光码分复用关键技术及可调谐光脉冲生成技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着多媒体业务、因特网业务和宽带综合业务数字网的迅猛发展,对通信波长容量和传输速率提出了越来越高的要求,全光通信已成为光通信发展的目标,而全光局域网是近年来光通信研究的方向之一。本文的工作分为两部分:1)光纤光栅的OCDMA编/解码技术研究;2)半导体激光器注入锁定产生单波长和双波长光脉冲技术研究。
    基于步进啁啾光纤光栅的光码分复用频域编/解码的研究
    1. 发展了基于步进啁啾光纤光栅的频域相位编/解码器结构;
    2. 通过对m序列地址码做映射,提出了利用步进啁啾光纤光栅实现OCDMA编/解码的方法。对该编/解码器进行数值模拟,得到了预期的很好的相关特性。并讨论了影响编/解码相关性能的因素。
    分析了基于步进啁啾光纤光栅OCDMA编/解码器的系统性能。
    介绍了步进啁啾光纤光栅的制作,给出了用于写入步进啁啾光纤光栅的掩模板的设计原理和参数。
    注入锁定产生单波长可调谐光脉冲实验研究
    发展了一种腔外注入锁定产生波长可调谐光脉冲的方法。该方法利用一个商用的F-P半导体激光器联合可调谐滤波器和EDFA做外注入源。得到在9nm波长调节范围内边模抑制比高于25dB的实验结果,系统结构简单,成本低。
    发展了一种简单有效的两个增益开关调制的F-P半导体激光器互注入锁定生成单纵模光脉冲的实验方案。在25nm的波长调节范围内得到单纵模光脉冲的边模抑制比为26dB。
    首次利用一个增益开关调制的F-P半导体激光器以及一个直流偏置的F-P半导体激光器互注入锁定产生单模光脉冲。在19nm波长调节范围内边模抑制比高于30dB,重复频率为3.0GHz。
    三、注入锁定产生双波长可调谐光脉冲实验研究
    发展了两个增益开关调制F-P半导体激光器之间互注入锁定产生双波长可调谐光脉冲的实验方案。在13.2nm波长调节范围内获得输出光脉冲的边模抑制比高于25dB。
    发展了增益开关调制F-P半导体激光器联合直流偏置的F-P激光器互注入锁定实验方案产生双波长光脉冲输出。输出光脉冲的边模抑制比在12.1nm波长调节范围内高于25dB。系统稳定,调节方便。
With the expands of multimedia,Internet and B-ISDN, the increasing demand has been presented for higher communication capacities and more quickly transmission speed, all optical communication has become the develop target of optical communication, and all optical local area network is one of research issues of optical communication. In this paper, two part work has been presented: 1) the technology of optical code-division multiple access (OCDMA) encoding/decoding based on fiber Bragg grating has been studied; 2) pulse injection seeding for single and dual wavelength optical pulse generation using semiconductor laser has been studied experimentally.
    1 Research of OCDMA encoding/decoding based on step chirped fiber grating
    A spectral phase optical code-division multiple-access (OCDMA) encoder /decoder based on step chirped fiber Bragg Gratings (SCFBGs) is developed.
    A method is proposed for realizing OCDMA encoding/decoding in step chirped fiber Bragg grating by mapping the m sequence address code. Simulation result for encoder/decoder shows good correlation as expected. The factors influencing correlation property is also discussed.
    The performance for OCDMA system based on SCFBGs encoder/decoder is analyzed.
    The method for fabricating SCFBGs is introduced, and principle and parameters of mask for SCFBG is also introduced.
    2 Generation for electrically single wavelength tunable optical pulse in pulse injection seeding scheme
    A method for electrically wavelength tunable optical short pulses generation by pulse injection seeding is developed, with which a Fabry-Pérot (F-P) laser diode combined a tunable filter and an erbium-doped fiber amplifier (EDFA) is used as the external-injection seeding light source. The side mode suppression ratio (SMSR) achieved is better than 25 dB over the wavelength tuning range of 9 nm. The system is simple and of low cost.
