结合非线性效应的光纤激光器及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤激光器技术是现代光学的重要技术,广泛应用于各个科研和工业领域,如光纤通信、光纤传感、非线性光学、生物光子学、光化学等。本文从理论和实验上对结合非线性效应的光纤激光器及特性做了深入的研究工作。涉及的内容主要包括了:基于孤子自频移效应的超短脉冲源、基于多光子吸收效应的自相关脉冲检测技术、基于四波混频效应的多波长光纤激光器、基于布里渊效应的L波段光纤激光器、单纵模光纤激光器及其基于非线性效应的应用、以及2μm掺铥光纤激光器。
     本文首先介绍了光纤激光器的概念、特性、以及和非线性效应的密切关系。阐述了光纤激光器的发展历史,并概述了光纤中的非线性效应。对本文的主要内容和各章节安排做了简要说明,并介绍了本论文在理论和实验上的主要创新点。
     接着研究了超短光脉冲产生、脉冲波长及重复频率调谐、自相关脉冲检测等技术。基于光纤中的孤子自频移效应和主动锁模光纤激光器,提出了全光纤波长及重复频率可调谐的超短光脉冲源。创新性地结合时间透镜系统和孤子自频移效应,实现了任意重复频率的高能量可调谐飞秒脉冲源。讨论了现有自相关脉冲检测技术的不足,对解决方案进行了深入的理论分析。基于强度调制和三阶谐波检测技术,首次解决了混合自相关信号的问题,实现了基于多光子吸收效应的高灵敏三阶自相关脉冲检测。
     然后发展了几种重要的光纤激光器技术,并研究其在微波产生和光纤传感方面的应用。介绍了两种基于四波混频效应的波长可调谐多波长掺铒光纤激光器。创新性地提出并实现了双泵浦多波长光参量振荡器。发展了基于铋基掺铒光纤的L波段(1565-1625nm)布里渊光纤激光器。使用法布里-珀罗滤波器,首次实现了快速扫频2μm掺铥光纤激光器。基于光纤光栅和掺铒光纤饱和吸收体,提出了波长可调谐的单纵模光纤激光器。首次将光纤光栅对用于单纵模光纤激光器,实现了稳定的双波长单纵模激光输出,并将其应用于光学微波产生。将双波长单纵模光纤激光器应用于布里渊光纤传感,提出并实现了一种新的布里渊频移测量方法。
     最后总结了论文中涉及的研究工作,讨论了相关工作的一些不足之处。介绍了研究课题的后续工作,以及对未来研究工作的设想和安排。
Fiber laser technology is an important subdiscipline of modern optics, due to their many applications in optical fiber communications, optical fiber sensing, nonlinear optics, biophotonics, femtochemistry and so on. This dissertation studies fiber lasers and their properties incorporating nonlinear effects, both experimentally and theoretically. The primary coverage involves generation and tuning of ultrashort optical pulse, high sensitivity third-order autocorrelation measurement, multi-wavelength fiber laser, single-longitudinal-mode fiber laser and its applications, Brillouin fiber laser, and2μm thulium-doped fiber laser.
     To begin with, the thesis introduces fiber laser technology and its close relationship with nonlinear optics. The history of fiber laser is presented, as well as a brief introduction of various fiber nonlinear effects. The section arrangement and major innovations are then summarized.
     Then, technologies of ultrashort optical pulse generation, wavelength and repetition rate tuning, and autocorrelation measurement are investigated. Based on an actively mode-locked fiber laser and soliton self-frequency shift (SSFS) in a single mode fiber, an all-fiber widely repetition-and wavelength-tunable pulse generator is demonstrated. We also achieve tunable high-energy soliton pulse generation from a large-mode-area fiber, which is pumped by a picosecond time-lens source. The disadvantages of existing autocorrelation measurement technologies are discussed, and we propose a solution based on intensity modulation and third harmonic detection. High sensitivity measurement of three-photon-absorption autocorrelation is demonstrated at the telecommunication wavelength of1558nm, a wavelength regime where a mixture of two-photon-absorption and three-photon-absorption is present.
