光纤中受激布里渊散射效应及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受激布里渊散射(Stimulated Brillouin Scattering, SBS)是泵浦光、斯托克斯光通过声波进行的非线性过程。光纤中的SBS所需要的阈值远低于受激拉曼散射(SRS),是光纤中的主要非线性现象。光纤中的SBS非线性效应,在相位共轭、光纤传感、微波光子学、光可控延迟以及光纤激光器等方面有着广泛的应用。
     光纤中基于SBS的可控慢光因为具有功率阈值低、群速度延迟易控、工作波长可调谐、易于同现有光网络集成等优点,是光纤中慢光研究的热点。可调谐多波长布里渊掺铒光纤激光器将光纤中的SBS非线性放大同掺铒光纤的线性放大相结合得到室温稳定的多波长输出,具有波长间隔一致、线宽窄、功率谱相对平坦等优点。
     本论文是在天津市自然科学基金(No.08JCYBJC14400),天津市科技支撑重点项目(No.07ZCKFGX00200),国家自然科学基金资助项目(NO.60572018)的支持下完成的。主要内容包括:
     1.对光纤中基于SBS的可控慢光和基于SBS的多波长掺铒光纤激光器的研究进展进行了系统介绍。对光纤中SBS机理进行了阐述,并从SBS耦合波方程出发,理论研究了光纤中基于SBS的慢光和快光。对SBS慢光延迟的稳态小信号解析解进行了理论研究。
     2.对高非线性光子晶体光纤作为SBS慢光介质进行了研究。通过理论分析得到,具有小模场面积的光子晶体光纤作为慢光介质可以提高慢光系统的延迟效率。实验结果表明,在高非线性光子晶体光纤作为慢光介质的系统中,50 ns脉冲信号获得了33 dB的布里渊增益,脉冲延迟了30 ns,延迟效率达到了0.0046 ns/mW/m,是普通单模光纤的13.7倍。
     3.设计研制了一种新型的环形腔可调谐多波长布里渊掺铒光纤激光器。提出利用一个3 dB耦合器的两端连接增益介质,并结合另一个端口的光纤环镜形成反馈、实现级联的结构,简化了激光器结构、降低了腔内的损耗。双向布里渊泵浦结构有效的降低了激光器阈值功率和加强了多波长的产生。在1480 nm最大泵浦功率110 mW时,激光器获得了13 nm调谐范围内平均21个波长的输出。
     4.设计研制了一种基于光子晶体光纤的可调谐多波长布里渊掺铒光纤激光器。激光器采用结构简单的环形腔,用一个耦合器实现布里渊泵浦光的导入和多波长激光的输出。利用70 m长的低损耗的高非线性光子晶体光纤作为布里渊增益介质,缩短了腔长,便于集成。在布里渊泵浦信号3 dBm,1480 nm泵源泵浦功率30 mW情况下,获得了可调谐范围25 nm的3波长激光输出。当1480 nm泵源泵浦功率增加到最大110 mW时,实现了调谐范围10 nm,波长间隔为0.078 nm的10个波长激光输出。
     5.设计研制了环形和线形宽带可调谐多波长布里渊掺铒光纤光源。提出利用光纤中的SBS效应产生反方向传输的斯托克斯信号将光信号返回腔中的结构,消除了腔内自激模的影响,使光源的调谐带宽仅由掺铒光纤放大器的带宽和布里渊泵浦信号的调谐范围决定。其中,线形结构采用布里渊泵浦信号前置双次放大的结构,有效降低了阈值功率。光源实现了1530-1570nm之间40 nm可调谐范围的多波长输出。
Stimulated Brillouin scattering (SBS) is a nonlinear interaction between the pump and Stokes fields through an acoustic wave. SBS is the major nonlinear optical phenomena in optical fibers because the threshold powers are much lower than those needed for stimulated Raman scattering (SRS). SBS has wide applications in phase conjugation, optical fiber sensors, microwave photonics, controllable slow light and fiber lasers.
