犏牛及其亲本IGF2、H19、SNRPN和DAZL等四个基因表达活性及其DNA甲基化修饰分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牦牛是青藏高原及其毗邻地区不可或缺的全能家畜,对高寒气候等恶劣环境有极强的适应性,但其生产性能较低。为了提高牦牛的生产性能,我国从上世纪50年代开始采用良种黄牛与牦牛进行杂交,杂种一代犏牛表现出很强的杂种优势,但其雄性不育使得杂种优势的利用受到了极大的限制,成为牦牛杂交改良的“拦路虎”。为了探讨犏牛雄性不育问题,本研究以成年健康雄性犏牛、黄牛和牦牛为研究对象,运用同源扩增、PCR克隆测序方法获得牦牛印记基因或精子发生相关基因差异甲基化区(DMR)序列,利用Real-time PCR技术检测了这些基因在犏牛及其亲本睾丸组织中的表达差异,运用亚硫酸氢钠测序法检测了相关基因DMR甲基化状态,为研究犏牛雄性不育与DNA甲基化的关系提供理论基础。
     1.牦牛H19/IGF2(?)记控制区(ICR)的分子克隆及序列分析
     本实验根据黄牛H19基因DNA序列NW_001494548设计引物扩增出牦牛H19基因长约6.5kb的序列(GenBank登录号:EU502716),该序列包含完整的印记控制区(ICR)、启动子和部分第一外显子。用生物信息学方法,将该序列与黄牛、绵羊猪、人类和小鼠的相应序列比对分析,发现牦牛与他们的相似度分别为97%、83.13%、48%、47%、42%;该扩增序列中共有6个CpG岛,长度分别为1182、1186、707、277、281和1311bp;有6个锌指蛋白CTCF结合位点,均位于CpG岛内,分别定位于转录起始部位上游5.5kb、5.1kb、4.1kb、3.7kb、2.7kb和1.3kb;H19基因5′端存在核心启动子区,TATA box、GC box及Sp1、Sp2、AP2、NF-κB、STAT5、P53、 WT1、GFI1、MTBP、CPBP、ZF9、E2F知Myc-Max等识别位点。
     2.犏牛及其亲本睾丸组织中H19基因mRNA表达水平、DNA甲基化状态差异分析
     本实验运用Real-time PCR技术对犏牛及其亲本睾丸组织中H19基因表达水平进行了分析,结果发现,犏牛的表达水平极显著高于黄牛和牦牛(P<0.01),而黄牛和牦牛两者之间表达差异不显著(P>0.05)。
     采用亚硫酸氢钠测序法检测了包含CTCF结合位点3(CTCF-binding site III)的H19ICR的甲基化状态,结果发现,犏牛H19ICR的甲基化水平(48.82%)极显著低于黄牛(70%)(P<0.01),显著低于牦牛(59.10%)(P<0.05),但黄牛的甲基化水平显著高于牦牛(P<0.05);犏牛CTCF结合位点3的甲基化水平(48.33%)极显著低于黄牛(75%)和牦牛(68%)(P<0.01)。说明H19ICR及ICR中的CTCF结合位点对H19基因表达调节具有重要作用。
     3.犏牛及其亲本睾丸组织中IGF2基因mRNA表达水平、DNA甲基化状态差异分析
     本实验根据黄牛IGF2基因组序列DQ298740设计引物扩增出了牦牛IGF2基因第十外显子部分序列,GenBank登陆号为FJ152104;通过Real-time PCR检测了犏牛及其亲本睾丸组织中IGF2基因的表达水平,运用亚硫酸氢钠测序法检测了睾丸组织中IGF2基因第十外显子DMR的甲基化状态。结果发现,犏牛睾丸组织中IGF2基因mRNA表达水平最低,与亲本的表达水平差异极显著(P<0.01);黄牛、牦牛和犏牛睾丸中IGF2DMR的甲基化水平分别为90%、90.7%和92.0%,三组之间均未见显著差异(P>0.05)。实验结果说明IGF2基因mRNA表达水平与牛精子发生有关,可能在牛的精子发生过程中发挥重要作用,并可能与犏牛雄性不育有关;IGF2基因第十外显子DMR区的甲基化与IGF2基因在犏牛及其双亲睾丸中的表达差异无关,可能是其他的机制参与调节IGF2基因的表达。
     4.犏牛及其亲本睾丸组织中印记基因SNRPN的表达及DMR甲基化分析
     本实验根据黄牛SNRPN基因序列NW935049设计引物扩增出了牦牛SNRPN基因5′端序列,长为1137bp,与黄牛参照序列相似度达98.2%;经生物信息学分析,发现含有YY1和SP1等甲基化敏感位点。通过Real-time PCR检测了犏牛及其亲本睾丸组织中SNRPN基因的表达水平,运用亚硫酸氢钠测序法检测了睾丸组织中SNRPN基因5′端DMR的甲基化状态。结果发现,黄牛、牦牛和犏牛睾丸组织中SNRPN基因mRNA表达差异不显著(P>0.05),但黄牛和牦牛SNRPN基因的表达高于犏牛;犏牛SNRPN DMR的甲基化水平(38.53%)极显著高于黄牛(21.08%)和牦牛(20.81%)的(P<0.01)。说明犏牛SNRPN DMR区的高甲基化本身还不足以引起SNRPN基因表达水平的显著变化,还有其它机制参与SNRPN基因的表达调节。
     5. DAZL基因5′端CpG岛DNA甲基化水平及其与犏牛雄性不育的关系研究
     前期研究发现LDAZL基因与犏牛雄性不育相关,是犏牛雄性不育的候选基因。为了进一步研究调控DAZL基因表达的机制,本实验根据黄牛DAZL基因序列(NC_007299, complement:141791034..141818671)设计引物扩增了牦牛DAZL基因的5′端序列,并对牦牛、黄牛和犏牛DAZL基因的甲基化水平进行了分析,结果发现:牦牛DAZL基因的5′端存在CpG岛,CpG岛长1744bp(EU686694:650-2393),包含启动子区、第一外显子和第一内含子;犏牛DAZL5′端DNA甲基化水平(85.6%)极显著高于黄牛(71.4%)和牦牛(69.8%)(P<0.01)。可见犏牛LDAZL基因的高甲基化与其nRNA表达缺乏、雄性不育的表型是一致的,说明DAZL基因的甲基化对DAZL基因mRNA的表达调控起重要作用,可能对犏牛生精细胞减数分裂、雄性不育有重要影响。
The yak, known as the "almighty livestock", is indispensable in the region of the Qinghai-Tibet Plateau and nearby areas, and is well adapted to high altitude environments. However, it is primitive and grows slowly, resulting in low production performance. To improve its productivity, hybridization between cattle and yaks has been carried out since the1950s. Cattle yaks, the F1hybrid between cattle and yaks, exhibit significant hybrid vigor. However, the males are sterile, which greatly restricts the utilization of this hybrid vigor, and is a "stumbling block" in the varietal improvement of the yak. To investigate the mechanism of male sterility of cattle yaks, in present study, the differentially methylated region (DMR) sequences of imprinting genes and spermato genesis-related gene in yak were obtained using homogenetic amplification, the expression of genes in cattle yaks and their parents was investigated by Real-time PCR, and the methylation patterns were examined using bisulfite sequencing. This would provide evidence for the epigenetic mechanism of sterility of cattle yaks.
     1. Molecular Cloning and Sequence Analysis of H19/IGF2Imprinting Control Region (ICR) in Yaks (Bos grunniens)
     Primers were designed from the sequence of the cattle H19DNA (NW_001494548), sequencing and assembly led to the establishment of the complete nucleotide sequence (6.5kb) of the H19ICR, promoter, and partial exon1. The sequence was submitted to GenBank under accession number EU502716. Sequence analysis revealed that the homology between yak and cattle, sheep, pig, human and mouse, was97%,83.13%,48%,47%,42%, respectively; six CpG islands were identified, and their lengths were1182,1186,707,277,281, and1311bp, respectively;6CTCF-binding sites were identified in HI9ICR, and they were all present in the CpG islands and located at approximately5.5kb (site1),5.1kb (site2),4.1kb (site3),3.7kb (site4),2.7kb (site5), and1.3kb (site6) upstream of the transcription initiation site, respectively; computer assisted analysis revealed that the 5'-flanking region consisted of a putative core promoter region,2GC boxes, and several binding sites for Sp1, Sp2, AP2, NF-κB, STAT5, P53, WT1, GFI1, MTBP, CPBP, ZF9, E2F, and Myc-Max.
