一类齿隙非线性控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿隙非线性作为机械传动系统中一种最主要的非线性,广泛存在于各种机床、机器人、天文望远镜、雷达、火炮、导弹发射架、航空航天飞行器等系统中,是影响传动系统动态性能和稳态精度的重要因素。由于齿隙具有不可微的非线性特性,对它的补偿非常困难,这使得对于性能和可靠性有着极高要求的高精度传动控制系统在设计和工程实现上都面临着严峻的挑战。因此,对机械传动系统中存在的齿隙非线性展开深入研究,具有重要的理论意义和工程应用价值。
     本文研究了一类齿隙非线性系统的控制问题,主要内容如下:
     (1)研究了驱动系统的齿隙非线性控制问题。首先针对存在有界不确定未知参数的输入端齿隙非线性系统,在研究低阶系统的基础上,提出了具有普遍意义的基于模型跟踪的高阶系统鲁棒控制策略。随后,针对内部包含齿隙非线性的传动系统提出了一种切换控制策略,在系统主、从动部分的接触阶段采用PID控制,使系统输出跟踪期望目标;在齿隙期间采取基于时间次优的滑模控制,保证驱动部分快速通过齿隙的同时,在齿隙终了与从动部分实现无碰撞接触;并设计了基于稳定性理论的切换监督机制,保证系统在跟踪期望目标的过程中能够保持BIBO稳定。
     (2)以具有代表性的双电机驱动齿隙非线性系统为对象,研究了冗余驱动系统(齿隙非线性传动系统由施加偏置力矩的两组驱动子系统和一组从动子系统组成)的基于Backstepping方法的齿隙非线性控制问题。引入标志函数重新描述齿隙非线性,应用Backstepping方法设计了基于状态反馈的控制策略;并进一步针对参数未知的控制对象,设计了基于Backstepping方法的状态反馈自适应控制策略。
     (3)研究了存在未知摩擦、未知齿隙非线性的冗余驱动系统的模型参考自适应控制(MRAC)问题。以冗余驱动补偿后的近似线性系统为研究对象,针对驱动子系统参数一致的情况,设计了基于状态反馈的MRAC鲁棒控制策略;进而,针对系统中由于未得到完全补偿的齿隙非线性、变刚性系数等产生的力矩扰动,及各驱动子系统间由于参数不一致产生的同步协调问题,通过变换系统模型,设计了基于状态反馈的MRAC鲁棒同步控制策略。
     (4)研究了存在未知摩擦、未知齿隙等非线性的驱动系统的神经网络控制问题。首先以单电机驱动系统为研究对象,在对齿隙非线性进行分解的基础上,采用函数链神经网络(Function Link Neural Net简称FLNN)对未知非线性进行辨识,应用Backstepping方法设计了基于FLNN的鲁棒自适应控制策略。之后,进一步研究了以双电机驱动系统为对象的冗余驱动系统的神经网络控制问题,引入同步误差反馈,设
As a main nonlinearity in mechanical drive systems, backlash exists broadly in various systems such as machine tools, robots, astronomical telescopes, radars, artilleries, missile launchers, aerocrafts etc., and is an important factor influencing the dynamic and static properties of drive systems. Due to the non-differentiable trait of backlash, its compensation is much difficult. This brings austere challenge to the high-precision drive systems that have strict demand to quality and reliability. So, making deep study into the backlash nonlinearity in mechanical drive systems is much important both in theory and engineering.In this dissertation, a class of backlash nonlinear control systems is studied. The main ideas are as follows:(1) Drive systems with backlash nonlinearity are studied. First, this paper presents a robust nonlinear control scheme for input backlash systems with parametric uncertainties. A model reference controller is developed and robust global convergence of the tracking error is proved by Lyapunov method. Furthermore, a switching control scheme with PTO (proximate time optimal) compensation is presented for the systems containing inner backlash. With a linear PID controller used in contact period, a sliding control with PTO surface is switched into when system enters the backlash. Then, a supervising mechanism is introduced to find suitable time switching between linear PID control and PTO sliding control, ensuring BIBO stability of the whole system. The design can effectively eliminate the colliding disturbance resulting from the backlash and improve the robustness of the controller.(2) Based on dual-motors drive systems with backlash nonlinearity, the paper present studies on the nonlinearity still existing in the redundant system (consist of dual driving sub-systems with pre-loaded torque bias and one driven sub-system). By selecting control Lyapunov function through Backstepping approach, a state feedback scheme is developed to completely eliminate the influence of backlash in system. Then, an adaptive control scheme for backlash nonlinearity in such system with unknown parameters is proposed in the same way. The scheme can effectively keep tracking to the reference input while ensure the stability of overall system.(3) A model reference adaptive control (MRAC) is proposed for redundantly driven systems with unknown nonlinearities such as friction and backlash. First, the system is