     Slow light based on SBS has already becomes a hot topic in the research of slow light, as it has many advantages such as low Brillouin threshold power, easily controllable group velocity, tunable wavelength and it is easy to be integrated with existing telecommunications. Tunable multiwavelength Brillouin erbium-doped fiber laser (MWBEFL) takes the advantages of Brillouin amplification in optical fibers and high gain from the erbium-doped fibers amplifier (EDFA). It has the merits of equal-wavelength spacing, narrow linewidth and high output uniformity over the channels at room temperature.
     With the subjects supported by the Tianjin Natural Science Foundation (Grant No.08JCYBJC14400), the Tianjin Key Project of Applied and Basic Research Programs (Grant No.07ZCKFGX00200), the National Natural Science Foundation Project (Grant No.60572018), the main contents of this paper are as following:
     1. The advancements on controllable slow light and multiwavelength erbium-doped fiber lasers based on SBS are introduced systemically. The physical principle of SBS in optical fibers is presented and the SBS slow and fast light in optical fibers are theoretically studied from the SBS coupled wave equations. The analytic solutions of SBS slow light delay time are theoretically studied in the case of stable state with small-signal.
     2. The highly nonlinear photonic crystal fiber used as SBS slow light medium is studied. Through theoretical analysis, the photonic crystal fibers with small mode field areas can improve the delay efficiency of the slow light system. This is demonstrated by the experiment. The Brillouin gain of 33 dB is achieved when a highly nonlinear photonic crystal fiber is used as slow light medium, which results in 30 ns time delay of 50 ns signal pulses. The delay efficiency of this kind fiber is 0.0046 ns/mW/m, which is about 13.7 times larger than the single mode fiber.
     3. A new type of simple tunable multiwavelength Brillouin/erbium fiber ring laser is presented. It is proposed that two ports of a 3dB optical coupler is employed to connect the gain medium, in combination of a fiber loop mirror in another port to form feedback and realize cascade. This configuration reduces the insertion loss and complexity of the fiber laser. The threshold power is greatly reduced and the generation of multiwavelength is enhanced by the bidirectional pumping scheme. With the maximum 1480 nm pump power of 110 mW,21 average output channels with 13 nm tuning range are achieved.
     4. A tunable multiwavelength Brillouin/erbium fiber laser based on highly nonlinear photonic crystal fiber is presented. The ring cavity is very simple, in which one coupler launches the Brillouin pump signal into and takes the multiwavelength signals out of the cavity. The laser with shorten cavity length is easy to be integrated due to a 70-m low loss highly nonlinear photonic crystal fiber (HNL-PCF) used as the Brillouin gain medium. The laser provides a tuning range of 25 nm and 3 output channels at the Brillouin pump power of 3 dBm and the 1480 nm pump power of 30 mW. At the maximum 1480 nm pump power of 110 mW,10 stable output channels with 10 nm tuning range are achieved.
     5. Widely tunable multiwavelength Brillouin/erbium fiber sources with ring and linear cavity are demonstrated. The structure is proposed that the Brillouin Stokes signals return back to the linear cavity owing to the effect of SBS. The influence of the self-lasing cavity modes is effectively eliminated. The tuning range of the fiber sources is only limited by the bandwidth of erbium-doped fiber amplifier and the tuning range of Brillouin pump signal. The threshold power of the linear fiber source is effectively reduced by the double-pass Brillouin pump preamplified technique. The fiber sources provide a tuning range of 40 nm from 1530 nm to 1570 nm.