     2. Analysis of H19mRNA expression and its methylation status in testes between cattle yaks and their parents
     By Real-time PCR the expression of testes H19mRNA in cattle yaks and their parents was investigated. The result showed that the H19expression in cattle yaks was the lowest; and there was statistically significant difference between cattle yaks and their parents (P<0.01), but no significant difference between cattle and yak (P>0.05).
     The methylation patterns of H19ICR which contained CTCF-binding site III was examined in testis using bisulfite sequencing. The result showed that the methylation level of H19ICR in cattle yaks (48.82%) was significantly lower than that in cattle (70%)(P<0.01) and yaks (59.10%)(P<0.05), and there was significant difference between cattle and yaks (P<0.05); the methylation level of CTCF-binding site III in cattle yaks (48.33%) was significantly lower than that in cattle (75%) and yaks (68%)(P<0.01). This indicated that the methylation status of H19ICR and CTCF-binding sites played an important role in transcriptional regulation.
     3. Analysis of IGF2mRNA expression and its methylation status in testes between cattle yaks and their parents
     Based on the cattle IGF2gene (DQ298740), primers were designed, and the partial sequence of IGF2exon10in yaks was obtained (GenBank No. FJ152104). the IGF2mRNA expression of testes in cattle yaks and their parents was investigated by Real-time PCR and the methylation patterns of IGF2DMR in exon10was examined in testes using bisulfite sequencing. The results showed that IGF2expression in cattle yaks'testes was lower than their parents (significant, P<0.01). The IGF2DMR was highly methylated (cattle, yak and cattle yak was90%,90.7%and92.0%respectively) in testes, with the highest level in cattle yaks (not significant, P>0.05). Our study showed that IGF2played an important role in bovine spermatogenesis and might be involved in cattle yak male sterility. The methylation level of the IGF2DMR was irrelevant to the lower expression of IGF2in cattle yaks; other factors perhaps play roles in its expression.
     4. Analysis of SNRPN mRNA expression and its methylation status in testes between cattle yaks and their parents
     Primers were designed from the sequence of the cattle SNRPN DNA (NW_935049), the5'-flanking sequence (1137bp) in yaks was obtained, the homology between yaks and cattle was98.2%, and computer assisted analysis suggested that the region consisted of the putative methylation-sensitive binding sites, including YY1and SP1sites. SNRPN mRNA expression in cattle yaks and their parents and the methylation patterns of the SNRPN DMR were examined in testes. The results showed that there was no significant difference between cattle yaks and their parents in SNRPN expression, but the expression level in cattle yaks was lower than that in their parents; the methylation level of SNRPN gene in cattle yaks (38.53%) was very significantly greater than that in cattle (21.08%) and yaks (20.81%)(P<0.01). This indicated that the methylation status of SNRPN5'-flanking in cattle yaks couldn't lead to apparent different expression alone, other factors maybe play an important role in the SNRPN expression,.
     5. Relationship between Methylation Status of DAZL5'CpG Island and Male Sterility of Cattle Yak
     In our prophase research, we have found that DAZL gene was a candidate gene for male infertility in cattle yaks. To study the mechanism of DAZL gene expression regulation in cattle yaks, the yaks DAZL5'region sequence was firstly cloned and DAZL gene methylation patterns in cattle, yaks and cattle yaks were examined using bisulfite sequencing. The results showed that within the5'region of DAZL there was a CpG island which contained the promoter region, exon1and intron1; the methylation level of DAZL gene in cattle yaks (85.6%) was very significantly greater than that in cattle (69.8%) and yaks (71.4%)(P<0.01). These results demonstrated that the hypermethylation of DAZL gene was in accordance with the phenotype of DAZL deficient expression and male infertility in cattle yaks, and indicated that the methylation status of DAZL gene played an important role in DAZL transcriptional regulation and maybe have a severe effect on meiotic process of spermatogenesis and male sterility in cattle yaks.
引文
1. Miller J A, Jr., Nagarajan V. The impact of biotechnology on the chemical industry in the 21st century. Trends Biotechnol,2000,18(5):190-1.
    2. Bestor T H, Verdine G L. DNA methyltransferases. Curr Opin Cell Biol,1994,6(3):380-9.
    3. Tsaftaris S A. Molecular aspects of heterosis in plants. Physiologia Plantarum,1995,94(2): 362-370.
    4. Xiong L Z, Yang G P, Xu C G, Zhang Q, Saghai Maroof M A. Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross. Molecular Breeding, 1998,4(2):129-136.
    5. Thornalley P J. Pharmacology of methylglyoxal:formation, modification of proteins and nucleic acids, and enzymatic detoxification--a role in pathogenesis and antiproliferative chemotherapy. Gen Pharmacol,1996,27(4):565-73.
    6. O'Neill R J, O'Neill M J, Graves J A. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature,1998,393(6680):68-72.
    7. Vrana P B, Guan X J, Ingram R S, Tilghman S M. Genomic imprinting is disrupted in interspecific Peromyscus hybrids. Nat Genet,1998,20(4):362-5.
    8. Vrana P B, Fossella J A, Matteson P, del Rio T, O'Neill M J, Tilghman S M. Genetic and epigenetic incompatibilities underlie hybrid dysgenesis in Peromyscus. Nat Genet,2000,25(1):120-4.
    9. Roemer I, Grutzner F, Winking H, Haaf T, Orth A, Skidmore L, Antczak D, Fundele R. Genome evolution. Global methylation in eutherian hybrids. Nature,1999,401(6749):131-2.
    10. Robinson T J, Wittekindt O, Pasantes J J, Modi W S, Schempp W, Morris-Rosendahl D J. Stable methylation patterns in interspecific antelope hybrids and the characterization and localization of a satellite fraction in the Alcelaphini and Hippotragini. Chromosome Res,2000,8(7):635-43.
    11. Schutt S, Florl A R, Shi W, Hemberger M, Orth A, Otto S, Schulz W A, Fundele R H. DNA methylation in placentas of interspecies mouse hybrids. Genetics,2003,165(1):223-8.
    12. Dobigny G, Waters P D, Robinson T J. Absence of hypomethylation and LINE-1 amplification in a white x black rhinoceros hybrid. Genetica,2006,127(1-3):81-6.
    13. Shi W, Krella A, Orth A, Yu Y, Fundele R. Widespread disruption of genomic imprinting in adult interspecies mouse (Mus) hybrids. Genesis,2005,43(3):100-8.
    1. 中国畜禽遗传资源状况编委会.中国畜禽遗传资源状况.北京:中国农业出版社,2004:18.
    2. 陆仲磷.中国的牦牛资源.中国草食动物,1999,1(2):44.
    3. 杨诗兴.用牦牛和普通牛杂交培育新品种.草食家畜,1982(3):1-5.
    4. 张容昶.中国的牦牛.甘肃科学技术出版社,1989.
    5. 《中国牦牛学》编写委员会.中国牦牛学.四川科学技术出版社,1989.
    6. 单祥年.我国黄牛属(Bos)五个种的染色体的研究.动物学研究,1980(总14):42-46.
    7. 李孔亮,芦鸿汁.犏牛及其亲本(牦牛、黄牛)体细胞染色体研究.中国牦牛,1984,14(2):42-46.
    8.陈文元,王子淑,王喜忠.牦牛(Bos grunnles)染色体的研究.中国牦牛,1980,1:41-44.
    9. 许康祖.牦牛及其杂种生殖器官组织解剖学及生殖机能的研究.中国牦牛,1981,3:18-21.
    10.孙竹珑,张孝纯.从生殖器官及脑下垂体的组织学结构探讨牦牛杂交一代的不育.西南民族学院学报(畜牧兽医版),1983(3):1-5.
    11.李孔亮.犏牛及其亲本(牦牛、黄牛)的血清生化成份测定(初报).中国牦牛,1982(2):11-15.
    12.李孔亮等.牦牛、犏牛、黄牛的血清蛋白质分析.中国牦牛,1985(1):4-9.
    14.胡欧明,王正明.犏牛精子发生水平的研究.西南民族学院学报:自然科学版,1999,25(1): 80-83.
    15.赵善廷,汤传新.犏牛及其亲本(牦牛和黄牛)睾丸的定量组织学比较研究.中国牦牛,1990(003):30-34.
    16.张容昶,段李成.对牦牛和普通牛种间杂种公牛精子生成水平的研究.畜牧兽医学报,1991,22(3):231-234.
    17.赵振民.“尕里巴”或“牦渣子”公牛精母细胞减数分裂及精子发生的研究.黄牛杂志,1998,24(3):19-20.