     Furthermore, several important fiber lasers are studied and employed in applications, such as optical microwave generation and Brillouin-based distributed fiber sensing. Multi-wavelength erbium-doped fiber lasers based on four wave mixing effect are introduced, and a double-pumped multi-wavelength fiber optical parametric oscillator is proposed for the first time. By incorporating a bismuth-based erbium-doped fiber, an L-band (1565-1625nm) Brillouin fiber laser is achieved. We demonstrate1940nm to2010nm continuous CW wavelength-tuning in a thulium-doped fiber laser, using only fiber-format components. This fiber laser employs a Fabry-Perot filter and can operate as a wavelength-swept source. We propose a wavelength tunable dual-wavelength single-longitudinal-mode (SLM) fiber laser, by employing saturable absorber and fiber Bragg gratings (FBG). A FBG pair (FBGP) with ultranarrow transmission band is also fabricated and employed to achieve dual-wavelength SLM fiber laser. The FBGP based fiber laser is then used in the application of optical microwave generation. A novel method to measure Brillouin frequency shift for Brillouin-based sensing application is then demonstrated, by incorporating a SLM fiber laser.
     Finally, the article gives a summary and discusses the shortcomings of the research work. The research plans for the future are also introduced.
引文
1. Rochester (贾东方等译),Nonlinear Fiber Optics (Third Edition), Beijing:电子工业出版社,2002年.
    2. T. H. Maiman, Stimulated optical radiation in ruby, Nature,1960,187:439-440.
    3. T. H. Maiman, Optical maser action in ruby, Br. Commun. Electron.,1960,7:674-675.
    4. E. Snitzer, Proposed fiber cavities for optical masers, J. Appl. Phys.,1961,23 (1):36-39.
    5. E. Snitzer, Optical Maser Action of Nd+3 in a Barium Crown Glass, Physics Review Letters,1961,7 (12): 444-446.
    6. E. Snitzer, Neodymium glass laser, Proceedings of Third International Conference on Solid State Lasers, 1963, Paris, France:21.
    7. C.J. Koester and E. Snitzer, Amplification in a fiber laser, Applied Optics,1964,3 (10):1182-1186.
    8. K.C. Kao and G.A. Hockham, Dielectric-fibre surface waveguides for optical frequencies, IEEE proceedings. Part J. Optoelectronics,1966,133 (3):191-198.
    9. S.B. Poole, et al., Fabrication of low-loss optical fibres containing rare-earth ions, IEEE Electronics Letters,1985,21 (17):730-732.
    10. I.P. Alcock, et al., Q-switched operation of a Neodymium-doped monomode fibre laser, IEEE Electronics Letters,1986,22 (2):84-85.
    11. J.D. Kafka, T. Baer, and D.W. Hall, Mode-locked erbium-doped fiber laser with soliton pulse shaping, Optics Letters,1989,14(22):1269-1271.
    12. R.P. Kashyap, et al., All fiber narrowband reflection gratings at 1500nm. IEEE Electronics Letters,1990, 26 (11):730-732.
    13. G.A. Ball, W.W. Morey, and W.H. Glenn, Standing-wave monomode erbium fiber laser, IEEE Electronics Letters,1991,3 (7):613-615.
    14. G.A. Ball and W.W. Morey, Continuously tunable single-mode erbium fiber laser, Optics Letters,1992, 17 (6):420-422.
    15. E. Snitzer, et al., Double clad offset core Nd fiber laser, Optical Fiber Sensors,1988, New Orleans, USA: paper PD5.
    16. V. Dominic, et al.,110 W fibre laser, IEEE Electronics Letters,1999,35 (14):1158-1160.
    17. Y. Jeong, et al., Ytterbium-doped large-core fibre laser with 610 W of near diffraction-limited output power, IEEE Electronics Letters,2004,40 (24):1527-1528.
    18. Y. Jeong, et al., Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power, IEEE Electronics Letters,2004,40 (8):470-472.
    19. Y. Jeong, et al., Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power, Optics Express,2004,12 (25):6088-6092.
    20. S. Pan, C. Lou, and Y. Gao, Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter, Optics Express,2006,14 (3): 1113-1118.