引文
[1]Eichler H J, Liu B, Duelk M, et al. Phase conjugation behind an ordered multimode fibre bundle. Opt. Commun.,1996,123(1-3):412-422
    [2]Eichler H J, Kunde J, Liu B. Quartz fibre phase conjugators with high fidelity and reflectivity. Opt. Commun.,1997,139(4-6):327-334
    [3]Mocofanescu A, Shaw K D. Stimulated Brillouin scattering phase conjugating properties of long multimode optical fibers. Opt. Commun.,2006,266(1):307-316
    [4]Horiguchi T, Shimizu K, Kurashima T, et al. Development of a distributed sensing technique using Brillouin scattering. J. Lightwave Technol.,1995,13(7):1296-1302
    [5]Bao X, Dhliwayo J, Heron N, et al. Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering. J. Lightwave Technol., 1995,13(7):1340-1346
    [6]Thevenaz L, Facchini M, Fellay A, et al. Monitoring of large structures using distributed Brillouin fiber sensing. Proc. SPIE 1999,3746:345-348
    [7]Li Y, Zhang F, Yoshino T. Wide-range temperature dependence of Brillouin shift in a dispersion-shifted fiber and its annealing effect. J. Lightwave Technol.,2003, 21(7):1663-1667
    [8]Le Floch S, Cambon P. Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4-370 K) and high hydrostatic pressures (1-250 bars). Opt. Commun.,2003,219:395-410
    [9]Zou W, He Z, Hotate K. Investigation of strain- and temperature- dependences of Brillouin frequency shifts in GeO2-doped optical fibers. J. Lightwave Technol.,2008, 26(13):1854-1861
    [10]Tateda M. First measurement of strain distribution along field installed optical fibers using Brillouin spectroscopy. J. Lightwave Technol.,1990,8(9):1269-1272
    [11]Zou L, Ferrier G A, Afshar S, et al. Distributed Brillouin scattering sensor for discrimination of wall-thinning defects in steel pipe under internal pressure. Appl. Opt., 2004,43(7):1583-1588
    [12]耿丹,杨冬晓,章献民等.基于光子晶体光纤中受激布里渊散射的光载波抑制.光子学报2008,37(9):1833-1836
    [13]Molin S, Baili G, Alouini M, et al. Experimental investigation of relative intensity noise in Brillouin fiber ring lasers for microwave photonics applications. Opt. Lett., 2008,33(15):1681-1683
    [14]Schneider T, Hannover D, Junker M. Investigation of Brillouin scattering in optical fibers for the generation of millimeter waves. J. Lightwave Technol.,2006, 24(1):295-304
    [15]Vidal B, Piqueras M A, Marti J. Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering. Opt. Lett.,2007,32(1):23-25
    [16]Yao X S. Brillouin selective sideband amplification of microwave photonic signals. IEEE Photon. Technol. Lett.,1998,10(1):138-140
    [17]Loayssa A, Lahoz F J. Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation. IEEE Photon. Technol. Lett.,2006,18(1):208-210
    [18]池灏,章献民,沈林放.基于光子晶体光纤的布里渊光纤激光器.浙江大学学报(工学版)2006,40(12):2126-2129
    [19]邢磊,冯雪,张磊等.受激布里渊散射主被动混合调Q光纤激光器.中国激光,2008,35(3):338-342
    [20]詹黎,宋跃江,夏宇兴.128波长输出的自注入布里渊光纤激光器.激光与光电子学进展,2005,42(12):21-22
    [21]胡松,尉仕康,詹黎等.15波长输出的布里渊掺铒光纤激光器.光学学报,2005,25(2):212-215
    [22]Zhang P P, Hu S L, Chen S Y, et al. A high-efficiency Brillouin fiber ring laser. Chin. Opt. Lett.,2009,7(6):495-497
    [23]张亮,王智勇,张辉等.基于受激布里渊散射的调Q光纤激光器研究.激光技术,2008,32(1):44-46
    [24]陈伟,张艳,任民等.单纵模布里渊掺饵光纤激光器的实验研究.光学学报,2008,28(9):1740-1744
    [25]张萍萍,杨远洪,陈淑英.布里渊光纤环形激光器技术发展.红外与激光工程,2008,S3:58-63
    [26]掌蕴东,翁文,喻波等.光子晶体波导慢光技术.激光与光电子学进展,2007,44(10):26-32
    [27]Harris S E, Field J E, Imamoglu A. Nolinear optical processes using Electromagnetically Induced Transparency. Phys. Rev. Lett.,1990,64:1107-1110
    [28]Harris S E, Field J E, Kasapi A. Dispersive properties of electromagnetically induced transparency. Phys. Rev. A,1992,46(1):R29-R32
    [29]Hau L V, Harris S E, Dutton Z, et al. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature,1999,397(6720):594-598