    18.赵振民.“假黄牛”或“假牦牛”精母细胞减数分裂及精子发生的研究.黄牛杂志,1998,24(5):11-12.
    19.王士平,成正邦.牦牛、黄牛和犏牛睾丸的组织学和组织化学观察.中国牦牛,1990(003):34-39.
    20.秦传芳,赵善廷,王士平.牦牛与犏牛睾丸的电镜观察和体视学研究.中国牦牛,1993(4):9-11.
    21.谭春富,赖明荣.牦牛、杂交一代犏牛雄性生殖器官的比较解剖.中国牦牛,1990(003):39-45.
    22.刘辉,田惠萍,崔定中.牦牛、黄牛、犏牛的垂体、间质细胞和支持细胞的比较.中国牦牛,1990(3):25-29.
    23.刘辉,王丽琴,郑丕芝.牦牛、黄牛犏牛垂体远侧部细胞的定量组织学研究.中国牦牛,1994(1):34-36.
    24.罗晓林.从垂体的超微结构探讨公犏牛的不育性.西南民族学院学报:畜牧兽医版,1993,19(1):4-13.
    25.罗晓林,吴克选,杨荣珍.从血液中LH、T、P4、17 β-E2含量昼夜变化探讨公犏牛性行为正常的生理.草食家畜,1996(2):41-43.
    26.郭爱朴.牦牛、黄牛及其杂交后代犏牛的染色体比较研究.遗传学报,1983,10(2):137-143.
    27.陈文元.牦牛、黑白花牛及其杂交后代的染色体研究.中国牦牛,1990(1):23-29.
    28.钟金城.牦牛遗传与育种.成都:四川科技出版社,1996:24-44.
    29.周继平,张周平,胡勇,仇桂芳.牦牛远缘杂交后代减数分裂与雄性不育关系的研究.黄牛杂志,1999,25(5):12-15.
    30.胡欧明,钟金城,陈智华,马力,蔡立.犏牛精母细胞联会复合体与雄性不育关系的研究.西南民族学院学报(自然科学版),2000,26(1):61-66.
    31.黄海燕,王桂玉,王春梅,刘润梅,冯晓峰,李伟雄.精子发生相关CG14片段的组织特异性表达及其与杂交不育的关系.生殖医学杂志,2002,11(2):91-96.
    32.屈旭光,李齐发,刘振山,董丽艳,李新福,郝称莉,谢庄.牦牛、犏牛睾丸组织中SYCP3基因mRNA表达水平研究.畜牧兽医学报,2008,39(8):1132-1136
    1. Eddy E M. Male germ cell gene expression. Recent Prog Horm Res,2002,57:103-28.
    2. Eddy E M.'Chauvinist genes' of male germ cells:gene expression during mouse spermatogenesis. Reprod Fertil Dev,1995,7(4):695-704.
    3. Ravnik S E, Wolgemuth D J. Regulation of meiosis during mammalian spermatogenesis:the A-type cyclins and their associated cyclin-dependent kinases are differentially expressed in the germ-cell lineage. Dev Biol,1999,207(2):408-18.
    4. Wolgemuth D J, Laurion E, Lele K M. Regulation of the mitotic and meiotic cell cycles in the male germ line. Recent Prog Horm Res,2002,57:75-101.
    5. Schrader M, Muller-Tidow C, Ravnik S, Muller M, Schulze W, Diederichs S, Serve H, Miller K. Cyclin A1 and gametogenesis in fertile and infertile patients:a potential new molecular diagnostic marker. Hum Reprod,2002,17(9):2338-43.
    6. Wu S, Wolgemuth D J. The distinct and developmentally regulated patterns of expression of members of the mouse Cdc25 gene family suggest differential functions during gametogenesis. Dev Biol,1995,170(1):195-206.
    7. Godet M, Thomas A, Rudkin B B, Durand P. Developmental changes in cyclin B1 and cyclin-dependent kinase 1 (CDK1) levels in the different populations of spermatogenic cells of the post-natal rat testis. Eur J Cell Biol,2000,79(11):816-23.
    8. Brandeis M, Rosewell I, Carrington M, Crompton T, Jacobs M A, Kirk J, Gannon J, Hunt T. Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proc Natl Acad Sci U S A,1998,95(8):4344-9.
    9. Kim J M, McGaughy J T, Bogle R K, Ravnik S E. Meiotic expression of the cyclin H/Cdk7 complex in male germ cells of the mouse. Biol Reprod,2001,64(5):1400-8.
    10.赵龙梅.精子发生减数分裂相关基因表达.国外医学:计划生育分册,2002,21(2):110-113.
    11.De Cesare D, Fimia G M, Sassone-Corsi P. CREM, a master-switch of the transcriptional cascade in male germ cells. J Endocrinol Invest,2000,23(9):592-6.
    12.Nantel F, Monaco L, Foulkes N S, Masquilier D, LeMeur M, Henriksen K, Dierich A, Parvinen M, Sassone-Corsi P. Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature, 1996,380(6570):159-62.
    13.Peri A, Serio M. The CREM system in human spermatogenesis. J Endocrinol Invest,2000,23(9): 578-83.
    14. Don J, Stelzer G. The expanding family of CREB/CREM transcription factors that are involved with spermatogenesis. Mol Cell Endocrinol,2002,187(1-2):115-24.
    15.Dadoune J P. Expression of mammalian spermatozoal nucleoproteins. Microsc Res Tech,2003,61(1): 56-75.
    16. Fimia G M, De Cesare D, Sassone-Corsi P. CBP-independent activation of CREM and CREB by the LIM-only protein ACT. Nature,1999,398(6723):165-9.
    17. Fimia G M, De Cesare D, Sassone-Corsi P. A family of LIM-only transcriptional coactivators: tissue-specific expression and selective activation of CREB and CREM. Mol Cell Biol,2000,20(22): 8613-22.
    18.Fimia G M, Morlon A, Macho B, De Cesare D, Sassone-Corsi P. Transcriptional cascades during spermatogenesis:pivotal role of CREM and ACT. Mol Cell Endocrinol,2001,179(1-2):17-23.
    19.Palermo I, Litrico L, Emmanuele G, Giuffrida V, Sassone-Corsi P, De Cesare D, Maria Fimia G, D'Agata R, Calogero A E, Travali S. Cloning and expression of activator of CREM in testis in human testicular tissue. Biochem Biophys Res Commun,2001,283(2):406-11.
    20.Steger K, Behr R, Kleiner I, Weinbauer G F, Bergmann M. Expression of activator of CREM in the testis (ACT) during normal and impaired spermatogenesis:correlation with CREM expression. Mol Hum Reprod,2004,10(2):129-35.
    21. Eddy E M. Role of heat shock protein HSP70-2 in spermatogenesis. Rev Reprod,1999,4(1):23-30.
    22.Dix D J, Allen J W, Collins B W, Mori C, Nakamura N, Poorman-Allen P, Goulding E H, Eddy E M. Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc Natl Acad Sci U S A,1996,93(8):3264-8.
    23.Scieglinska D, Widlak W, Konopka W, Poutanen M, Rahman N, Huhtaniemi I, Krawczyk Z. Structure of the 5'region of the Hst70 gene transcription unit:presence of an intron and multiple transcription initiation sites. Biochem J,2001,359(Pt 1):129-37.
    24. Son W Y, Han C T, Hwang S H, Lee J H, Kim S, Kim Y C. Repression of hspA2 messenger RNA in human testes with abnormal spermatogenesis. Fertil Steril,2000,73(6):1138-44.
    25.Feng H L, Sandlow J I, Sparks A E. Decreased expression of the heat shock protein hsp70-2 is associated with the pathogenesis of male infertility. Fertil Steril,2001,76(6):1136-9.
    26. Allen J W, Dix D J, Collins B W, Merrick B A, He C, Selkirk J K, Poorman-Allen P, Dresser M E, Eddy E M. HSP70-2 is part of the synaptonemal complex in mouse and hamster spermatocytes. Chromosoma,1996,104(6):414-21.
    27.Reijo R, Lee T Y, Salo P, Alagappan R, Brown L G, Rosenberg M, Rozen S, Jaffe T, Straus D, Hovatta O, et al. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat Genet,1995,10(4):383-93.
    28.Yen P H, Chai N N, Salido E C. The human autosomal gene DAZLA:testis specificity and a candidate for male infertility. Hum Mol Genet,1996,5(12):2013-7.
    29.Xu E Y, Moore F L, Pera R A. A gene family required for human germ cell development evolved from an ancient meiotic gene conserved in metazoans. Proc Natl Acad Sci U S A,2001,98(13): 7414-9.