引文
1.王立松.超精密机床数控技术与伺服控制的研究[D].哈尔滨:哈尔滨工业大学博士论文,2001
    2.秦继荣,沈安俊.现代直流伺服系统控制技术及其系统设计[M].北京:机械工业出版社,1993
    3.董锡君.电动转台伺服系统控制问题研究[D].哈尔滨:哈尔滨工业大学博士论文,1999
    4.石立,张晓莎.载人航天伺服系统可靠性设计与试验研究[J].导弹与航天运载技术.2004,1:8-10
    5. Tao G, Kokotovic P V. Adaptive control of systems with backlash [J]. Automatica, 1993, 29(2): 323-335
    6. Grundelius M, Angeli D. Adaptive control of systems with backlash acting on the input [A]. IEEE Conf. on Decision & Control[C], 1996, 4689-4694.
    7. Nizar J, Ahmad, Farshad Khorrami. Adaptive control of systems with backlash hystereses at the input [A]. Proc. of ACC [C], San Diego, California 1999, 3018-3022
    8. Xi Sun, Weicun Zhang, Yihui Jin. Stable adaptive control of backlash nonlinear systems with bounded disturbances [A]. Proceedings Of 31st Conf. on Decision and Control[C], Tucson, Arizona, Dec, 1992
    9. Tao G.. Adaptive control of systems with nonsmooth input and output nonlinearities [A]. Proceedings of the 34th Conference on Decision & Control [C], New Orleans, LA-December, 1995
    10. Han C W, Zhong Y X. Robust adaptive control of time-varying systems with unknown backlash nonlinearity [A]. Proceedings of the ACC[C], New Mexico, June, 1997.
    11. Tierno J E, Kim Y K. Lay S L and Bernstein D S. Describing function analysis of an anti-backlash controller[A]. Proc. of the American Control Conference [C]. June, 2000.
    12. Yang J H., Fu L C. Nonlinear adaptive control for manipulator system with gear backlash [A], IEEE, Conf. on Decision & Control [C], December, 1996, 4369-4374
    13. Scholing I, Orlik B. Control of a nonlinear two-mass system with uncertain parameters and unknown states [J]. IAS-IEEE 2000.
    14. Tao G, Ma X, Ling Y. Optimal and nonlinear decoupling control of systems with sandwiched backlash [J]. Automatica, 2001(37): 165-176
    15. Ling Y, Tao G. Numerical design and analysis of backlash compensation for a multivariable nonlinear tracking system [A]. Proceedings of the American Control Conference [C], San Diego, California, June, 1999.
    16. Tao G, Ma X L. Backlash compensation for multivariable nonlinear system with actuator dynamics [A], IEEE, Conf. on Decision & Control [C], 1999, 3382-3387
    17. Mata-Jimenez M T, Brogliato B, Goswami A. On the control of mechanical systems with dynamic backlash [A]. Proc. of the 36th Conf. on Decision & Control [C]. Dec., 1997.
    18. Tornambe A. Modeling and controlling one-degree-of-freedom impacts under elastic/plastic deformations [J]. IEE Proc.-Control Theory Application, 1996, 143(5): 470-476
    19. Gerdes J C, Kumar V. An impact model of mechanical backlash for control system analysis [A]. Proc. of the American Control Conference [C], Seattle, Washington, June 1996.