    [30]Bigelow M S, Lepeshkin N N, Boyd R W. Superluminal and Slow Light Propagation in a Room-Temperature Solid. Science,2003,301:200-202
    [31]Mork J, Kjaer R, van der Poel M, et al. Slow light in a semiconductor waveguide at gigahertz frequencies. Opt. Express,2005,13(20):8136-8145
    [32]Schweinsberg A, Lepeshkin N N, Bigelow M S, et al. Observation of superluminal and slow light propagation in slow-light medium erbium-doped optical fiber. Europhys. Lett.,2006,73:218-224
    [33]Sharping J E, Okawachi Y, Gaeta A L. Wide bandwidth slow light using a Raman fiber amplifier. Opt. Express,2005,13(16):6092-6098
    [34]Liang J Q, Katsuragawa M, Kien F L, et al. Slow light produced by stimulated Raman scattering in solid hydrogen. Phys. Rev. A,2002,65(3):031801
    [35]Okawachi Y, Foster M A, Sharping J E, et al. All-optical slow-light on a photonic chip. Opt. Express,2006,14(6):2317-2322
    [36]Blair S, Zheng K. Intensity-tunable group delay using stimulated Raman scattering in silicon slow-light waveguides. Opt. Express,2006,14(3):1064-1069
    [37]McMillan J E, Yang X D, Panoiu N C, et al. Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides. Opt. Lett.,2006,31(9):1235-1237
    [38]Dahan D, Eisenstein G. Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier:a route to all optical buffering. Opt. Express,2005,13(16):6234-6249
    [39]Shumakher E, Willinger A, Blit R, et al. Large tunable delay with low distortion of 10 Gbit/s data in a slow light system based on narrow band fiber parametric amplification. Opt. Express,2006,14(19):8540-8545
    [40]Yi L, Hu W, Su Y, et al. Design and system demonstration of a tunable slow-light delay line based on fiber parametric process. IEEE Photon. Technol. Lett., 2006,18(24):2575-2577
    [41]Gauthier D J. Physics and applications of slow light. 2nd Annual summer school, Fitzpatrick center for photonics and communication system,Duke University, Durham, NC, July 27,2004 [http://www.phy.duke.edu/research/photon/qelectron/pres/].
    [42]Song K Y, Herraez M G, Thevenaz L. Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Opt. Express,2005,13(1):82-88
    [43]Okawachi Y, Bigelow M S, Sharping J E, et al. Tunable all-optical delay via Brillouin slow light in an optical fiber. Phys. Rev.Lett.,2005,94(15):153902
    [44]Song K Y, Herraez M G, Thevenaz L. Long optically controlled delays in optical fibers. Opt. Lett.,2005,30(14):1782-1784
    [45]Xing L, Zhan L, Yi L L, et al. Storage capacity of slow-light tunable optical buffers based on fiber Brillouin amplifiers for real signal bit streams. Opt. Express,2007, 15(16):10189-10195
    [46]邢亮,詹黎,夏宇兴.高增益光纤受激布里渊散射放大的大延迟可控慢光.科学通报,2009,54(15):2177-2182
    [47]Herraez M G, Song K Y, Thevenaz L. Arbitrary-bandwidth Brillouin slow light in optical fibers. Opt. Express,2006,14(4):1395-1400.
    [48]Zhu Z, Dawes A M C, Gauthier D J, et al. Broadband SBS slow light in an optical fiber. J. Lightwave Tech.,2007,25(1):201-206.
    [49]Song K Y, Hotate K.25 GHz bandwidth Brillouin slow light in optical fibers. Opt. Lett.,2007,32(3):217-219.
    [50]Stenner M D, Neifeld M A, Zhu Z, et al. Distortion management in slow-light pulse delay. Opt. Express,2005,13(25):9995-10002.
    [51]Lu Z, Dong Y, Li Q. Slow light in multi-line Brillouin gain spectrum. Opt. Express, 2007,15(4):1871-1877.
    [52]Dong Y K, Lu Z W, Li Q, et al. Broadband Brillouin slow light based on multifrequency phase modulation in optical fibers. J. Opt. Soc. Am. B,2008, 25(12):C109-C115
    [53]T. Sakamoto T, Yamamoto T, Shiraki K, et al. Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb. Opt. Express, 2008,16(11):8026-8032.
    [54]Song K Y, Abedin K S, Hotate K, et al. Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber. Opt. Express,2006,14(13):5860-5865.