    21. D. Chen, S. Qin, Y. Gao and S. Gao. Wavelength-Spacing Continuously Tunable Multi-wavelength Erbium-Doped Fiber Laser Based on Dispersion-Shifted Fiber and Mach-Zehnder Interferometer, IEEE Electronics Letters,2007,43 (9):524-525.
    22. S. Qin, et al., Stable and uniform multi-wavelength fiber laser based on hybrid Raman and Erbium-doped fiber gains, Optics Express,2006,14 (22):10522-10527.
    23. D. Chen, S. Qin, S. He. Channel-spacing-tunable multi-wavelength fiber ring laser with hybrid Raman and Erbium-doped fiber gains, Optics Express,2007,15 (3):930-935.
    24. D. Chen, et al., Wavelength-spacing tunable multi-wavelength erbium-doped fiber laser incorporating a semiconductor optical amplifier, Laser Physics Letters,2007,4 (4):287-290.
    25. C. Spiegelberg, et al., Compact 100 mW fiber laser with 2 kHz linewidth, Optical Fiber Communications Conference; 2003, Atlanta, USA:PD45-P1-3.
    26. T. Qiu, et al.. Generation of watt-level single-longitudinal-mode output from cladding-pumped short fiber lasers, Opt. Lett.,2005,30 (20):2748-2750.
    27. S. Kivisto, et al., Tunable Raman soliton source using mode-locked Tm-Ho fiber laser, IEEE Photon. Technol. Lett.,2007,19(12):934-936.
    28. F. Wang, et al., High power widely tunable Tm:fiber laser with spectral linewidth of 10 pm, Laser Phys. Lett.,2010,7 (6):450-453.
    29. J. Wu, et al., Highly efficient high-power thulium-doped germanate glass fiber laser, Opt. Lett.,2007,32 (6):638-640.
    30. Jihong Geng, et al., Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber. Opt. Lett.,34 (22):3493-3495.
    31. Ahmed H. Zewail, Femtochemistry:Recent Progress in Studies of Dynamics and Control of Reactions and Their Transition States, J. Phys. Chem.,1996,100 (31):12701-12724.
    32. D. J. Jones, et al., Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis, Science,2000,288 (5466):635-639.
    33. C. V. Shank and E. P. Ippen, Subpicosecond kilowatt pulses from a modelocked cw dye laser, Appl. Phys. Lett.,1974,24 (8):373-375.
    34. R. L Fork, et al., Generation of optical pulses shorter than 0.1 ps by colliding pulse mode-locking, Appl. Phys. Lett.,1981,38 (9):671-673.
    35. J. A. Valdmanis, et al., Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain, Opt. Lett.,1985,10 (3):131-133.
    36. D. H. Sutter, et al., Semiconductor saturable-absorber mirror-assisted Kerr lens modelocked Ti:sapphire laser producing pulses in the two-cycle regime, Opt. Lett.,1999,24 (9):631-633.
    37. U. Morgner, et al., Sub-two cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser, Opt. Lett., 1999,24 (6):411-413.
    38. J. Biegert and J. C. Diels, Compression of pulses of a few optical cycles through harmonic generation, J. Opt. Soc. Am. B,2001,18(8):1218-1226.
    39. M. Drescher, et al., X-ray pulses approaching the attosecond frontier, Science,2001,291 (5510): 1923-1927.
    40. P. M. Paul, et al., Observation of a train of attosecond pulses from high harmonic generation, Science, 2001,292(5522):1689-1692.
    41. E. Innerhofer, et al.,60 W average power in 810-fs pulses from a thin-disk Yb:YAG laser, Opt. Lett., 2003,28 (5):367-369.
    42. F. Brunner, et al.,Powerful RGB laser source pumped with a mode-locked thin-disk laser, Opt. Lett., 2004,29(16):1921-1923.
    43. S. V. Marchese, et al., Pulse energy scaling to 5μJ from a femtosecond thin-disk laser, Opt. Lett.,2006, 31 (18):2728-2730.
    44. L. Krainer, et al., Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz, IEEE J. Quantum Electron.,2002,38(10):1331-1338.
    45. V. J. Matsas, et al., Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation, Electron. Lett.,1992,28 (15):1391-1393.
