70]Hori Y, Toyoda Y, Tsuruoka Y. Traction control of electric vehicle: basic experimental results using the test EV "UOT Electric March"[J]. IEEE Transactions on Industry Applications,1998,34(5):1131-1138.
    [71]Yin D, Hori Y. A novel traction control of EV based on maximum effective torque estimation[C]. Proceedings of 2008 IEEE Vehicle Power and Propulsion Conference(VPPC 2008), Harbin, China,2008.
    [72]Furukawa K, Hori Y. Recent development of road condition estimation techniques for electric vehicle and their experimental evaluation using the test EV "UOT March I and Ⅱ"[C]. Proceedings of Industrial Electronics Conference, Roanoke, VA, United states, 2003:925-930.
    [73]Sado H, Sakai S I, Hori Y. Road condition estimation for traction control in electric vehicle[C]. IEEE International Symposium on Industrial Electronics, Bled, Slovenia, 1999:973-978.
    [74]Kataoka H, Sado H, Sakai I, et al. Optimal slip ratio estimator for traction control system of electric vehicle based on fuzzy inference[J]. Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi),2001,135(3):56-63.
    [75]Sakai S I, Sado H, Hori Y. Novel skid detection method without vehicle chassis speed for electric vehicle[J]. JSAE review,2000,21(4):503-510.
    [76]Fujimoto H, Saito T, Noguchi T. Motion stabilization control of electric vehicle under snowy conditions based on yaw-moment observer[C]. International Workshop on Advanced Motion Control, Kawasaki, Japan,2004:35-40.
    [77]Fujimoto H, Saito T, Tsumasaka A, et al. Motion control and road condition estimation of electric vehicles with two in-wheel motors[C]. Proceedings of the IEEE International Conference on Control Applications, Taipei, Taiwan,2004:1266-1271.
    [78]Fujimoto H, Yamauchi Y. Advanced motion control of electric vehicle based on lateral force observer with active steering[C]. IEEE International Symposium on Industrial Electronics, Bari, Italy,2010:3627-3632.
    [79]Ando N, Fujimoto H. Yaw-rate control for electric vehicle with active front/rear steering and driving/braking force distribution of rear wheels[C]. International Workshop on Advanced Motion Control, Nagaoka, Niigata, Japan,2010:726-731.
    [80]Sumiya H, Fujimoto H. Range extension control system for electric vehicle with active front steering and driving/braking force distribution on curving road[C]. Proceedings of Industrial Electronics Conference, Glendale, AZ, United states,2010:2352-2357.
    [81]Raksincharoensak P, Nagai M, Shino M. Lane keeping control strategy with direct yaw moment control input by considering dynamics of electric vehicle[J]. Vehicle System Dynamics,2006,44(Suppl.1):192-201.
    [82]靳立强,王庆年,宋传学.四轮独立驱动电动汽车动力学控制系统仿真[J].吉林大学学报(工学版),2004,34(4):547-553.
    [83]王庆年,张缓缓,靳立强.四轮独立驱动电动车转向驱动的转矩协调控制[J].吉林大学学报(工学版),2007,37(5):985-989.
    [84]王庆年,王军年,靳立强,等.用于电动轮驱动汽车的差动助力转向[J].吉林大学学报(工学版),2009,39(1):1-6.
    [85]王军年,王庆年,宋传学,等.四轮驱动电动汽车差动助力转向系统联合仿真与试验[J].农业机械学报,2010,41(6):7-13.
    [86]靳立强,王军年,宋传学,等.电动轮驱动汽车驱动助力转向技术[J].机械工程学报,2010,46(14):101-108.
    [87]靳立强,王庆年,宋传学.电动轮驱动汽车的最佳车轮滑移率实时识别[J].吉林大学学报(工学版),2010,40(4):889-894.
    [88]张缓缓,靳立强,王庆年.电动轮驱动汽车转向节能行驶模式仿真[J].交通运输工程学报,2010,10(5):42-46.
    [89]余卓平,张立军,熊璐.四驱电动车经济性改善的最优转矩分配控制[J].同济大学学报(自然科学版),2005,33(10):79-85.
    [90]余卓平,姜炜,张立军.四轮轮毂电机驱动电动汽车扭矩分配控制[J].同济大学学报(自然科学版),2008,36(8):1115-1119.
    [91]朱绍中,姜炜,余卓平,等.基于控制分配的轮毂电机驱动电动车稳定性控制仿真研究[J].系统仿真学报,2008,20(18):4840-4842.
    [92]熊璐,余卓平.轮毂电机驱动电动汽车各轮毂电机扭矩分配算法的仿真和评价[J].计算机辅助工程,2010,19(1):27-31.
    [93]余卓平,左建令,陈慧.基于四轮轮边驱动电动车的路面附着系数估算方法[J]_汽车工程,2007,29(2):141-145.
    [94]邹广才,罗禹贡,李克强.四轮独立电驱动车辆全轮纵向力优化分配方法[J].清华大学学报(自然科学版),2009,49(5):719-722.
    [95]李以农,卢少波,郑玲,等.车辆弯道变速行驶时的纵横向耦合控制研究[J].系统仿真学报,2007,19(23):5524-5528.
    [96]武建勇,唐厚君,欧阳涛,等.基于AFS与DYC集成控制提高车辆操纵稳定性的研究[J].系统仿真学报,2009,21(5):1227-1232.