    30.Houston D W, King M L. A critical role for Xdazl, a germ plasm-localized RNA, in the differentiation of primordial germ cells in Xenopus. Development,2000,127(3):447-56.
    31.Yen P H. Putative biological functions of the DAZ family. Int J Androl,2004,27(3):125-9.
    32.Tschanter P, Kostova E, Luetjens C M, Cooper T G, Nieschlag E, Gromoll J. No association of the A260G and A386G DAZL single nucleotide polymorphisms with male infertility in a Caucasian population. Hum Reprod,2004,19(12):2771-6.
    33.闻小慧,张家颖,左文静,邬伟.常染色体DAZL基因单核苷酸多态性与男性不育相关性研究.中华男科学杂志,2007,18(8):713-717.
    34. de Vries J W, Hoffer M J, Repping S, Hoovers J M, Leschot N J, van der Veen F. Reduced copy number of DAZ genes in subfertile and infertile men. Fertil Steril,2002,77(1):68-75.
    35.Ruggiu M, Speed R, Taggart M, McKay S J, Kilanowski F, Saunders P, Dorin J, Cooke H J. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature,1997, 389(6646):73-7.
    36.Gianotten J, Hoffer M J, De Vries J W, Leschot N J, Gerris J, van der Veen F. Partial DAZ deletions in a family with five infertile brothers. Fertil Steril,2003,79 Suppl 3:1652-5.
    37.Lin Y M, Chen C W, Sun H S, Tsai S J, Hsu C C, Teng Y N, Lin J S, Kuo P L. Expression patterns and transcript concentrations of the autosomal DAZL gene in testes of azoospermic men. Mol Hum Reprod,2001,7(11):1015-22.
    38.Schrans-Stassen B H, Saunders P T, Cooke H J, de Rooij D G. Nature of the spermatogenic arrest in Dazl-/-mice. Biol Reprod,2001,65(3):771-6.
    39.Lin Y M, Kuo P L, Lin Y H, Teng Y N, Nan Lin J S. Messenger RNA transcripts of the meiotic regulator BOULE in the testis of azoospermic men and their application in predicting the success of sperm retrieval. Hum Reprod,2005,20(3):782-8.
    40.Luetjens C M, Xu E Y, Rejo Pera R A, Kamischke A, Nieschlag E, Gromoll J. Association of meiotic arrest with lack of BOULE protein expression in infertile men. J Clin Endocrinol Metab,2004,89(4): 1926-33.
    41. Kierszenbaum A L. Mammalian spermatogenesis in vivo and in vitro:a partnership of spermatogenic and somatic cell lineages. Endocr Rev,1994,15(1):116-34.
    1. Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature,2004,429(6994):900-3.
    2. Klenova E M, Morse H C,3rd, Ohlsson R, Lobanenkov V V. The novel BORIS+CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer. Semin Cancer Biol, 2002,12(5):399-414.
    3. Steger K, Klonisch T, Gavenis K, Drabent B, Doenecke D, Bergmann M. Expression of mRNA and protein of nucleoproteins during human spermiogenesis. Mol Hum Reprod,1998,4(10):939-45.
    4. van Roijen H J, Ooms M P, Spaargaren M C, Baarends W M, Weber R F, Grootegoed J A, Vreeburg J T. Immunoexpression of testis-specific histone 2B in human spermatozoa and testis tissue. Hum Reprod,1998,13(6):1559-66.
    5. Oliva R, Bazett-Jones D, Mezquita C, Dixon G H. Factors affecting nucleosome disassembly by protamines in vitro. Histone hyperacetylation and chromatin structure, time dependence, and the size of the sperm nuclear proteins. J Biol Chem,1987,262(35):17016-25.
    6. O'Carroll D, Scherthan H, Peters A H, Opravil S, Haynes A R, Laible G, Rea S, Schmid M, Lebersorger A, Jerratsch M, Sattler L, Mattei M G, Denny P, Brown S D, Schweizer D, Jenuwein T. Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol Cell Biol,2000,20(24):9423-33.
    7. Mahadevaiah S K, Turner J M, Baudat F, Rogakou E P, de Boer P, Blanco-Rodriguez J, Jasin M, Keeney S, Bonner W M, Burgoyne P S. Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet,2001,27(3):271-6.
    8. Chen H Y, Sun J M, Zhang Y, Davie J R, Meistrich M L. Ubiquitination of histone H3 in elongating spermatids of rat testes. J Biol Chem,1998,273(21):13165-9.
    9. Zhao M, Shirley C R, Yu Y E, Mohapatra B, Zhang Y, Unni E, Deng J M, Arango N A, Terry N H, Weil M M, Russell L D, Behringer R R, Meistrich M L. Targeted disruption of the transition protein 2 gene affects sperm chromatin structure and reduces fertility in mice. Mol Cell Biol,2001,21(21): 7243-55.
    10. Lee K, Haugen H S, Clegg C H, Braun R E. Premature translation of protamine 1 mRNA causes precocious nuclear condensation and arrests spermatid differentiation in mice. Proc Natl Acad Sci U SA,1995,92(26):12451-5.
    1. Cottrell S E. Molecular diagnostic applications of DNA methylation technology. Clin Biochem, 2004,37(7):595-604.
    2. Jones P A, Baylin S B. The fundamental role of epigenetic events in cancer. Nat Rev Genet,2002, 3(6):415-28.
    3. Futscher B W, Oshiro M M, Wozniak R J, Holtan N, Hanigan C L, Duan H, Domann F E. Role for DNA methylation in the control of cell type specific maspin expression. Nat Genet,2002,31(2): 175-9.
    4. Tate P H, Bird A P. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev,1993,3(2):226-31.
    5. Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev,1998,12(5): 599-606.
    6. Keshet I, Lieman-Hurwitz J, Cedar H. DNA methylation affects the formation of active chromatin. Cell,1986,44(4):535-43.
    7. Kass S U, Landsberger N, Wolffe A P. DNA methylation directs a time-dependent repression of transcription initiation. Curr Biol,1997,7(3):157-65.
    8. Newell-Price J, Clark A J, King P. DNA methylation and silencing of gene expression. Trends Endocrinol Metab,2000,11(4):142-8.
    9. Lucifero D, Chaillet J R, Trasler J M. Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology. Hum Reprod Update,2004,10(1):3-18.
    10. Razin A, Cedar H. DNA methylation and genomic imprinting. Cell,1994,77(4):473-6.
    11. Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature,2004,429(6994):900-3.
    12. Boumil R M, Lee J T. Forty years of decoding the silence in X-chromosome inactivation. Hum Mol Genet,2001,10(20):2225-32.
    13. Wu C, Morris J R. Genes, genetics, and epigenetics:a correspondence. Science,2001,293(5532): 1103-5.
    14.胡炜,汪亚平,朱作言.核移植后的细胞核再程序化机制研究进展.遗传学报,2003,30(5):485-492.
    15. Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Demethylation of the zygotic paternal genome. Nature,2000,403(6769):501-2.
    16. Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J. Active demethylation of the paternal genome in the mouse zygote. Curr Biol,2000,10(8):475-8.
    17. Ehrlich M, Gama-Sosa M A, Huang L H, Midgett R M, Kuo K C, McCune R A, Gehrke C. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res,1982,10(8):2709-21.
    18. Bender J. Cytosine methylation of repeated sequences in eukaryotes:the role of DNA pairing. Trends Biochem Sci,1998,23(7):252-6.
    19. Yoder J A, Walsh C P, Bestor T H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet,1997,13(8):335-40.
    20. Wilson G G, Murray N E. Restriction and modification systems. Annu Rev Genet,1991,25: 585-627.
    21. Kato T, Ahmed M, Yamamoto T, Takahashi H, Oohara M, Ikeda T, Aida Y, Katsuki M, Arakawa Y, Shikata T, Esumi M. Inactivation of hepatitis C virus cDNA transgene by hypermethylation in transgenic mice. Arch Virol,1996,141(5):951-8.
    22. Nagai H, Baba M, Konishi N, Kim Y S, Nogami M, Okumura K, Emi M, Matsubara K. Isolation of NotI clusters hypomethylated in HBV-integrated hepatocellular carcinomas by two-dimensional electrophoresis. DNA Res,1999,6(4):219-25.
    23. Fang J Y, Mikovits J A, Bagni R, Petrow-Sadowski C L, Ruscetti F W. Infection of lymphoid cells by integration-defective human immunodeficiency virus type 1 increases de novo methylation. J Virol,2001,75(20):9753-61.