    20. Stein J L, Wang C. Estimation of gear backlash: theory and simulation [J]. Journal of Dynamic Systems, Measurement, and Control, March, 1998, 120: 74-82.
    21.李润方,王建军.齿轮系统动力学[M].北京:科学出版社,1997.
    22. Azenha A, Machado J A T. Variable structure control of robots with nonlinear friction and backlash at the joints [A]. Proc. of the IEEE conf. On Robotics and Automation [C]. April, 1996
    23. Kahramn A, Singh R. Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system [J]. Journal of Sound & Vibration, 1991, 146(1): 135-156.
    24. Nordin M, Gutman P O. Controlling mechanical systems with backlash—a survey [J]. Automatica, 2002, 38:1633-1649
    25. Nordin M., Galic J, Gutman P O. New models for backlash and gear play [J]. International Journal of Adaptive Control and Signal Processing, 1997, 1:9-63
    26. Yang D C H, Sun Z S. A rotary model for spur gear dynamics [A]. Design Engineering Technical Conference [C], Cincinnati, Ohio, 1985
    27. Kuljaca O, Swany N, Lewis F L, Kwan C M. Design and implementation of industrial neural network controller using backstepping [J]. IEEE Transactions on Industrial Electronics, 2003, 50(1): 193-201.
    28. Taware A, Tao G, Pradhan N, Teolis C. Friction compensation for a sandwich dynamic system [J]. Automatica, 2003, 39(4): 481-488
    29. Leonard N E, Krishnaprasad P S. Adaptive friction compensation for bi-directional low-velocity position tracking [A]. Proceedings of the 31st IEEE CDC [C], Tucson, AZ, 1992:267-273
    30. Armstrong-Helouvry B, Dupont P, Canudas de Wit C. A survey of models, analysis tools and compensation methods for the control of machines with friction [J]. Automatica, 1994, 30(7): 1083-1138
    31. Canudas de Wit C, Astrom K J, Braun K. Adaptive friction compensation in DC-motor drives [J]. IEEE Journal of Robotics and Automation, 1987, RA-3(6): 681-685
    32. Elhami M R, Brookfield D J. Sequential identification of coulomb and viscous friction in robot drives[J]. Automatica, 1997, 33(3): 393-401
    33. Besancon-Veda A, Besancon G. Analysis of a two-relay system configuration with application to coulomb friction identification[J]. Automatica, 1999, 35(8): 1391-1399
    34. Bai E W. Parametrization and adaptive compensation of friction forces [J]. International Journal of Adaptive Control and Signal Processing. 1997, 11(1): 21-31
    35. Kwatny H G, Teolis C, Mattice M. Variable structure control of systems with nonlinear friction [A]. Proceedings of the 38th CDC [C], phoenix, AZ, 1999:5164-5169
    36.孙西,周立峰.具有间隙非线性系统的自适应控制[J].控制理论与应用,1991,8(1):96-100.
    37.刘吉臻,曾德良,刘延泉.基于规则的滞环非线性补偿控制[J],控制理论与应用,1997,14(3):383-388.
    38. Su C Y, Tan Y H, Stepanenko Y., Adaptive control of a class of nonlinear systems preceded by an unknown backlash-like hysteresis [A], IEEE, Conf. on Decision & Control [C], 2000, 1459-1464.
    39. Nizar J Ahmad, Farshad Khorrami, Adaptive control of systems with backlash hysteresis at the input [A], Proc. of ACC [C]. June, 1999, 3018-3022.
    40. Tao G, Kokotovic P V. Continous-time adaptive control of systems with unknown backlash[J]. IEEE Trans. On Automatic Control, June, 1995, 40(6): 1083-1087.
    41. Recker D A, Kokotovic P V. Adaptive nonlinear control of systems containing a dead-zone [A]. IEEE Conf. on Decision & Control [C], December, 1991, 2111-2115.
    42. Tao G, Recker D A, Kokotovic P V. Adaptive control of plants with unknown dead-zones [J]. IEEE Trans. On Automatic Control, Jan, 1994, 39(1): 59-68.