    A simple and robust system is developed to generate electrically wavelength tunable optical short pulses by the use of two gain-switched F-P laser diodes in a mutual pulse injection seeding scheme. The side mode suppression ratio achieved by the system is larger than 26 dB over the wavelength region of 25 nm.
    
    A mutual pulse injection-seeding scheme is first proposed to produce electrically wavelength tunable optical short pulses by the use of two F-P laser diodes, of which one is gain-switched and the other is DC biased. The side mode suppression ratio obtained is more than 30 dB over the wavelength tuning rang of 19 nm. The system is simple and robust. The repetition frequency is about 3.0 GHz.
    3 Generation for dual wavelength tunable optical pulse in pulse injection seeding scheme
    A mutual pulse injection-seeding scheme is developed to generate tunable dual-wavelength optical short pulses by the use of two gain-switched F-P laser diodes. The sidemode suppression ratio of the output pulses is better than 25 dB over a wavelength-tuning range of 13.2 nm. The system is robust and convenient for wavelength-tuning.
    A mutual pulse injection-seeding experiment scheme of gain-switched F-P laser diodes combined DC biased one is developed for tunable dual-wavelength optical short pulse generation. The sidemode suppression ratio of the output pulses achieved is better than 25 dB over the wavelength-tuning range of 12.1 nm. The system is robust, flexible and convenient for wavelength tuning.
引文
第一章
    Jeff Hecht, City of Light: The Story of Fiber Optics, Oxford University Press, New York, 1999
    中国电信网,www3.chinatelecom.com.cn,光纤通信的历史
    N. Hiroshi, et al., “1.05Tbit/s WDM transmission over 8186km using distributed Raman amplifier repeaters”, OFC’01, paper TuF6-1, 2001
    赵梓森, 全国第8次光纤通信暨第9届集成光学学术会议论文集, 武汉, 1996, 24
    华为公司、中兴公司主页,www.huawei.com, www.zte.com.cn, 2002
    李晓滨,赵晓晖,李丽君,光码分多址地址码及其构造方法讨论,长春邮电学院学报,1999, 17(4): 17~21
    Pruncnal P. R., Santoro M. A., Fan T. R., Spread spectrum fiber-optic local area networks using optical processing. J. Lightwave Technol., 1986, LT-4(5): 547~554
    J-G. Zhang and G. Picchi, Tunable prime-code encoder/decoder for all-optical CDMA applications, Elec. Lett., 1993, 29(13): 1211~1212
    J.-G. Zhang, Improvement in bandwidth efficiency of asynchronous prime-cdoe CDMA networks by error correction coding, Elec. Lett., 1994, 30(6): 514~515
    G.- C. Yang and W. C. Kwong, Performance analysis of optical CDMA with prime codes, Elec. Lett., 1995, 31(7): 569~570
    Zhang J-G, Kwong W C, Effective design of optical code-division multiple access networks by using the modified prime code, Elec. Lett., 1997, 33(3):229~230
    Zhang J-G, Kwong W C, Sharma A B, et al., performance comparison of extended prime codes (=1)and 2n prime codes (=2) in fiber-optic CDMA systems, ICCT’98,1998,S35 (8): 1~4
    Kwong W C, Zhang J-G, Yang G-C, 2n prime-sequence code and its optical CDMA coding architecture, Elec. Lett., 1994,30(6):509-510
    Wing C. Kwong, Guu-Chang Yang, and Jian-Guo Zhang, 2n prime-sequence codes and coding architecture for optical code-division multiple-access, IEEE Trans. Commun., 1996, 44(9): 1152~1162
    Chung F. R. K., Salahi J. A., Wei V. K, Optical orthogonal codes: Design, analysis, and applications, IEEE Trans Inform. Theory, 1989,35:564~595