    24. Hofmann W K, Tsukasaki K, Takeuchi N, Takeuchi S, Koeffler H P. Methylation analysis of cell cycle control genes in adult T-cell leukemia/lymphoma. Leuk Lymphoma,2001,42(5):1107-9.
    25.张宏,肖文华,梁后杰.DNA甲基化与肿瘤.肿瘤防治研究,2004,31(1):9-61.
    26. Zheng S, Ma X, Zhang L, Gunn L, Smith M T, Wiemels J L, Leung K, Buffler P A, Wiencke J K. Hypermethylation of the 5'CpG island of the FHIT gene is associated with hyperdiploid and translocation-negative subtypes of pediatric leukemia. Cancer Res,2004,64(6):2000-6.
    27. Kautiainen T L, Jones P A. DNA methyltransferase levels in tumorigenic and nontumorigenic cells in culture. J Biol Chem,1986,261(4):1594-8.
    28. Gitan R S, Shi H, Chen C M, Yan P S, Huang T H. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res,2002,12(1):158-64.
    29. Oakeley E J, Schmitt F, Jost J P. Quantification of 5-methylcytosine in DNA by the chloroacetaldehyde reaction. Biotechniques,1999,27(4):744-6,748-50,752.
    30. Bensaada M, Kiefer H, Tachdjian G, Lapierre J M, Cacheux V, Niveleau A, Metezeau P. Altered patterns of DNA methylation on chromosomes from leukemia cell lines:identification of 5-methylcytosines by indirect immunodetection. Cancer Genet Cytogenet,1998,103(2):101-9.
    31. Wainfan E, Poirier L A. Methyl groups in carcinogenesis:effects on DNA methylation and gene expression. Cancer Res,1992,52(7 Suppl):2071s-2077s.
    32.白桦,邓大君.CpG岛过甲基化检测技术比较.国外医学分子生物学分册,2003,25(2):121-125.
    33. Frommer M, McDonald L E, Millar D S, Collis C M, Watt F, Grigg G W, Molloy P L, Paul C L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A,1992,89(5):1827-31.
    34. Herman J G, Graff J R, Myohanen S, Nelkin B D, Baylin S B. Methylation-specific PCR:a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A,1996,93(18):9821-6.
    35. Xiong Z, Laird P W. COBRA:a sensitive and quantitative DNA methylation assay. Nucleic Acids Res,1997,25(12):2532-4.
    36. Eads C A, Danenberg K D, Kawakami K, Saltz L B, Blake C, Shibata D, Danenberg P V, Laird P W. MethyLight:a high-throughput assay to measure DNA methylation. Nucleic Acids Res,2000,28(8): E32.
    1. Constancia M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, Stewart F, Kelsey G, Fowden A, Sibley C, Reik W. Placental-specific IGF-Ⅱ is a major modulator of placental and fetal growth. Nature,2002,417(6892):945-948.
    2. Juan V, Crain C, Wilson C. Evidence for evolutionary conserved secondary structure in the H19 tumor suppressor RNA. Nucleic Acids Res,2000,28(5):1221-1227.
    3. Cui H. Loss of imprinting of IGF2 as an epigenetic marker for the risk of human cancer. Dis Markers,2007,23(1-2):105-112.
    4. Ariel I, Sughayer M, Fellig Y, Pizov G, Ayesh S, Podeh D, Libdeh B A, Levy C, Birman T, Tykocinski M L, de Groot N, Hochberg A. The imprinted H19 gene is a marker of early recurrence in human bladder carcinoma Mol Pathol,2000,53(6):320-323.
    5. Leighton P A, Ingram R S, Eggenschwiler J, Efstratiadis A, Tilghman S M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature,1995,375(6526):34-39.
    6. Bell A C, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature,2000,405(6785):482-485.
    7. Hark A T, Schoenherr C J, Katz D J, Ingram R S, Levorse J M, Tilghman S M. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature,2000,405(6785): 486-489.
    8. Thorvaldsen J L, Duran K L, Bartolomei M S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dey,1998,12(23):3693-3702.
    9. Park K Y, Sellars E A, Grinberg A, Huang S P, Pfeifer K. The H19 differentially methylated region marks the parental origin of a heterologous locus without gametic DNA methylation. Mol Cell Biol, 2004,24(9):3588-3595.
    10. Ling J Q, Li T, Hu J F, Vu T H, Chen H L, Qiu X W, Cherry A M, Hoffman A R. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsbl/Nfl. Science,2006,312(5771): 269-272.
    11. Murrell A, Heeson S, Reik W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet,2004,36(8): 889-893.
    12. Kurukuti S, Tiwari V K, Tavoosidana G, Pugacheva E, Murrell A, Zhao Z, Lobanenkov V, Reik W, Ohlsson R. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci U S A, 2006,103(28):10684-10689.
    13. Amarger V, Nguyen M, Van Laere A S, Braunschweig M, Nezer C, Georges M, Andersson L. Comparative sequence analysis of the TNS-IGF2-H19 gene cluster in pigs. Mamm Genome,2002, 13(7):388-398.
    14. Young L E, Schnieke A E, McCreath K J, Wieckowski S, Konfortova G, Fernandes K, Ptak G, Kind A J, Wilmut I, Loi P, Feil R. Conservation of IGF2-H19 and IGF2R imprinting in sheep:effects of somatic cell nuclear transfer. Mech Dev,2003,120(12):1433-1442.
    15. Szabo P E, Tang S H, Silva F J, Tsark W M, Mann J R. Role of CTCF binding sites in the Igf2/H19 imprinting control region. Mol Cell Biol,2004,24(11):4791-4800.
    16. Pant V, Kurukuti S, Pugacheva E, Shamsuddin S, Mariano P, Renkawitz R, Klenova E, Lobanenkov V, Ohlsson R. Mutation of a single CTCF target site within the H19 imprinting control region leads to loss of Igf2 imprinting and complex patterns of de novo methylation upon maternal inheritance. Mol Cell Biol,2004,24(8):3497-3504.
    17. Engel N, Thorvaldsen J L, Bartolomei M S. CTCF binding sites promote transcription initiation and prevent DNA methylation on the maternal allele at the imprinted H19/Igf2 locus. Hum Mol Genet, 2006,15(19):2945-2954.
    18. Prawitt D, Enklaar T, Gartner-Rupprecht B, Spangenberg C, Oswald M, Lausch E, Schmidtke P, Reutzel D, Fees S, Lucito R, Korzon M, Brozek I, Limon J, Housman D E, Pelletier J, Zabel B. Microdeletion of target sites for insulator protein CTCF in a chromosome 11p15 imprinting center in Beckwith-Wiedemann syndrome and Wilms'tumor. Proc Natl Acad Sci U S A,2005,102(11): 4085-4090.
    19. Sparago A, Cerrato F, Vernucci M, Ferrero G B, Silengo M C, Riccio A. Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome. Nat Genet, 2004,36(9):958-960.
    20. Erhardt S, Lyko F, Ainscough J F, Surani M A, Paro R. Polycomb-group proteins are involved in silencing processes caused by a transgenic element from the murine imprinted H19/Igf2 region in Drosophila. Dev Genes Evol,2003,213(7):336-344.
    21. Drewell R A, Goddard C J, Thomas J O, Surani M A. Methylation-dependent silencing at the H19 imprinting control region by MeCP2. Nucleic Acids Res,2002,30(5):1139-1144.
    22. Bowman A B, Levorse J M, Ingram R S, Tilghman S M. Functional characterization of a testis-specific DNA binding activity at the H19/Igf2 imprinting control region. Mol Cell Biol,2003, 23(22):8345-8351.
    23. Szabo P E, Pfeifer G P, Mann J R. Parent-of-origin-specific binding of nuclear hormone receptor complexes in the H19-Igf2 imprinting control region. Mol Cell Biol,2004,24(11):4858-4868.
    24. Katz D J, Beer M A, Levorse J M, Tilghman S M. Functional characterization of a novel Ku70/80 pause site at the H19/Igf2 imprinting control region. Mol Cell Biol,2005,25(10):3855-3863.
    25. Barsyte-Lovejoy D, Lau S K, Boutros P C, Khosravi F, Jurisica I, Andrulis I L, Tsao M S, Penn L Z. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res,2006,66(10):5330-5337.
    26. Berteaux N, Lottin S, Monte D, Pinte S, Quatannens B, Coll J, Hondermarck H, Curgy J J, Dugimont T, Adriaenssens E. H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J Biol Chem,2005,280(33):29625-29636.