    43. Chyung D H. Output feedback controller for systems containing a backlash [A]. Proc. of 31st Conf. on Decision and Control [C], Tucson, Arizona, Dec., 1992.
    44. Peter K, Scholing I, Orlik B. Robust output-feedback H_∞-control with a nonlinear observer for a two-mass system [A]. IAS/IEEE Annual Meeting [C], Pittsburgh, 2002.
    45. Taylor J H, Lu J. Robust nonlinear control system synthesis method for electro-mechanical pointing systems with flexible modes [J]. Journal of Systems Engineering, 1995, 5: 192-204.
    46. Nordin M, Gutman P O. Nonlinear speed control of elastic systems with backlash [A]. In Proceedings of the 39th IEEE Conference on Decision and Control [C], Sydney, Australia. December, 2000.
    47. Brandenburg G, Schafer U. Influence and adaptive compensation of simultaneously acting backlash and Coulomb friction in elastic two-mass systems of robots and machine tools [M]. In Proceedings of ICCON' 89, Jerusalem, New York: IEEE Press, 1989.
    48.王梅红.有齿隙的非线性控制系统的计算机辅助设计[J].雷达与对抗.1991.4:40-50
    49. San M., Pane A, Esnaola J. Detection of limit cycles in discrete systems with backlash and resolution by using a discretization-oriented describing function [A]. Proceedings of the 32nd Conference on Decision and Control [C], San Antonio, Texas, December, 1993.
    50. Gebler D, Holtz J. Identification and compensation of gear backlash without output position sensor in high-precision servo systems[A]. Industrial Electronics Society, 1998. IECON '98. Proceedings of the 24th Annual Conference of the IEEE [C], Vol.2, 31 Aug.-4 Sept. 1998.
    51.宋林会.CDAS 20m天线系统设计[J].中国空间科学技术,1998,3:73-78.
    52.陈庆伟,郭毓,杨静忠.提高齿隙非线性系统精度的应用研究.南京理工大学学报,2000,24(6):486-489.
    53. Gawronski W, Beech-Brandt J J., Ahlstrom H G, Maneri E. Torque-bias profile for improved tracking of the deep space network antennas [J]. IEEE on Antennas & Propagation, 2000, 42(6): 35-45.
    54. Chang Sun-Lai, Tsai Lung-Wen. On the redundant-drive backlash-free robotic mechanisms [J]. Journal of Mechanical Design, 1993, 115: 115-246.
    55. Corradini M L, Orlando G. Robust practical stabilization of nonlinear uncertain plants with input and output nonsmooth nonlinearities [J]. IEEE Trans. On Control Systems Technology, March., 2003, 11 (2): 196-203.
    56.贾建援,乔晓强,康春霞,段可博.天线伺服机械精度的智能创成方法[J].机械科学与技术,2002,21(6):876-878
    57. Chunmei J, Yang Q, Ling F, Ling Z. The non-linear dynamic behavior of an elastic linkage mechanism with clearances [J]. Journal of Sound and Vibration, 2002, 249 (2): 213-226.
    58.刘兵,冯纯伯,李长庚.具有间隙预补偿的非线性预测控制[J].控制理论与应用,1999,16(2):241-243.
    59.韩存武,张竞新,顾兴源.具有间隙非线性系统的控制加权自适应控制[J].自动化学报,1993,19(5):535-543.
    60.孙西,金以慧,方崇智.滞环非线性系统的加权自适应控制[J].自动化学报,1991,17(6):649-657.
    61.郎自强.含有齿隙非线性的动态系统的辨识[J].信息与控制,1991,1:44-48.
    62. Woo K T, Wang Lixin, Lewis F L, Li Z X. A fuzzy system compensator for backlash [A]. IEEE Conf. On Robotics and Automation [C], May, 1998.
    63. Jang J O, Lee P G, Park S B, Alan I S. Backlash compensation of systems using fuzzy logic [A]. Proc. of the American Control Conference [C]. June, 2001, 25-27.
    64. Jang J O, Chung H T, Lee I S. Backlash compensation of discrete time systems using fuzzy logic [A]. Proc. of the 40th Conf. on Decision & Control [C]. Dec., 2001.