    46. K. Tamura, et al., Self-starting additive pulse mode-locked erbium fibre ring laser, Electron. Lett.,1992, 28 (24):2226-2228.
    47. I.N. Duling, Sub picosecond all-fibre erbium laser, Electron. Lett.,1991,27 (6):544-545.
    48. R.I. Laming, et al.,320 fs soliton generation with passively mode-locked erbium fibre laser, Electron. Lett.,1991,27(9):730-732.
    49. M. H. Ober, et al.,42-fs pulse generation from a mode-locked fiber laser started with a moving mirror, Opt. Lett.,1993,18 (5):367-369.
    50. L. E. Nelson, et al., Efficient frequency doubling of a femtosecond fiber laser, Opt. Lett.,1996,21 (21): 1759-1761.
    51. J. R. Buckley, et al., Femtosecond fiber lasers with pulse energies above 10 nJ, Opt. Lett.,2005,30 (14): 1888-1890.
    52. A. Ruehl, et al.,0.7 W all-fiber Erbium oscillator generating 64 fs wave breaking-free pulses, Opt. Express,2005,13(16):6305-6309.
    53. A. Chong, et al., All-normal-dispersion femtosecond fiber laser, Opt. Express,2006,14 (21): 10095-10100.
    54. Andy Chong, et al., Properties of normal-dispersion femtosecond fiber lasers, J. Opt. Soc. Am. B,2008, 25(2):140-148.
    55. W. H. Renninger, et al., Dissipative solitons in normal-dispersion fiber lasers, Phys. Rev. A,2008,77 (2): 023814-023818.
    56. B. H. Kolner and M. Nazarathy, Temporal imaging with a time lens, Opt. Lett.,1989,14 (12):630-632.
    57. James van Howe, Jonas Hansryd, and Chris Xu, Multiwavelength pulse generator using time-lens compression, Opt. Lett.,2004,29 (13):1470-1472.
    58. James van Howe, Jennifer H. Lee, and Chris Xu, Generation of 3.5 nJ femtosecond pulses from a continuous-wave laser without mode locking, Opt. Lett.,2007,32 (11):1408-1410.
    59. Yitang Dai and Chris Xu, Generation of high repetition rate femtosecond pulses from a CW laser by a time-lens loop, Opt. Express,2009,17 (8):6584-6590.
    60. Takahide Sakamoto, et al.,10 GHz,2.4 ps pulse generation using a single-stage dual-drive Mach-Zehnder modulator, Opt. Lett.,2008,33 (8):890-892.
    61. Isao Morohashi, et al., Widely repetition-tunable 200 fs pulse source using a Mach-Zehnder modulator based flat comb generator and dispersion flattened dispersion-decreasing fiber, Opt. Lett.,2008,33 (11): 1192-1194.
    62. R. H. Kingston, Parametric amplification and oscillation at optical frequencies, Proc. IRE,1962,50:472.
    63. J. A. Giordmaine and R. C. Miller, Tunable coherent parametric oscillation in LiNbO3 at optical frequencies, Phys. Rev. Lett.,1965,14 (24):973.
    64. S. Lecomte, et al., Synchronously pumped optical parametric oscillator with a repetition rate of 81.8 GHz, IEEE Photon. Technol. Lett.,2005,17 (2):483-485.
    65. M. Ghotbi, et al., Broadly tunable, sub-30 fs near-infrared pulses from an optical parametric amplifier based on BiB3O6, Opt. Lett.,2010,35 (13):2139-2141.
    66. F. Kienle, et al., Compact, high-pulse-energy, picosecond optical parametric oscillator, Opt. Lett.,2010, 35 (21):3580-3582.
    67. F. M. Mitschke and L. F. Mollenauer, Discovery of the soliton self-frequency shift, Opt. Lett.,1986,11 (10):659-661.
    68. J. P. Gordon, Theory of the soliton self-frequency shift, Opt. Lett.,1986,11 (10):662-664.
    69. B. Zysset, et al., Generation of optical solitons in the wavelength region 1.37-1.49 pm, Appl. Phys. Lett., 1987,50(16):1027-1029.