    S. V. Maric, M. D. Hahm, E. L. Titlebaum, Construction and performance
    
    
    analysis of a new family of optical orthogonal codes for CDMA fiber-optic networks, IEEE Trans. Commun., 1995, 43(2/3/4): 485~489
    J.-G. Zhang, Flexible optical fiber CDMA networks using strict optical orthogonal codes for multimedia Broadcasting and distribution applications, IEEE Trans. Broadcasting, 1999, 45(1): 106~115
    E. Park, A. J. Mendez, and E. M. Garmire, Temporal / spatial optical CDMA networks-design, demonstration, and comparison with temporal networks, IEEE Photon. Technol. Lett., 1992, 4 (10): 1160~1162
    V.-C. Yang, and W. C. Kwong, Two-dimensional spatial signature patterns, IEEE Trans. Commun., 1996, 44 (2): 184~191
    E. S. Shivaleela, K. N. Sivarajan, and A. Selvarajan, Design of a new family of two-dimensional codes for fiber-optic CDMA networks, J. Lightwave Technol., 1998, 16 (4): 501~508
    K. Yu, J. Shin, and N. Park, Wavelength-times spreading optical CDMA system using wavelength multiplexers and mirrored fiber delay lines, IEEE Photon. Technol. Lett., 2000, 12 (9): 1273~1275
    T.-W. F. Chang, and E. H. Sargent, optical CDMA using 2-D codes: the optimal single-user detector, IEEE Commun. Lett., 2001, 5 (4): 169~171
    S. P. Wan, Y. Hu, Two-dimensional optical CDMA differential system with prime/OOC codes, IEEE Photon. Technol. Lett., 2001, 13 (12): 1373~1375
    L. R. Chen, Flexible fiber Bragg grating encoder/decoder for hybrid wavelength-time optical CDMA, IEEE Photon. Technol. Lett., 2001, 13 (11): 1233~1235
    A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, et al., Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA, Elec. Lett., 1999, 35(13): 1096~97
    A. Grunnet-Jepsen, J. N. Sweetser, M. Munroe, et al., Code-division-multiplexing- compatible coding and decoding of directly driven DFB laser bit streams. OFC’2000, Paper ThW1: 314~316
    J. N. Sweetser, A. E. Johnson, A. Grunnet-Jepsen, Demonstration of code-division multiplexing with synchronous orthogonal coding using fiber Bragg gratings, OFC’2001 , Paper ThH3 -T1-3
    A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, et al., Demonstration of all-fiber sparse lightwave CDMA based on temporal phase encoding, IEEE Photon. Technol. Lett., 1999, 11(10): 1283~1285
    P. C. Teh, P. Petropoulos, M. Ibsen, et al., Phase encoding and decoding of short pulses at 10 Gb/s using superstructured fiber Bragg gratings, IEEE Photon. Technol. Lett., 2001, 13 (2): 154~156
    
    P. Petropoulos, N. Wada, P.C.Teh, et al., Demonstration of a 64-chip OCDMA system using superstructured fiber gratings and time-gating detection, IEEE Photon. Technol. Lett., 2001, 13 (11): 1239~1241
    P. C. Teh, P. Petropoulos, M. Ibsen, A comparative study of the performance of seven- and 63–chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings, J. Lightwave Technol., 2001, 19 (9): 1352~1365
    P. C. Teh, M. Ibsen, J. H. Lee, et al, A 4-channel WDM/OCDMA system incorporating 255-chip, 320Gchip/s quaternary phase coding and decoding gratings, OFC’2001, Paper PD 37 -1-PD37-3
    L. R. Chen, P. W. E. Smith, Demonstration of incoherent wavelength – encoding / time - spreading optical CDMA using chirped Moiré gratings, IEEE Photon. Technol. Lett., 2000, 12 (9): 1281~1283
    J.-F. Huang and D.-Z. Hsu, Fiber-grating-based optical CDMA spectral coding with nearly orthogonal M-sequence codes, IEEE Photon. Technol. Lett., 2000, 12 (9): 1252~1254