    65. Campos J, Lewis F L, Selmic R R. Backlash compensation with filtered prediction in discrete time nonlinear systems by dynamic inversion using neural networks [A]. Proc. of the 39th IEEE Conf. on Decision and Control [C]. December, 2000.
    66. Selmic R R, Lewis F L. Neural net backlash compensation with Hebbian tuning using dynamic inversion [J]. Automatica, 2001, .37: 1269-1277.
    67. Corradini M L, Orlando G Robust stabilization of nonlinear uncertain plants with backlash or dead zone in the actuator [J]. IEEE Trans. On Control Systems Technology, 2002, 10(1): 158-166.
    68. Hatipoglu C, Ozguner U. Robust control of systems involving non-smooth nonlinearities using modified sliding manifolds [A]. Proc. of the American Control Conference [C], June, 1998.
    69. Dean S R H, Surgenor B W, Iordanou H N. Experimental evaluation of a backlash inverter as applied to a servomotor with gear train[A]. In Proceedings of the forth IEEE Conference conrol applications [C]. 1995: 580-585.
    70. Tao C W. Fuzzy control for linear plants with uncertain output backlash [J]. IEEE Trans. On Systems, Man and Cybernetics, June, 2002, 32(3): 373-380.
    71. He C, Xu L, Zhang Y. Compensation methods for backlash nonlinear characteristics of servo systems [A]. IFAC [C], 1999.
    72. He C, Zhang Y, Meng M. Backlash compensation by neural-network online learning [A]. Proc. of 2001 IEEE International Symposium on Computational Intelligence Robotics and Automation [C], July 29-August 1, 2001.
    73. Kao J. Y., Yeh Z. M., Tarng Y. S. and Lin Y. S., A study of backlash on the motion accuracy of CNC lathes [J]. Int. J. Mach. Tools Manufact, 1996, 36(5): 539-550.
    74. Huang S, Lin Y. Application of grey predictor and fuzzy speed regulator in controlling a retrofitted machining table [J]. Int. J. Mach. Tools Manufact, 1996, 36(4): 477-489.
    75. Cadiou J C, Merzouki R. Towards low cost electrical servo-motor design using backlash/friction compensative control law[A]. IEEE International Worksop on Robot and Human Interactive Communication[C], 2001.
    76. Ezal K, Kokotovic P V, Tao G. Optimal control of tracking systems with backlash and flexibility [J]. IEEE Conf. on Decision & Control, 1997, 1749-1754.
    77. Tarng Y S, Kao J Y, Lin Y S. Identification of and compensation for backlash on the contouring accuracy of CNC machining centers [J]. Int. J. Adv. Manufact. Technol, 1997, 13(2): 77-85
    78. Seidl D R, Lam S L, Putman J A, Lorenz R D. Neural network compensation of gear backlash hysteresis in positon-controlled mechanisms [J]. IEEE Trans. On Industry Applications, 1995, 2(3): 169-178.
    79. Friedland B. Feedback control of systems with parasitic effects [A]. In Proceedings of ACC-97[C], Albuquerque, USA, American Automatic Control Council, 1997.
    80. Menon K, Krishnamurthy K. Control of low velocity friction and gear backlash in a machine tool feed drive system [J]. Mechatronics, 1999, 9, 33-52.
    81. Dhaouadi R, Kubo K, Tobise M. Analysis and compensation of speed drive systems with torsional load[J]. IEEE Transaction on Industry Application, 1994, 30(3), 760-776.
    82. Odai M. and Hori Y., Speed control of 2-inertia system with gear backlash using gear torque compensator [A]. 5th International Workshop on Advanced Motion Control [C], Coimbra, 1998.
    83. Nakayama Y, Fujikawa K, Kobayashi H. A torque control method of three-inertia torsional system with backlash [A]. AMC '2000-NAGOYA. Proceedings. 6th International Workshop on Advanced Motion Control [C], 30 March-1 April 2000.
    84. Shahruz S M. Performance enhancement of a class of nonlinear systems by disturbance observers [A]. Proceedings of the American Control Conference [C], Chicago, Illinois, June, 2000.