    70. P. Beaud, et al., Ultrashort Pulse Propagation, Pulse Breakup, and Fundamental Soliton Formation in a Single-Mode Optical Fiber, IEEE J. Quantum Electron,1987,23 (11):1938-1946.
    71. Norihiko Nishizawa and Toshio Goto, Compact System of Wavelength Tunable Femtosecond Soliton Pulse Generation Using Optical Fibers, IEEE Photon. Technol. Lett.,1999,11 (3):325-327.
    72. James van Howe, et al., Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber, Opt. Lett.,2008,32 (4):340-342.
    73. Ke Wang, Yizhen Wei, et al., Tunable high-energy soliton pulse generation from a large-mode-area fiber pumped by a picosecond time-lens source, Conference on Lasers and Electro-Optics,2011, Baltimore, USA:Page CMD1.
    74. K. Wang, et al.,Synchronized time-lens source for coherent Raman scattering microscopy, Opt. Express, 2010,18 (23):24019-24024.
    75. D. Kane and R. Trebino, Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating, IEEE J. Quantum Electron.,1993,29 (2):571-579.
    76. R. Trebino, et al., Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating, Rev. Sci. Instrum.,1997,68 (9):3277-3296.
    77. C. laconis and I. A. Walmsley, Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses, Opt. Lett.,1998,23 (10):792-794.
    78. L. Gallmann, et al., Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction, Opt. Lett.,1999,24 (18):1314-1316.
    79. J.A.Armstrong, Measurement of picosecond laser pulse widths, Appl. Phys. Lett,1967,10(1):16-18.
    80. K. Sala, et al., CW autocorrelation measurements of picosecond laser pulses, IEEE J. Quantum Electron., 1980,16 (9):990-996.
    81. B. M. van Oerle and G. J. Ernst, Autocorrelation measurements of bursts of picosecond pulses, Appl. Opt., 1996,35 (25):5177-5179.
    82. J. C. Diels, et al., Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy, Appl. Opt.,1985,24 (9):1270-1282.
    83. A. Gutierrez, et al., Autocorrelation measurement of femtosecond laser pulses by use of a ZnSe two-photon detector array, Opt. Lett.,1999,24 (16):1175-1177.
    84. R. Salem and T. Murphy, Polarization-insensitive cross correlation using two-photon absorption in a silicon photodiode, Opt. Lett.,2004,29 (13):1524-1526.
    85. J. Ranka and A. Gaeta, Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiod, Opt. Lett.,1997,22(17):1344-1346.
    86. C. Xu, et al., Ultra-sensitive autocorrelation of 1.5μm light with single photon counting silicon avalanche photodiode, Electron. Lett.,2002,38 (2):86-88.
    87. J. Roth, T. Murphy, and C. Xu, Ultrasensitive and high-dynamic-range two-photon absorption in a GaAs photomultiplier tube, Opt. Lett.2002,27 (23):2076-2078.
    88. E. I. Blount and J. R. Klauder, Recovery of laser intensity from correlation data, J. Appl. Phys.,1969,40 (7):2874-2875.
    89. D. H. Auston, Measurement of picoseconds pulse shape and background level, Appl. Phys. Lett.,1971, 18 (6):249-251.
    90. J. W. Nicholson, et al., Unbalanced third-order correlations for full characterization of femtosecond pulses, Opt. Lett.,2000,25 (24):1801-1803.
    91. G. Ramos-Ortiz, et al., Third-order optical autocorrelator for time-domain operation at telecommunication wavelengths, Appl. Phys. Lett.,2004,85 (2):179-181.
    92. A. Major, et al., Wide spectral range third-order autocorrelator based on ultrafast nonresonant nonlinear refraction, Opt. Lett.,2004,29 (16):1945-1946.
    93. P. Langlois and E. Ippen, Measurement of pulse asymmetry by three-photon-absorption autocorrelation in a GaAsP photodiode, Opt. Lett.,1999,24 (24):1868-1870.
    94. J. W. Nicholson, et al., Unbalanced third-order correlations for full characterization of femtosecond pulses, Opt. Lett.,2000,25 (24):1801-1803.
    95. Rick Trebino, Frequency-Resolved Optical Gating:The Measurement of Ultrashort Laser Pulses, USA, Kluwer Academic Publishers,2000.