    [55]Wang Y, Zhang W, Huang Y, et al. Stimulated Brillouin scattering slow light in high nonlinearity silica microstructure fiber. Optical Fiber Technology,2009,15(1):1-4.
    [56]Herraez M G, Song K Y, Thevenaz L. Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering. Appl. Phys. Lett.,2005,87(8):081113.
    [57]Jauregui C, Ono H, Petropoulos P, et al. Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m bismuth-oxide fiber. OFC 2006, Postdeadline Paper PDP2.
    [58]Abedin K S, Lu G W, Miyazaki T. Slow light generation in singlemode Er-doped tellurite fibre. Electron. Lett.,2008,44(1):16-17
    [59]Yang S, Chen H, Qiu C, et al. Slow-light delay enhancement in small-core pure silica photonic crystal fiber based on Brillouin scattering. Opt. Lett.,2008,33(2):95-97
    [60]Schneider T, Junker M, Lauterbach K U, et al. Distortion reduction in cascaded slow light delays. Electron. Lett.,2006,42(19):1110-1111
    [61]Shi Z, Pant R, Zhu Z, et al. Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity. Opt. Lett.,2007, 32(14):1986-1988
    [62]Zhu Z, Gauthier D J. Nearly transparent SBS slow light in an optical fiber. Opt. Express,2006,14(16):7238-7245
    [63]Zhu Z, Dawes A M C, Gauthier D J.12-GHz-Bandwidth SBS Slow Light in Optical Fibers. in Proc. OFC 2006, paper PDP11
    [64]Chin S, Herraez M G, Thevenaz L. Zero-gain slow and fast light propagation in an optical fiber. Opt. Express,2006,14(22):10684-10692
    [65]Schneider T, Junker M, Lauterbach K U. Time delay enhancement in stimulated Brillouin scattering slow light systems. Opt. Lett.,2007,32(3):220-223
    [66]Schneider T, Henker R, Lauterbach K U,et al. Comparison of delay enhancement mechanisms for SBS-based slow light systems. Opt. Express,2007,15(15):9606- 9613
    [67]Schneider T, Junker M, Lauterbach K U. Potential ultra wide slow-light bandwidth enhancement. Opt. Express,2006,14(23):11082-11087
    [68]Herraez M G, Song K Y, Thevenaz L. Broad-bandwidth Brillouin slow light in optical fibers. in Proc. OFC 2006, paper OTuA2
    [69]Zadok A, Eyal A, Tur M. Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp. Opt. Express,2006,14(19):8498-8505
    [70]张书敏,吕福云,樊亚仙等.几种新型的多波长布里渊/铒光纤激光器.激光与红外,2003,33(5):387-389
    [71]Cowle G J, Yu Dmitrii, Stepanov. Hybrid Brillouin/erbium fiber laser. Opt. Lett.,1996, 21(16):1250-1252
    [72]Cowle G J, Stepanov D Y. Multiple wavelength generation with Brillouin/erbium fiber lasers. IEEE Photon. Technol. Lett.,1996,8(11):1465-1467
    [73]Abd-Rahman M K, Abdullah M K, Ahmad H. Multiwavelength bidirectional operation of twin-cavity Brillouin/erbium fiber laser. Opt. Commun.,2000,181(1-3):135-139
    [74]Abd-Rahman M K, Abdullah M K, Ahmad H. Multiwavelength Generation of Dual-Cavity Brillouin/Erbium Fiber Laser. Journal of Nonlinear Optical Physics and Materials,2000,9(2):235-241
    [75]Samsuri N M, Zamzuri A K, Al-Mansoori M H, et al. Brillouin-Erbium fiber laser with enhanced feedback coupling using common Erbium gain section. Opt. Express,2008, 16(21):16475-16480