    27. Dugimont T, Montpellier C, Adriaenssens E, Lottin S, Dumont L, Iotsova V, Lagrou C, Stehelin D, Coll J, Curgy J J. The H19 TATA-less promoter is efficiently repressed by wild-type tumor suppressor gene product p53. Oncogene,1998,16(18):2395-2401.
    1. Kierszenbaum A L. Genomic imprinting and epigenetic reprogramming:unearthing the garden of forking paths. Mol Reprod Dev,2002,63(3):269-72.
    2. Gabory A, Ripoche M A, Yoshimizu T, Dandolo L. The H19 gene:regulation and function of a non-coding RNA. Cytogenet Genome Res,2006,113(1-4):188-93.
    3. Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B. Tumour-suppressor activity of H19 RNA. Nature, 1993,365(6448):764-767.
    4. Ariel I, Sughayer M, Fellig Y, Pizov G, Ayesh S, Podeh D, Libdeh B A, Levy C, Birman T, Tykocinski M L, de Groot N, Hochberg A. The imprinted H19 gene is a marker of early recurrence in human bladder carcinoma. Mol Pathol,2000,53(6):320-323.
    5. Tanos V, Ariel I, Prus D, De-Groot N, Hochberg A. H19 and IGF2 gene expression in human normal, hyperplastic, and malignant endometrium. Int J Gynecol Cancer,2004,14(3):521-525.
    6. Fellig Y, Ariel I, Ohana P, Schachter P, Sinelnikov I, Birman T, Ayesh S, Schneider T, de Groot N, Czerniak A, Hochberg A. H19 expression in hepatic metastases from a range of human carcinomas. J Clin Pathol,2005,58(10):1064-1068.
    7. Lottin S, Adriaenssens E, Berteaux N, Lepretre A, Vilain M O, Denhez E, Coll J, Dugimont T, Curgy J J. The human H19 gene is frequently overexpressed in myometrium and stroma during pathological endometrial proliferative events. Eur J Cancer,2005,41(1):168-177.
    8. Cui H. Loss of imprinting of IGF2 as an epigenetic marker for the risk of human cancer. Dis Markers, 2007,23(1-2):105-112.
    9. Esteves L I, Javaroni A C, Nishimoto I N, Magrin J, Squire J A, Kowalski L P, Rainho C A, Rogatto S R. DNA methylation in the CTCF-binding site I and the expression pattern of the H19 gene:does positive expression predict poor prognosis in early stage head and neck carcinomas? Mol Carcinog,2005,44(2): 102-110.
    10.Leighton P A, Ingram R S, Eggenschwiler J, Efstratiadis A, Tilghman S M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature,1995,375(6526):34-39.
    11.Thorvaldsen J L, Duran K L, Bartolomei M S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev,1998,12(23):3693-3702.
    12. Park K Y, Sellars E A, Grinberg A, Huang S P, Pfeifer K. The HI9 differentially methylated region marks the parental origin of a heterologous locus without gametic DNA methylation. Mol Cell Biol,2004,24(9): 3588-3595.
    13. Ling J Q, Li T, Hu J F, Vu T H, Chen H L, Qiu X W, Cherry A M, Hoffman A R. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsbl/Nfl. Science,2006,312(5771):269-272.
    14.Murrell A, Heeson S, Reik W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet,2004,36(8):889-893.
    15.Kurukuti S, Tiwari V K, Tavoosidana G, Pugacheva E, Murrell A, Zhao Z, Lobanenkov V, Reik W, Ohlsson R. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci U S A,2006,103(28): 10684-10689.
    16. Bell A C, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature,2000,405(6785):482-5.
    17.Takai D, Gonzales F A, Tsai Y C, Thayer M J, Jones P A. Large scale mapping of methylcytosines in CTCF-binding sites in the human H19 promoter and aberrant hypomethylation in human bladder cancer. Hum Mol Genet,2001,10(23):2619-26.
    18. Marques C J, Costa P, Vaz B, Carvalho F, Fernandes S, Barros A, Sousa M. Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol Hum Reprod,2008,14(2): 67-74.
    19.Kobayashi H, Sato A, Otsu E, Hiura H, Tomatsu C, Utsunomiya T, Sasaki H, Yaegashi N, Arima T. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet,2007, 16(21):2542-51.
    20. Lorincz M C, Dickerson D R, Schmitt M, Groudine M. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol,2004,11(11):1068-75.
    21.Hibino Y, Ohzeki H, Hirose N, Morita Y, Sugano N. Involvement of DNA methylation in binding of a highly repetitive DNA component to nuclear scaffold proteins from rat liver. Biochem Biophys Res Commun,1998,252(2):296-301.
    22. Vilain A, Bernardino J, Gerbault-Seureau M, Vogt N, Niveleau A, Lefrancois D, Malfoy B, Dutrillaux B. DNA methylation and chromosome instability in lymphoblastoid cell lines. Cytogenet Cell Genet,2000, 90(1-2):93-101.
    23. He Z, Bai J, Zhang Y. Effect of DNA methylation on protein-DNA interaction of HL-60 cells. Sci China C Life Sci,1999,42(5):501-5.
    24. Thorvaldsen J L, Duran K L, Bartolomei M S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Ig/2. Genes Dev,1998,12(23):3693-702.
    25. Bell A C, West A G, Felsenfeld G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell,1999,98(3):387-96.
    26. Pant V, Mariano P, Kanduri C, Mattsson A, Lobanenkov V, Heuchel R, Ohlsson R. The nucleotides responsible for the direct physical contact between the chromatin insulator protein CTCF and the H19 imprinting control region manifest parent of origin-specific long-distance insulation and methylation-free domains. Genes Dev,2003,17(5):586-90.
    27. Khosla S, Aitchison A, Gregory R, Allen N D, Feil R. Parental allele-specific chromatin configuration in a boundary-imprinting-control element upstream of the mouse H19 gene. Mol Cell Biol,1999,19(4): 2556-66.
    28. Hark A T, Schoenherr C J, Katz D J, Ingram R S, Levorse J M, Tilghman S M. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature,2000,405(6785):486-9.
    29. Loukinov D I, Pugacheva E, Vatolin S, Pack S D, Moon H, Chernukhin I, Mannan P, Larsson E, Kanduri C, Vostrov A A, Cui H, Niemitz E L, Rasko J E, Docquier F M, Kistler M, Breen J J, Zhuang Z, Quitschke W W, Renkawitz R, Klenova E M, Feinberg A P, Ohlsson R, Morse H C,3rd, Lobanenkov V V. BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc Natl Acad Sci U S A,2002,99(10):6806-11.
    30. Klenova E M, Morse H C,3rd, Ohlsson R, Lobanenkov V V. The novel BORIS+CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer. Semin Cancer Biol,2002,12(5): 399-414.
    1. Eggenschwiler J, Ludwig T, Fisher P, Leighton P A, Tilghman S M, Efstratiadis A. Mouse mutant embryos overexpressing IGF-II exhibit phenotypic features of the Beckwith-Wiedemann and Simpson-Golabi-Behmel syndromes. Genes Dev,1997,11(23):3128-3142.
    2. DeChiara T M, Efstratiadis A, Robertson E J. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature,1990,345(6270):78-80.
    3. Feil R, Walter J, Allen N D, Reik W. Developmental control of allelic methylation in the imprinted mouse Igf2 and H19 genes. Development,1994,120(10):2933-2943.
    4. Moore T, Constancia M, Zubair M, Bailleul B, Feil R, Sasaki H, Reik W. Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprinting control region upstream of mouse Igf2. Proc Natl Acad Sci U S A,1997,94(23):12509-12514.
    5. Sullivan M J, Taniguchi T, Jhee A, Kerr N, Reeve A E. Relaxation of IGF2 imprinting in Wilms tumours associated with specific changes in IGF2 methylation. Oncogene,1999,18(52):7527-7534.
    6. Cui H, Onyango P, Brandenburg S, Wu Y, Hsieh C L, Feinberg A P. Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res,2002,62(22):6442-6446.
    7. Reik W, Brown K W, Schneid H, Le Bouc Y, Bickmore W, Maher E R. Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in the IGF2-H19 domain. Hum Mol Genet,1995,4(12):2379-2385.
    8. Constancia M, Dean W, Lopes S, Moore T, Kelsey G, Reik W. Deletion of a silencer element in Igf2 results in loss of imprinting independent of H19. Nat Genet,2000,26(2):203-206.
    9. Murrell A, Heeson S, Bowden L, Constancia M, Dean W, Kelsey G, Reik W. An intragenic methylated region in the imprinted Igf2 gene augments transcription. EMBO Rep,2001,2(12):1101-1106.