    96. A. Nevet, A. Hayat, and M. Orenstein, Ultrafast three-photon counting in a photomultiplier tube, Opt Lett.,2011,36 (5):725-727.
    97. Yizhen Wei, et al., High sensitivity, simultaneous second- and third-order autocorrelation measurement in a GaAsP photomultiplier tube, Conference on Lasers and Electro-Optics,2011, Baltimore, USA:1-2.
    98. Yizhen Wei, et al., High sensitivity third-order autocorrelation measurement by intensity modulation and third harmonic detection, Opt. Lett.,36 (12):2372-2374.
    99. R. G. Freeman, et al., second harmonic detection of sinusoidally modulated two-photon excited fluorescence, Anal. Chem.,1990,62 (20):2216-2219.
    100. M. Dinu, et al., Optical performance monitoring using data stream intensity autocorrelation, J. Lightwave Technol.,2006,24 (3):1194.
    101. B. Corcoran, et al., Optical performance monitoring via slow light enhanced third harmonic generation in silicon photonic crystal waveguides, National Fiber Optic Engineers Conference,2009:paper PDPA5.
    102. Daru Chen, et al., Some wavelength-spacing continuously tunable multi-wavelength fiber lasers based on four-wave-mixing effect, Photonics in Switching,2010, Monterey, USA:Page JTuB37.
    103. Daru Chen, Bing Sun, and Yizhen Wei, Multi-wavelength laser source based on enhanced four-wave-mixing effect in a highly nonlinear fiber, Laser Phys.,2010,20 (8):1733-1737.
    104. D. Chen, and B. Sun, Multi-wavelength fiber optical parametric oscillator based on a highly nonlinear fiber and a Sagnac loop filter, Progress In Electromagnetics Research,2010,106:163-176.
    105.Daru Chen and Bing Sun, Multi-wavelength fiber optical parametric oscillator with ultra-narrow wavelength spacing, Opt. Express,2010,18 (17):18425-18430.
    106. Bing Sun, et al., Double-pumped multi-wavelength fiber optical parametric oscillator based on a Sagnac loop filter, Opt. Lett,2012,37 (1):106-108.
    107. Guanshi Qin, et al., Brillouin lasing in a single-mode tellurite fiber, Opt. Lett.,2007,32 (15):2179-2181.
    108. Jihong Geng, et al., Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth, IEEE Photon. Technol. Lett.,2006,18 (17):1813-1815.
    109. Stephanie Norcia, et al., High-efficiency single-frequency Brillouin fiber laser with a tunable coupling coefficient,J.Opt. Soc. Am. B.,2004,21 (8):1424-1430.
    110. S. W. Harun, S. Shahi, and H. Ahmad, Compact Brillouin-erbium fiber laser, Opt Lett.,2009,34 (1): 46-48.
    111.Yizhen Wei, et al., Widely tunable L-band Brillouin fiber laser incorporating a bismuth-based erbium-doped fiber, Asia Communications and Photonics Conference and Exhibition,2009, Shanghai, China:1-6.
    112. R. C. Sharp, et al.,190-fs passively mode-locked thulium fiber laser with a low threshold, Opt. Lett., 1996,21 (12):881-883.
    113. H. Nakagami, S. Araki and H. Sakata, Gain-switching pulse generation of Tm-doped fiber ring laser pumped with 1.6-m laser diodes, Laser Phys. Lett.,2011,8(4):301-304.
    114. X. Liu, et al., Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nature Photon.,20\0,4:557-560.
    115. S. W. Henderson, et al.,Coherent laser radar at 2μm using solid-state lasers, IEEE Trans. Geosci. Remote Sensing,1993,31 (1):4-15.
    116. S. Kivisto, et al., Tunable Raman soliton source using mode-locked Tm-Ho fiber laser, IEEE Photon. Technol. Lett.,2007,19 (12):934-936.
    117. G. Imeshev and M. E. Fermann,230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber. Opt. Express,2005,13 (19):7424-7431.
    118. Yizhen Wei, et al., All-fiber widely wavelength-tunable thulium-doped fiber ring laser incorporating a Fabry-Perot filter, Laser Phys.,2012,22 (4):770-773.