    [76]Johari M I, Adamiat A, Shahabuddin N S, et al. Ring cavity multiwavelength Brillouin-erbium fiber laser with a partially reflective fiber Bragg grating. J. Opt. Soc. Am. B, 2009,26(9):1675-1678
    [77]Lim D S, Lee H K, Kim K H, et al. Generation of multiorder Stokes and anti-Stokes lines in a Brillouin erbium-fiber laser with a Sagnac loop mirror. Opt. Lett.,1998, 23(21):1671-1673
    [78]Oh W-Y, Ko J-S, Lim D S, et al.10 and 20GHz optical combs generation in Brillouin/erbium fiber laser with shared cavity of Sagnac reflector. Opt. Commun., 2002,201:399-403
    [79]Al-Mansoori M H, Rahman A, Kamil M, et al. Widely tunable linear cavity multiwavelength Brillouin-Erbium fiber laser. Opt. Express,2005,13(9):3471-3476
    [80]Al-Mansoori M H, Naji AW, Iqbal S J, et al. L-band Brillouin-Erbium fiber laser pumped with 1480 nm pumping scheme in a linear cavity. Laser Phys. Lett.,2007, 4(5):371-375
    [81]Harun S W, Zulkifli M Z, Ahmad H. A linear cavity S-band Brillouin/erbium fiber laser. Laser Phys. Lett.,2006,3(7):369-371
    [82]Al-Mansoori M H, Mahdi M A, Zamzuri A K. Tunable multiwavelength Brillouin- Erbium fiber laser with intra-cavity pre-amplified Brillouin pump. Laser Phys. Lett., 2008,5(2):139-143
    [83]Al-Mansoori M H, Mahdi M A. Tunable range enhancement of Brillouin-erbium fiber laser utilizing Brillouin pump pre-amplification technique. Opt. Express, 2008,16(11):7649-7654
    [84]Al-Mansoori M H, Mahdi M A. Reduction of gain depletion and saturation on a Brillouin-erbium fiber laser utilizing a Brillouin pump preamplification technique. App.Opt.,2009,48(18):3424-3428
    [85]Al-Mansoori M H, Mahdi M A, Premaratne M. Novel multiwavelength L-Band Brillouin-Erbium fiber laser utilizing double-pass Brillouin pump preamplified technique. IEEE J. Sel. Top. Quantum Electron.,2009,15(2):415-421
    [86]Mohd Nasir M N, Yusoff Z, Al-Mansoori M H, et al. Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity. Laser Phys. Lett., 2008,5(11):812-816
    [87]Zhan L, Ji J H. Xia J, et al.160-line multiwavelength generation of linear-cavity self-seeded Brillouin-Erbium fiber laser. Opt. Express,2006, 14(22):10233-10238
    [88]Huang Y, Zhan L, Ji J H, et al. Multiwavelength self-seeded Brillouin-erbium fiber laser with 45-nm tunable range. Opt. Commun.,2008,281(3):452-456
    [89]Xia J, Zhan L, Huang Y, et al. Self-seeded multi-wavelength Brillouin-erbium laser by using NOLM-NALM. Laser Physics,2008,18(4):442-445
    [90]Song Y J, Zhan L, Ji J H, et al. Self-seeded multiwavelength Brillouin-erbium fiber laser. Opt. Lett.,2005,30(5):486-488
    [91]汪平河,廖弦,饶云江.一种新型自激发布里渊掺铒光纤激光器.光学学报,2007,27(12):2200-2204
    [92]Zhang Z, Zhan L, Xia Y. Tunable self-seeded multiwavelength Brillouin-erbium fiber laser with enhanced power efficiency. Opt. Express,2007,15(15):9731-9736
    [93]Agrawal G P. Nonlinear Fiber Optics.3rd ed (Academic Press) Chap.9,2005
    [94]Boyd R W. Nonlinear Optics.3 rd ed (Academic Press) April 11,2008
    [95]Shen Y R. Principles of Nonlinear Optics (Wiley, New York,1984), Chap.1.