    10. O'Neill R J, O'Neill M J, Graves J A. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature,1998,393(6680):68-72.
    11. Vrana P B, Guan X J, Ingram R S, Tilghman S M. Genomic imprinting is disrupted in interspecific Peromyscus hybrids. Nat Genet,1998,20(4):362-365.
    12. Vrana P B, Fossella J A, Matteson P, del Rio T, O'Neill M J, Tilghman S M. Genetic and epigenetic incompatibilities underlie hybrid dysgenesis in Peromyscus. Nat Genet,2000,25(1):120-124.
    13. Gebert C, Wrenzycki C, Herrmann D, Groger D, Reinhardt R, Hajkova P, Lucas-Hahn A, Carnwath J, Lehrach H, Niemann H. The bovine IGF2 gene is differentially methylated in oocyte and sperm DNA. Genomics,2006,88(2):222-229.
    14. Villar A J, Eddy E M, Pedersen R A. Developmental regulation of genomic imprinting during gametogenesis. Dev Biol,1995,172(1):264-271.
    15. Yu Z, Guo R, Ge Y, Ma J, Guan J, Li S, Sun X, Xue S, Han D. Gene expression profiles in different stages of mouse spermatogenic cells during spermatogenesis. Biol Reprod,2003,69(1):37-47.
    16. Neuvians T P, Gashaw I, Hasenfus A, Hacherhacker A, Winterhager E, Grobholz R. Differential expression of IGF components and insulin receptor isoforms in human seminoma versus normal testicular tissue. Neoplasia,2005,7(5):446-456.
    17. Flores J M, Sanchez M A, Gonzalez M, Pizarro M. Caprine testicular hypoplasia associated with sexual reversion decreases the expression of insulin-like growth factor II (IGF-II) mRNA in testes. Anim Reprod Sci,1998,52(4):279-288.
    18. Wagener A, Blottner S, Goritz F, Streich W J, Fickel J. Differential changes in expression of a and b FGF, IGF-1 and -2, and TGF-alpha during seasonal growth and involution of roe deer testis. Growth Factors, 2003,21(2):95-102.
    19. 张旭静.牦牛和普通牛种间杂种公牛睾丸的组织学观测与研究.畜牧兽医学报,2001,32(4): 314-318.
    20. Monk D, Sanches R, Arnaud P, Apostolidou S, Hills F A, Abu-Amero S, Murrell A, Friess H, Reik W, Stanier P. Imprinting of IGF2 P0 transcript and novel alternatively spliced INS-IGF2 isoforms show differences between mouse and human. Human Molecular Genetics,2006,15(8):1259-1269.
    21. Thorvaldsen J L, Duran K L, Bartolomei M S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev,1998,12(23):3693-3702.
    22. Ingram W J, Wicking C A, Grimmond S M, Forrest A R, Wainwright B J. Novel genes regulated by Sonic Hedgehog in pluripotent mesenchymal cells. Oncogene,2002,21(53):8196-8205.
    23. Brideau N J, Flores H A, Wang J, Maheshwari S, Wang X, Barbash D A. Two Dobzhansky-Muller genes interact to cause hybrid lethality in Drosophila. Science,2006,314(5803):1292-1295.
    24. Malone J H, Chrzanowski T H, Michalak P. Sterility and gene expression in hybrid males of Xenopus laevis and X. muelleri. PLoS ONE,2007,2(1):e781.
    25. Sun S, Ting C T, Wu C I. The normal function of a speciation gene, Odysseus, and its hybrid sterility effect. Science,2004,305(5680):81-83.
    26. Moehring A J, Teeter K C, Noor M A. Genome-wide patterns of expression in Drosophila pure species and hybrid males. II. Examination of multiple-species hybridizations, platforms, and life cycle stages. Mol Biol Evol,2007,24(1):137-145.
    27.张庆波,李齐发,李家璜,李新福,刘振山,潘增祥,宋大伟,谢庄.牛精子发生相关新基因b-DAZL的克隆、生物信息学分析与组织表达研究.自然科学进展,2008,18(5):493-504.
    28. Josefsson C, Dilkes B, Comai L. Parent-dependent loss of gene silencing during interspecies hybridization. Curr Biol,2006,16(13):1322-1328.
    29. Marfil C F, Masuelli R W, Davison J, Comai L. Genomic instability in Solanum tuberosum x Solanum kurtzianum interspecific hybrids. Genome,2006,49(2):104-113.
    30. Roemer I, Grutzner F, Winking H, Haaf T, Orth A, Skidmore L, Antczak D, Fundele R. Genome evolution. Global methylation in eutherian hybrids. Nature,1999,401(6749):131-132.
    31. Robinson T J, Wittekindt O, Pasantes J J, Modi W S, Schempp W, Morris-Rosendahl D J. Stable methylation patterns in interspecific antelope hybrids and the characterization and localization of a satellite fraction in the Alcelaphini and Hippotragini. Chromosome Res,2000,8(7):635-643.
    32. Dobigny G, Waters P D, Robinson T J. Absence of hypomethylation and LINE-1 amplification in a white x black rhinoceros hybrid. Genetica,2006,127(1-3):81-86.
    1. Ozcelik T, Leff S, Robinson W, Donlon T, Lalande M, Sanjines E, Schinzel A, Francke U. Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader-Willi syndrome critical region. Nat Genet,1992,2(4):265-9.
    2. Tycko B, Ashkenas J. Epigenetics and its role in disease. J Clin Invest,2000,105(3):245-6.
    3. Leff S E, Brannan C I, Reed M L, Ozcelik T, Francke U, Copeland N G, Jenkins N A. Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Willi syndrome region. Nat Genet,1992,2(4):259-64.
    4. Reed M L, Leff S E. Maternal imprinting of human SNRPN, a gene deleted in Prader-Willi syndrome. Nat Genet,1994,6(2):163-7.
    5. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature,1993, 366(6453):362-5.
    6. Feil R, Khosla S. Genomic imprinting in mammals:an interplay between chromatin and DNA methylation? Trends Genet,1999,15(11):431-5.
    7. Hu J F, Oruganti H, Vu T H, Hoffman A R. The role of histone acetylation in the allelic expression of the imprinted human insulin-like growth factor II gene. Biochem Biophys Res Commun,1998, 251(2):403-8.
    8. Saitoh S, Wada T. Parent-of-origin specific histone acetylation and reactivation of a key imprinted gene locus in Prader-Willi syndrome. Am J Hum Genet,2000,66(6):1958-62.
    9. Zeschnigk M, Schmitz B, Dittrich B, Buiting K, Horsthemke B, Doerfler W. Imprinted segments in the human genome:different DNA methylation patterns in the Prader-Willi/Angelman syndrome region as determined by the genomic sequencing method. Hum Mol Genet,1997,6(3):387-95.
    10. McAllister G, Amara S G, Lerner M R. Tissue-specific expression and cDNA cloning of small nuclear ribonucleoprotein-associated polypeptide N. Proc Natl Acad Sci U S A,1988,85(14):5296-300.
    11. Li S, Klein E S, Russo A F, Simmons D M, Rosenfeld M G. Isolation of cDNA clones encoding small nuclear ribonucleoparticle-associated proteins with different tissue specificities. Proc Natl Acad Sci U S A,1989,86(24):9778-82.
    12.Schulze A, Hansen C, Skakkebaek N E, Brondum-Nielsen K, Ledbeter D H, Tommerup N. Exclusion of SNRPN as a major determinant of Prader-Willi syndrome by a translocation breakpoint. Nat Genet, 1996,12(4):452-4.
    13.Cattanach B M, Barr J A, Evans E P, Burtenshaw M, Beechey C V, Leff S E, Brannan C I, Copeland N G, Jenkins N A, Jones J. A candidate mouse model for Prader-Willi syndrome which shows an absence of Snrpn expression. Nat Genet,1992,2(4):270-4.
    14. Glenn C C, Porter K A, Jong M T, Nicholls R D, Driscoll D J. Functional imprinting and epigenetic modification of the human SNRPN gene. Hum Mol Genet,1993,2(12):2001-5.
    15.Kuslich C D, Kobori J A, Mohapatra G, Gregorio-King C, Donlon T A. Prader-Willi syndrome is caused by disruption of the SNRPN gene. Am J Hum Genet,1999,64(1):70-6.
    16. Manning M, Lissens W, Weidner W, Liebaers I. DNA methylation analysis in immature testicular sperm cells at different developmental stages. Urol Int,2001,67(2):151-5.
    17. Lucifero D, Mertineit C, Clarke H J, Bestor T H, Trasler J M. Methylation dynamics of imprinted genes in mouse germ cells. Genomics,2002,79(4):530-8.