    H. Ben Jaafar, S. LaRochelle, P.-Y. Cortès, 1.25 Gbit/s transmission of optical FFH-OCDMA signals over 80 km with 16 users, OFC 2001 , Paper TuV3 -1-TuV3-3
    J. A. Salehi, Code division multiple-access techniques in optical fiber networks-part Ⅰ: fundamental principles, IEEE Trans. Commun. 1989, 37 (8): 824~833
    殷洪玺, 张光昭,杨淑雯, 适用于光码分复用通信的可调光正交码编/解码器的研究, 通信学报, 1998,19(3): 85~90
    M. M. Wefers, K. A. Nelson, Programmable phase and amplitude femtosecond pulse shaping, Opt. Lett., 1993, 18(23): 2032~2034
    Katsuhiro KAMAKURA, Tomoaki OHTSUKI, Iwao SASASE, Optical spread time CDMA communication systems with PPM signaling, IEICE Trans. Commun., 1999, E82-B(7): 1038~1047
    T. Kurokawa, H. Tsuda, K. Okamoto, et al., Time-space-conversion optical signal processing using arrayed-waveguide grating, Elec. Lett., 1997, 33 (22): 1890~1891
    M. Kvehrad, D. Zaccarin, Optical code-division-multiplexed systems based on spectral encoding of non-coherent sources, J. Lightwave Tech., 1995, 13 (3): 534~545
    殷洪玺, 张光昭,杨淑雯,采用光码分多址技术的高速计算机局域网,通信学报,1997, 18 (12): 89~94
    方晓惠,杨淑雯,李世忱等,用于局域网的OCDMA技术,光通信研究,
    
    
    2001,5 (107): 32~35
    A. Takada, T. Sugie, and M. Saruwatari, High-speed picosecond optical pulse compression from gain-switched 1.3 distributed feedback-laser diode (DFB-LD) through highly single-mode fiber, J. Lightwave Technol., 1987, LT-5 (5): 1525~1533
    M. Nakazawa, K. Wuzuki, and E. Yamada, Femtosecond optical pulse generation using a distributed-feedback laser diode, Electron. Lett., 1990, 26 (24): 2038~2040
    K. Wakita, K. Yoshino, A. Hirano et al., Very-high-speed and low driving-voltage modulator modules for a short optical pulse generation, IEICE Trans. Electron., 1998, E81-C (2): 175~179
    S. Oshiba, K. Nakamura, and H. Horikawa, Low-drive-voltage MQW electroabsorption modulator for optical short-short generation, IEEE J. Quantum Electron., 1998, 34(2): 277~281
    Y. Katagiri, A. Takada, S. Nishi et al., Passively mode-locked micromechanically-tunable semiconductor lasers, IEICE Trans. Electron., 1998, E81-C(2): 151~159
    K. Sato, I. Kotaka, A. Hirano et al., High-repetition frequency pulse generation at 102 GHz using modelocked lasers integrated with electroabsorption modulators, Electron, Lett., 1998, 34 (7):790~792
    H. Takara, S. Kawanishi, and M. Saruwatari, 20 GHz Transform-limited optical pulse generation and bit-error-free operation using a tunable, actively mode-locked erbium-doped fiber ring laser, Electron. Lett., 1993, 29 (12): 1149~1150
    J. S. Wey, J. Goldhar, and G. L. Burdge, Active harmonic modelocking of an erbium fiber laser with intravity Fabri-Perot filters, J. Lightwave Technol., 1997, 15 (7):1171~1180
    T. Morioka, K. Uchiyama, S. Kawanishi et al., Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200-nm supercontinuum fiber, Electron. Lett., 1995, 31 (13): 1064~1066
    K. Mori, H. Takara, S. Kawanishi et al., Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fiber with convx dispersion profile, Electron. Lett., 1997, 33 (21): 1806~1807
    G. P. Agrawal. Applications of nonlinear fiber optics, Academic Press, University of Rochester, 2001
    T. Pfeiffer and G. Veith, 40 GHz pulse generation using a widely tunable all-polarisation preserving erbium fibre ring laser, Electron. Lett., 1993, 29 (21): 1849~1850
    