    85. Kovacic Z, Bogdan S, Balenovic M. A sensitivity-based self-learning fuzzy logic controller as a solution for a backlash problem in a servo system [A]. Proceedings of the 1997 IEEE International Electric Machines and Drives Conference IEMDC'97 [C], Milwaukee, 1997.
    86. Huang W. and Cai L., New hybrid controller for systems with deterministic uncertainties [J]. Journal of IEEE/ASME Transaction on Mechatronics, 2000, 5(4): 342-348.
    87. Shibata T, Fukuta T, Tanie K. Nonlinear backlash compensation using recurrent neural network [A]. Proceedings of the 1993 International Joint Conference on Neural Networks [C], 1993.
    88.黄润青,陈亮,扬汝清,梅志千.一种新型基于齿隙补偿方法的低价位机械手设计[J].机械设计与制造,2002,6:118-119.
    89. Kim J, Chyung D H. Digital controller for systems containing a backlash [A]. Proceedings of the 32th Conference on Decision and Control [C], San Antonio, Texas, December, 1993.
    90. Brandenburg G, Schafer U. Influence and adaptive compensation of simultaneously acting in elastic two-mass systems of robots and machine tools [A]. Proc. ICCON '89 Congress [C], Jerusalem, 1989.
    91. Wu Y, Fujikawa K. and Kobayashi H., A control method of speed control drive system with backlash [A]. AMC '96-MIE. Proceedings of the 4th International Workshop on Advanced Motion Control [C], March, 1996.
    92. Choi G-H, Nakamura R. W, Kobayashi H. Calibration of servo systems with redundant actuators [A]. In Proceedings of IFAC world congress [C], San Francisco, 1996.
    93. Gawronski W, Mellstrom J A. Elevation control system model for the DSS 13 antenna [M]. TDA Progress Report 42-105, 1991.
    94. Gawronski W, Beech-Brandt J, Ahlstrom H G, Maneri E. Torque-bias profile for improved tracking of the deep space network antennas [J]. IEEE on Antennas & Propagation, 2000, 42(6): 35-45.
    95. Taware A., Tao G, Teolis C. Design and analysis of a hybrid control scheme for sandwich nonsmooth nonlinear systems [J]. IEEE Transactions on Automatic Control, 2002, 47(1): 145-150.
    96. Taware A., Tao G. An adaptive dead-zone inverse controller for systems with sandwiched dead-zones [J]. Int. Journal of Control, 2003, 76(8): 755-769.
    97. Orlov Y, Aguilar L, Cadiou J C. Switching chattering control vs. backlash/friction phenomena in electrical servo-motors [J]. Int. Journal of Control, 2003, 76: 959-967.
    98. Tomizuka M, Hu J S, Chiu T C. Synchronization of two motion control axes under adaptive feedforward control [J]. ASME Journal of Dynamic Sys, Mea. & Contr., 1992, 114: 196-203.
    99. Chiu G T C, Tomizuka M. Coordinated position control of multi-axis mechanical systems [J]. Journal of Dynamic System, Measurement. & Control, 1998, 120: 389-393.
    100. Miyorshi T, Terashima K, Maki Y. Optimum synchronous control for multiple-axis servo systems in terms of time-varying performance index [A]. IEEE Conf. on Decision & Control [C], 2000: 1080-1086.
    101. Niu W G, Tomizuka M. A new approach of coordinated motion control subjected to actuator saturation [J]. Journal of Dynamic System, Measurement. & Control, 2001, 123:496-504
    102. Dong Sun, James K Mills. Adaptive synchronized control for coordination of multi-robot assembly tasks [J]. IEEE Trans on Robotics and Automation, 2002, 18(4): 498-510
    103. Xi N, Tarn T J, Bejczy K A. Intelligent planning and Control for multirobot coordination: an event-based approach [J]. IEEE Trans Robotics and Automation, 1996, 12(4): 439-452
    104. Yang L F, Chang W H. Synchronization of twin-gyro precession under cross-coupled adaptive feedforward control [J]. J. Guidance Control Dynamics, 1996, 19(3): 534-539
    105. Steven J Schroeck, William C Messner, Robert J McNab. On compensator design for linear time-invariant dual-input single-output systems [J]. IEEE/ASME Trans on Mechatronics, 2001, 6(1): 50-57
    106. Weeraaooriya S, Low T S, Al-Mamun A. Design of a time optimal variable structure controller for a disk drive actuator [A]. Industrial Electronics, Control, and Instrumentation [C], 1993. Proceedings of the IECON '93, International Conference on, 15-19 Nov, 1993.