    18. Lucifero D, Suzuki J, Bordignon V, Martel J, Vigneault C, Therrien J, Filion F, Smith L C, Trasler J M. Bovine SNRPN methylation imprint in oocytes and day 17 in vitro-produced and somatic cell nuclear transfer embryos. Biol Reprod,2006,75(4):531-8.
    19. Jones P A, Takai D. The role of DNA methylation in mammalian epigenetics. Science,2001, 293(5532):1068-70.
    20. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev,2002,16(1):6-21.
    21.Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol,1987,196(2): 261-82.
    22.刘仲敏,刘芝华,吴旻.DNA高甲基化与抑癌基因.世界华人消化杂志,2003,11(9):1420-1424.
    23.周永宁,徐采朴,房殿春.CpG岛甲基化与胃肠道肿瘤.世界华人消化杂志,2003,11(1):65-71.
    24. Worm J, Guldberg P. DNA methylation:an epigenetic pathway to cancer and a promising target for anticancer therapy. J Oral Pathol Med,2002,31(8):443-9.
    25.Wade P A. Methyl CpG binding proteins:coupling chromatin architecture to gene regulation. Oncogene,2001,20(24):3166-73.
    26.Shemer R, Birger Y, Riggs A D, Razin A. Structure of the imprinted mouse Snrpn gene and establishment of its parental-specific methylation pattern. Proc Natl Acad Sci U S A,1997,94(19): 10267-72.
    27.Huq A H, Sutcliffe J S, Nakao M, Shen Y, Gibbs R A, Beaudet A L. Sequencing and functional analysis of the SNRPN promoter:in vitro methylation abolishes promoter activity. Genome Res,1997, 7(6):642-8.
    28.Dittrich B, Buiting K, Korn B, Rickard S, Buxton J, Saitoh S, Nicholls R D, Poustka A, Winterpacht A, Zabel B, Horsthemke B. Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPNgene. Nat Genet,1996,14(2):163-70.
    29.Rodriguez-Jato S, Nicholls R D, Driscoll D J, Yang T P. Characterization of cis-and trans-acting elements in the imprinted human SNURF-SNRPN locus. Nucleic Acids Res,2005,33(15):4740-53.
    30.屈旭光,李齐发,刘振山,董丽艳,李新福,郝称莉,谢庄.牦牛、犏牛睾丸组织中SYCP3基因mRNA表达水平研究.畜牧兽医学报,2008,39(8):1132-1136.
    1. Ruggiu M, Speed R, Taggart M, McKay S J, Kilanowski F, Saunders P, Dorin J, Cooke H J. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature,1997, 389(6646):73-7.
    2. Schrans-Stassen B H, Saunders P T, Cooke H J, de Rooij D G. Nature of the spermatogenic arrest in Dazl -/- mice. Biol Reprod,2001,65(3):771-6.
    3. Kuo P L, Wang S T, Lin Y M, Lin Y H, Teng Y N, Hsu C C. Expression profiles of the DAZ gene family in human testis with and without spermatogenic failure. Fertil Steril,2004,81(4):1034-40.
    4. Tung J Y, Rosen M P, Nelson L M, Turek P J, Witte J S, Cramer D W, Cedars M I, Pera R A. Variants in Deleted in AZoospermia-Like(DAZL) are correlated with reproductive parameters in men and women. Hum Genet,2006,118.(6):730-40.
    5. Teng Y N, Lin Y M, Lin Y H, Tsao S Y, Hsu C C, Lin S J, Tsai W C, Kuo P L. Association of a single-nucleotide polymorphism of the deleted-in-azoospermia-like gene with susceptibility to spermatogenic failure. J Clin Endocrinol Metab,2002,87(11):5258-64.
    6. Lee K H, Lee S, Kim B, Chang S, Kim S W, Paick J S, Rhee K. Dazl can bind to dynein motor complex and may play a role in transport of specific mRNAs. EMBO J,2006,25(18):4263-70.
    7. Venables J P, Ruggiu M, Cooke H J. The RNA-binding specificity of the mouse Dazl protein. Nucleic Acids Res,2001,29(12):2479-83.
    8. Reynolds N, Collier B, Maratou K, Bingham V, Speed R M, Taggart M, Semple C A, Gray N K, Cooke H J. Dazl binds in vivo to specific transcripts and can regulate the pre-meiotic translation of Mvh in germ cells. Hum Mol Genet,2005,14(24):3899-909.
    9. Zeng M, Deng W, Wang X, Qiu W, Liu Y, Sun H, Tao D, Zhang S, Ma Y. DAZL binds to the transcripts of several Tssk genes in germ cells. BMB Rep,2008,41(4):300-4.
    10.Jiao X, Trifillis P, Kiledjian M. Identification of target messenger RNA substrates for the murine deleted in azoospermia-like RNA-binding protein. Biol Reprod,2002,66(2):475-85.
    11.Chai N N, Phillips A, Fernandez A, Yen P H. A putative human male infertility gene DAZLA: genomic structure and methylation status. Mol Hum Reprod,1997,3(8):705-8.
    12.Maatouk D M, Kellam L D, Mann M R, Lei H, Li E, Bartolomei M S, Resnick J L. DNA methylation is a primary mechanism for silencing postmigratory primordial germ cell genes in both germ cell and somatic cell lineages. Development,2006,133(17):3411-8.
    13.张庆波,李齐发,李家璜,李新福,刘振山,潘增祥,宋大伟,谢庄.牛精子发生相关新基因b-DAZL的克隆、生物信息学分析与组织表达研究自然科学进展,2008,18(5):493-504.
    14.Eddy E M.'Chauvinist genes'of male germ cells:gene expression during mouse spermatogenesis. Reprod Fertil Dev,1995,7(4):695-704.
    15.Eberhart C G, Maines J Z, Wasserman S A. Meiotic cell cycle requirement for a fly homologue of human Deleted in Azoospermia. Nature,1996,381(6585):783-5.
    16. Houston D W, King M L.A critical role for Xdazl, a germ plasm-localized RNA, in the differentiation of primordial germ cells in Xenopus. Development,2000,127(3):447-56.
    n.Tamori Y, Iwai T, Mita K, Wakahara M. Spatio-temporal expression of a DAZ-like gene in the Japanese newt Cynops pyrrhogaster that has no germ plasm. Dev Genes Evol,2004,214(12):615-27.
    18.Lin Y M, Chen C W, Sun H S, Tsai S J, Hsu C C, Teng Y N, Lin J S, Kuo P L. Expression patterns and transcript concentrations of the autosomal DAZL gene in testes of azoospermic men. Mol Hum Reprod,2001,7(11):1015-22.
    19.郭爱朴.牦牛、黄牛及其杂交后代犏牛的染色体比较研究.遗传学报,1983,10(2):137-143.
    20.黄海燕,王桂玉,王春梅,刘润梅,冯晓峰,李伟雄.精子发生相关CG14片段的组织特异性表达及其与杂交不育的关系.生殖医学杂志,2002,11(2):91-96.
    21.屈旭光,李齐发,刘振山,董丽艳,李新福,郝称莉,谢庄.牦牛、犏牛睾丸组织中SYCP3基因mRNA表达水平研究.畜牧兽医学报,2008,39(8):1132-1136.
    22.O'Neill R J, O'Neill M J, Graves J A. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature,1998,393(6680):68-72.
    23.Vrana P B, Guan X J, Ingram R S, Tilghman S M. Genomic imprinting is disrupted in interspecific Peromyscus hybrids. Nat Genet,1998,20(4):362-5.
    24.Vrana P B, Fossella J A, Matteson P, del Rio T, O'Neill M J, Tilghman S M. Genetic and epigenetic incompatibilities underlie hybrid dysgenesis in Peromyscus. Nat Genet,2000,25(1):120-4.
    25.Roemer I, Grutzner F, Winking H, Haaf T, Orth A, Skidmore L, Antczak D, Fundele R. Genome evolution. Global methylation in eutherian hybrids. Nature,1999,401(6749):131-2.
    26.Robinson T J, Wittekindt O, Pasantes J J, Modi W S, Schempp W, Morris-Rosendahl D J. Stable methylation patterns in interspecific antelope hybrids and the characterization and localization of a satellite fraction in the Alcelaphini and Hippotragini. Chromosome Res,2000,8(7):635-43.
    27.Dobigny G, Waters P D, Robinson T J. Absence of hypomethylation and LINE-1 amplification in a white x black rhinoceros hybrid. Genetica,2006,127(1-3):81-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700