    [96]Tang C L. Saturation and Spectral Characteristics of the Stokes Emission in the Stimulated Brillouin Process. Appl. Phys.1966,37(8):2945-2955
    [97]Schneider T. Nonlinear optics in telecommunications.北京:科学出版社,2007
    [98]Billington R. Measurement methods for stimulated Raman and Brillouin scattering in optical fibers. UK:National Physical Laboratory,1999
    [99]Smith R G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. App. Opt.,1972,11(11):2489-2494
    [100]Boyd R W, Gauthier D J. "Slow" and "fast" light" Progress in Optics 43. E. Wolf Edt., Elsevier, Amsterdam,2002,43:497-530
    [101]邢亮.光纤中可控制慢光的研究.[博士学位论文].上海:上海交通大学, 2008
    [102]Zhu Z, Gauthier D J, Okawachi Y, et al. Numerical study of all-optical slow light delays via stimulated Brillouin scattering in an optical fibers.J.Opt.Soc.Am.B.2005, 22(11):2378-2384
    [103]杨广强,张霞,任晓敏等.利用光子晶体光纤实现10 Gb/s光传输系统的色散补偿.中国激光.2005,32(9):1221-1224
    [104]段德稳,朱涛,饶云江等.基于空芯光子晶体光纤的微小型非本征光纤法布里珀罗干涉应变传感器.光学学报,2008,28(1):17-20
    [105]Dainese P, Russell P St J, Joly N, et al. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nature Physics,2006,2:388-392
    [106]孙雨南,王茜蓓,伍剑等.光纤技术—理论基础与应用.北京:北京理工大学出版社,2006.183-188
    [107]O'Reilly J, Lane P. Remote delivery of video services using mm-waves and optics. J. Lightwave Technol.,1994,12(2):369-375
    [108]Abedin K S. Stimulated Brillouin scattering in single-mode tellurite glass fiber[J]. Opt. Express,2006,14(24):11766-11772
    [109]Qin G, Sotobayashi H, Tsuchiya M, et al. Stimulated Brillouin scattering in a single-mode tellurite fiber for amplification, lasing, and slow light generation. J. Lightwave Technol.,2008,26(5):492-498
    [110]刘艳格,冯新焕,董孝义.室温稳定多波长光纤激光器技术的研究新进展.中国激光,2007,34(7):883-894
    [111]Harun S W, Shirazi M R, Ahmad H. A new configuration of multi-wavelength Brillouin fiber Laser. Laser Phys. Lett.,2008,5(1):48-50
    [112]Shen G F, Zhang X M, Chi H, et al. Microwave/millimeter-wave generation using multi-wavelength photonic crystal fiber brillouin laser. Progress In Electromagnetics Research,2008,80:307-320.
    [113]江阳,于晋龙,胡林.受激布里渊散射在微波光子信号中的应用.激光与光电子学进展,2008,45(3):44-49
    [114]刘占元多波长掺铒光纤激光器研究.[硕士学位论文].天津:南开大学,2008
    [115]周炳琨等.激光原理.北京:国防工业出版社,1995
    [116]Alameh K E, Minasian R A, Zhao Y X. A numerical model for complex susceptibility of saturated erbium-doped amplifiers. IEEE Journ. of Quan. Electron.,1997, 33(5):855-890
    [117]Desurvire E, Zyskind J L, Simpson J R. Spectral gain hole-burning at 1.53 μm in erbium-doped fiber amplifiers. IEEE Photon. Technol. Lett.,1990,2(4):246-248
    [118]Zyskind J L, Desurvire E, Sulhoff J W, et al. Determination of homogeneous linewidth by spectral gain hole-burning in an erbium-doped fiber amplifier with GeO2:SiO2 core. IEEE Photon. Technol. Lett.,1990,2(12):869-871
    [119]Sulhoff J W, Srivastava A K, Wolf C, et al. Spectral-hole burning in erbium-doped silica and fluoride fibers. IEEE Photon. Technol. Lett.,1997,9(12):1578-1579
    [120]Siegman A E. Lasers, Mill Valley, CA:Univ. Sci. Books,1986
    [121]Park N, Wysocki P F.24-line multiwavelength operation of erbium-doped fiber-ring laser [J]. IEEE Photon. Technol. Lett.,1996,8(11):1459-1461
    [122]Yamashita S, Hotate K. Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen. Electon. Lett.,1996,32(14):1298-1299
    [123]Bellemare A, Karasek M, Rochette M, et al. Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid. J. Lightwave Technol, 2000,18(6):825-829
    [124]Zhou K, Zhou D, Dong F, et al. Room-temperature multiwavelength erbium-doped fiber ring laser employing sinusoidal phase-modulation feedback. Opt. Lett.,2003, 28(11):893-895