    107. Lin Guo, Douglas Martin, Don Brunnett. Dual-stage actuator servo control for high-density disk drives [A]. Proc. of the 1999 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics [C] Atlanta, USA, 1999,132-137
    108. Daniel Hernandez, Sung-Su Park, Roberto Horowitz, Andrew K Packard. Dual-stage track-following servo design for hard disk drives [A]. Proc. of the American Control Conference [C] San Diego, California, June, 1999:4116-4121
    109. Weerasooriya S, Low T S, Huang Y H. Adaptive time optimal control of a disk drive actuator [J]. IEEE Trans. On Magnetics, 1994, 30(6): 4224-4226
    110. Zhang D Q, Guo G X. Discrete-time sliding mode proximate time optimal seek control of hard disk drives [J]. IEE Proc. Control Theory Application, 2000, 147(4): 440-446
    111. Weerasooriya S, Low T S, Al-Mamum. Design of a time optimal variable structure controller for a disk drive actuator [A]. Proceedings of the 19th Annual Conference of IEEE Industrial Electronics Society [C], IECON 93, Hawaii, USA, 1993:2161-2165
    112. Shen T, Tamura K, Kaminaga H. Robust nonlinear control of parametric uncertain systems with unknown friction and its application to a pneumatic control valve[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 2000, 122:257-262
    113.胡寿松,王执铨,胡维礼.最优控制理论与系统[M].南京:东南大学出版社,1994
    114. Narendra K S., Lin Yuan-hao, Valavani L S. Stable adaptive controller design, part Ⅱ: proof of stability [J]. IEEE Transaction On Automatic Control. 1980, AC-25(3): 440-448
    115. Narendra K S. Valavani L. S. Stable adaptive controller design-direct control [J]. IEEE Transaction on Automatic Control. 1978, AC-23(4): 570-583
    116. Ioannou P A, Tsakalis K S. A robust direct adaptive controller [J]. IEEE Trans. Automat. Contr., 1986, 31: 1033-1043
    117. Ioannou P A, Sun J. Theory and design of robust direct and indirect adaptive control schemes[J]. Int. J. Contr., 1988, 47(3): 775-813
    118. Ioannou P A, Datta A. Robust adaptive control: a unified approach [J]. Proceedings of the IEEE, 1991, 79(12):1736-1767
    119. Ioannou P A, Kolotovic P V. Instability analysis and the improvement of robustness of adaptive control[J]. Automatica, 1984, 20(5): 583-594
    120. Narendra K S, Annaswamy A M. Stable adaptive systems [M]. Englewood Cliffs, NJ: Prentice Hall, 1989
    121. Franklin G, Powell J, Emami-Naeini A. Feedback control of dynamic systems [M]. Reading, MA: Addison-Wesley, 1994
    122.韩曾晋.自适应控制[M].北京:清华大学出版社,1995
    123. Astrom K J, Wittenmark B. Adaptive control. Addison-Wesley[M], 1989.李清泉等译,自适应控制,科学出版社,1992
    124.李清泉.自适应控制系统理论、设计与应用[M].北京:科学出版社,1990
    125.夏超英.交直流传动系统的自适应控制[M].北京:机械工业出版社,1998
    126. Burg T C, Dawson D M, Hu J, Vedagarbha R Velocity tracking control for a separately excited DC motor without velocity measurements [A]. In Proceedings of American Control Conference [C], 1994:1051-1056
    127. Dawson D, Qu Z, Hu J. Robust tracking control of an induction motor[A]. In Proceedings of

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700