    119. S. T. Sanders, Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy, Appl. Phys. B,2002,75 (6-7):799-802.
    120. L. Sandstrom, et al., Gas monitoring using semiconductor lasers operating in the 2 um wavelength region, Infrared Phys. Technol.,1998,39 (2):69-75.
    121. J. L. Zyskind, et al., Short Single Frequency Erbium-doped Fiber Laser, Electron. Lett.,1992,28 (15): 1385-1387.
    122. C.-H. Yeh, et al., Tunable S-band Erbium-doped Triple-ring Laser with Single-longitudinal-mode Operation, Opt. Express,2007,15 (2),382-386.
    123. F. Liegeois, et al., High-efficiency, Single-longitudinal-mode Ring Fiber Laser, Electron. Lett.,41 (13): 729-730.
    124. Xiangfei Chen, et al., Photonic Generation of Microwave Signal Using a Dual wavelength Single-longitudinal-mode Fiber Ring Laser, IEEE Trans. Microw. Theory Tech.,2006,54 (2):804-809.
    125. Guojie Chen, et al., Photonic Generation of a Microwave Signal By Incorporating a Delay Interferometer and a Saturable Absorber, Opt. Lett.,2008,33 (6):554-556.
    126. Jian Liu, et al., Single-longitudinal-mode Multiwavelength Fiber Ring Laser, IEEE Photonics Technol. Lett.,2004,16(4):1020-1022.
    127. X. X. Yang, et al., High power Single-longitudinal-mode Fiber Laser with a Ring Fabry-perot Resonator and a Saturable Absorber, IEEE Photonics Technol. Lett.,2008,20 (11):879-881.
    128. Yizhen Wei and Bing Sun, Wavelength spacing tunable dual-wavelength single-longitudinal-mode fiber ring laser based on fiber Bragg gratings, Laser Phys.,2009,19 (6):1252-1256.
    129. D. Chen, et al., Dual wavelength single longitudinal mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation, Electron. Lett.,2008,44 (7):459-461.
    130. Barmenkov, Y.O., et al., Effective length of short Fabry-Perot cavity formed by uniform fibre Bragg gratings, Opt. Express,2006,14(14):6394-6399.
    131. Y. Yao, et al., Dual-Wavelength Erbium-Doped Fiber Laser With a Simple Linear Cavity and Its Application in Microwave Generation, IEEE Photonics Technology Letters,2006,18 (1):187-189.
    132. J. Sun, et al., Stable Dual-Wavelength DFB Fiber Laser With Separate Resonant Cavities and Its Application in Tunable Microwave Generation. IEEE Photonics Technology Letters,2006,18(24): 2587-2589.
    133. Yizhen Wei, Yongbo Tang, and Daru Chen, A novel method to measure Brillouin frequency shift for Brillouin-based sensing application incorporating a dual-wavelength single-longitudinal-mode fibre laser, Optical Fiber Communication and Optoelectronics Conference,2007, Shanghai, China.
    134. Tsuneo Horiguchi, et al., Development of a distributed sensing technique using Brillouin scattering, J. Lightwave Technol.,1995,13 (7):1296-1302.
    135. Dieter Garus, et al., Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements, J. Lightwave Technol.,1997,15 (4):654-662.
    136. Kazuo Hotate, and Masato Tanaka, Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation based continuous wave technique, IEEE Photon. Technol. Lett.,2002,14 (2):179-181.
    137. Anthony W. Brown, et al., Distributed sensor based on dark-pulse Brillouin scattering, IEEE Photon. Technol. Lett.,2005,17(7):1501-1503.
    138. Sally M. Maughan, et al., A calibrated 27-km distributed fiber temperature sensor based on microwave heterodyne detection of spontaneous Brillouin backscattered power, IEEE Photon. Technol. Lett.,2001, 13 (5):511-513.
    139. P. C. Wait and A. H. Hartog, Spontaneous Brillouin-based distributed temperature sensor utilizing a fiber Bragg grating notch filter for the separation of the Brillouin signal, IEEE Photon. Technol. Lett.,2001,13 (5):508-510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700