    [125]Sun J, Qiu J, Huang D. Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning. Opt. Commun.,2000,182(1-3):193-197
    [126]Lee Y W, Lee B. Wavelength-switchable Erbium-doped fiber ring laser using spectral polarization-dependent loss element. IEEE Photon. Technol. Lett.,2003,15(6):795-797
    [127]Hernandez-Cordero J, Kozlov V A, Carter A L G, et al. Fiber laser polarization tuning using a Bragg grating in a Hi-Bi fiber. IEEE Photon. Technol. Lett.,1998, 10(7):941-943
    [128]Feng X H, Liu Y G, Fu Sh G, et al. Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating. IEEE Photon.Technol.Lett.,2004, 16(3):762-764
    [129]Feng X H, Liu Y G, Yuan Sh Zh, et al. L-band switchable dual-wavelength erbium-doped fiber laser based on a multimode fiber Bragg grating. Opt. Express,2004, 12(16):3834-3839
    [130]李尧,冯新焕,孙磊等.用偏振烧孔实现的室温双波长光纤激光器.光子学报,2005,34(2):173-175
    [131]冯新焕,孙磊,刘艳格等.基于保偏光纤光栅的双波长掺铒光纤激光器.中国激光,2005,32(2):145-148
    [132]Liu X, Zhou X, Lu C. Four-wave mixing assisted stability enhancement:Theory, experiment, and application. Opt. Lett.,2005,30(17):2257-2259
    [133]Yang X, Dong X, Zhang S, et al. Multiwavelength erbium-doped fiber laser with 0.8-nm spacing using sampled Bragg grating and photonic crystal fiber. IEEE Photon. Technol. Lett.,2005,17(12):2538-2540
    [134]Yang X F, Lu F Y, Dong X Y, et al. Four-wave-mixing-assisted room-temperature four-wavelength erbium-doped fiber lasers. Optical Engineering,2006,45(6):064202
    [135]Liu X M. Four-wave mixing self-stability based on photonic crystal fiber and its applications on erbiumdoped fiber lasers. Opt. Commun.,2006,260:554-559
    [136]Xu X Ch, Yao Y, Chen D Y. Numerical analysis of multiwavelength erbium-doped fiber ring laser exploiting four-wave mixing. Opt. Express,2008,16(16):12397-12402
    [137]Han Y -G, Tran T V A, Lee S B. Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shift fiber. Opt. Lett.,2006,31(6):697-699
    [138]Feng X H, Tam H, Wai P K A. Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation. Opt. Express,2006,14(18):8206-8210
    [139]张祖兴,桑明煌,叶志清等.基于非线性偏振旋转效应的多波长光纤激光器.光学学报,2008,28(4):648-652
    [140]Zhang Z X, Zhan L, Xu K, et al. Multiwavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter. Opt. Lett.,2008, 33(4):324-326
    [141]Zhang Z X, Wu J, Xu K, et al. Polarization-dependent output states of a fiber laser with nonlinear polarization rotation. Optical Engineering,2008,47(8):085002
    [142]Zhang Z X, Xu K, Wu J, et al. Two Different Operation Regimes of Fiber Laser Based on Nonlinear Polarization Rotation:Passive Mode-Locking and Multiwavelength Emission. IEEE Photon. Technol. Lett.,2008,20(12):979-981
    [143]Stepanov D Y, Cowle G J. Modelling of multiline Brillouin/Erbium fiber lasers. Opt. Quantum Electron.,1999,31:481-494
    [144]Sheea Y G, Mahdia M A, Al-Mansoori M H, et al. Threshold Reduction of Stimulated Brillouin Scattering in Photonic Crystal Fiber, Laser Physics,2009,19(12):2194-2196
    [145]Nasir M N M, Yusoff Z, Al-Mansoori M H, et al. Widely tunable multi-wavelength Brillouinerbium fiber laser utilizing low SBS threshold photonic crystal fiber. Opt. Express,2009,17(15):12829-12834
    [146]Harun S W, Aziz S N, Shahabuddin N S, et al. Brillouin fibre laser with 20 m-long photonic crystal fibre" Electron. Lett.,2008,44(18):1065-1066.
    [147]Shahi S, Harun S W, Ahmad H. Multi-wavelength Brillouin fiber laser using a holey fiber and a bismuth-oxide based erbium-doped fiber. Laser Phys. Lett.,2009, 6(6):454-457

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700