    [97]刘力,罗禹贡,江青云,等.基于广义预测理论的AFS/DYC底盘一体化控制[J].汽车工程,2011,33(1):52-55.
    [98]高晓杰,余卓平,张立军.基于车辆状态识别的AFS与ESP协调控制研究[J].汽车工程,2007,29(4):283-291.
    [99]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991.
    [100]赵树恩.基于多模型智能递阶控制的车辆底盘集成控制研究[D].重庆:重庆大学机械工程学院,2010.
    [101]余志生.汽车理论(第3版)[M].北京:机械工业出版社,2000.
    [102]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005.
    [103]Bakker E, Nyborg L, Pacejka H B. Tyre modelling for use in vehicle dynamics studies[J]. SAE paper No.870421,1987:190-204.
    [104]Pacejka H B, Besselink I J M. Magic formula tyre model with transient properties[J]. Vehicle System Dynamics,1997,27(Suppl.):234-246.
    [105]Pacejka H B. Tyre and vehicle dynamics[M]. Oxford: Butterworth-Heinemann,2006.
    [106]Bouscayrol A, Davat B, De Fornel B, et al. Multimachine multiconverter system: application for electromechanical drives[J]. European Physics Journal-Applied Physics, 2000,10(2):131-147.
    [107]Paynter H M. Analysis and design of engineering systems[M]. MIT press,1961.
    [108]Hautier J P, Barre P J. The causal ordering graph-A tool for modelling and control law synthesis[J]. Studies in Informatics and Control Journal,2004,13(4):265-283.
    [109]Chen K, Bouscayrol A, Lhomme W. Energetic macroscopic representation and inversion-based control:application to an electric vehicle with an electrical differential[J]. Journal of Asian Electric Vehicles,2008,6(1):1097-1102.
    [110]Iwasaki Y, Simon H A. Causality and model abstraction[J]. Artificial Intelligence, 1994,67(1):143-194.
    [111]陈家瑞.汽车构造(下册,第4版)[M].北京:人民交通出版社,2002.
    [112]胡寿松.自动控制原理[M].北京:科学出版社,2001.
    [113]史力晨,王良曦,张兵志.高速履带车辆在坚实地面转向机理研究[J].装甲兵工程学院学报,2003,17(1):29-32.
    [114]李勇,姚宗伟,王国强.四履带车辆转向性能仿真研究[J].农业机械学报,2011,42(2):34-38.
    [115]Wong J Y, Chiang C F. A general theory for skid steering of tracked vehicles on firm ground[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2001,215(3):343-355.
    [116]Kang J, Kim W, Yi K, et al. Skid steering based driving control of a robotic vehicle with six in-wheel drives[J]. SAE International Journal of Passenger Cars-Mechanical Systems,2010,3(1):131-144.
    [117]Fauroux J C, Vaslin P. Modeling, experimenting, and improving skid steering on a 6×6 all-terrain mobile platform[J]. Journal of Field Robotics,2010,27(2):107-126.
    [118]王庆年,王军年,宋世欣,等.差动助力转向系统离线仿真验证[J].汽车工程,2009,31(6):545-551.
    [119]王军年.电动轮独立驱动汽车差动助力转向技术研究[D].长春:吉林大学汽车工程学院,2009.
    [120]黄炳华,陈祯福.汽车主动转向系统的特性研究[J].武汉理工大学学报(信息与管理工程版),2008,30(3):420-423.
    [121]于蕾艳,林逸,施国标.线控转向系统的主动转向控制策略研究[J].计算机仿真,2008,25(5):233-235.
    [122]李强,施国标,林逸,等.主动前轮转向控制技术研究现状与展望[J].汽车工程,2009,39(7):629-633.
    [123]赵治国,余卓平,孙泽昌.车辆主动前轮转向H∞鲁棒控制系统研究[J].汽车工程,2005,27(4):442-446.
    [124]Falcone P, Borrelli F, Asgari J, et al. Predictive active steering control for autonomous vehicle systems[J]. IEEE Transactions on Control Systems Technology, 2007,15(3):566-580.
    [125]宗长富,郑宏宇,田承伟,等.基于直接横摆力矩控制的汽车稳定性控制策略[J].吉林大学学报(工学版),2008,38(5):1010-1014.
    [126]邹广才,罗禹贡,李克强.基于全轮纵向力优化分配的4WD车辆直接横摆力矩控制[J].农业机械学报,2009,40(5):1-6.
    [127]Esmailzadeh E, Goodarzi A, Vossoughi G R. Optimal yaw moment control law for improved vehicle handling[J]. Mechatronics,2003,13(7):659-675.
    [128]Fujimoto H, Tsumasaka A, Noguchi T. Direct yaw-moment control of electric vehicle based on cornering stiffness estimation[C]. Proceedings of Industrial Electronics Conference, Raleigh, NC, United states,2005:2626-2631.
    [129]Geng C, Mostefai L, Denai M, et al. Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle fuzzy observer[J]. IEEE Transactions on Industrial Electronics,2009,56(5):1411-1419.
    [130]黄炳华,陈祯福.汽车主动转向系统中转向阻力矩的分析与计算[J].武汉理工大学学报(信息与管理工程版),2008,30(6):912-915.
    [131]National-Instruments. LabVIEW8.6[CP/OL].
    [132]吴红星,谢宗武,张强.基于DSP的电动机控制技术[M].北京:中国电力出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700