    V. J.Matsas, T. P. Newson, D. J. Richardson et al., Selfstrating passively mode-locked fibre ring solition laser exploiting nonlinear polarisation rotation, Electron. Lett., 1992, 28 (15): 1391~1393
    刘东峰 陈国夫, 王贤华, 自起振被动锁模掺Er3+光纤环形腔孤子激光器的实验研究,中国科学(A辑),1999,29 (7): 656~661
    吴小英,李世忱,锁模光纤激光器,光电子·激光,1997, 8 (2): 36~40
    Agrawal G. P. 著,胡国绛,黄超译,非线性光纤光学,天津:天津大学出版 1992, 181~182
    R. H. Stolen and Chinlon Lin, Self-phase-modulation in silica optical fibers, Phy. Rev., 1978, A17 (4): 1448~1453
    D. M. Adams, C. Gamache, R. Finlay et al., Module-packaged tunable laser and wavelength locker delivering 40mW of fiber-coupled power on 34 channels, Electron. Lett., 2001, 37(11): 691~693
    B. Pezeshki, E. Vail, J. Kubicky et al., 20-mw widely tunable laser module using DFB array and MEMS selection, IEEE Photon. Technol. Lett., 2002, 14 (10): 1457~1459
    B. Mason, G. A. Fish, S. P. DenBaars et al., Widely tunable sampled grating DBR laser with integrated elecroabsorption modulator, IEEE Photon. Technol. Lett., 1999, 11(6): 638~640
    B. Mason, J. Barton, G. A. Fish et al., Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers, IEEE Photon. Technol. Lett., 2000, 12(7): 762~764
    G. Sarlet, G. Morthier, R. Baets et al., Wavelength and mode stabilization of widely tunable SG-DBR and SSG-DBR lasers, IEEE Photon. Technol. Lett., 1999, 11 (11): 1351~1353
    F. kano, Y. Yoshiku, H. Ishii et al., Frequency and stabilization of broadly tunable SSG-DBR lasers, Proc. of OFC’2002 , paper ThV3
    王莉,陈弘达, 潘钟等,垂直腔面发射激光器的研究开发现状及其应用,《高技术通讯》,2001, 4:104-108
    A.Q.Liu, X. M. Zhang, V. M. Murukeshan et al., A novel integrated micromachined tunable laser using polysilicon 3-D mirror, IEEE Photon. Technol. Lett., 2001, 13(5): 427~429
    S. Lundqvist, T. Andersson, and S. T. Eng, Generation of tunable single-mode picosecond pulses from an AlGaAs semiconductor laser with grating feedback, Appl. Phys. Lett., 1983, 43(8): 715~717
    M. Schell, D. Huhse, A. G. Weber, et al., 20nm wavelength tunable singlemode picosecond pulse generation at 1.3(m by self-seeded gain-switched semiconductor laser, Electron. Lett., 1992, 28(23), 2154~
    
    
    2155.
    M. Schell, D. Huhse, D. Bimberg, Generation of 2.5-ps light pulses with 15-nmwavelength tenability at 1.3μm by a self-seeded gain-switched semiconductor laser, IEEE Photon. Technol. Lett., 1993, 5(11): 1267~1269.
    M. Schell, W. Utz, D. Huhse, et al., Low jitter single-mode pulse generation by a self-seeded gain-switched Fabry-Perot semiconductor laser, Appl. Phys. Lett., 1994, 65(24): 3045~3047.
    Chi-Luen Wang and Ci-Ling Pan, Dual-wavelength actively mode-locked laser-diode array with an external grating-loaded cavity, Opt. Lett., 1994, 19(18): 1456~1458.
    D. Huhse, M. Schell, W. Utz, et al., Fast wavelength switching of semiconductor laser pulses by self-seeding, Appl. Phys. Lett., 1996, 69(14): 2018~2020.
    B. Thedrez, J. –M. Lourtioz, S. Bouchoule, et al., Extended tenability of a self-seeded gain-switched InGaAsP laser using an intracavity absorber, Electron. Lett., 1996, 32(7): 662~664.
    D. N. Wang and C. Shu, Tunable dual-wavelength picosecond pulse generation using multiple-optical-path self-seeding approach, IEEE Photon. Technol. Lett., 1997, 9(9):1211~1223.
    O. Reimann, D. Huhse, E. Droge, et al., Electrooptical sampling using 1.55μm self-seeded semiconductor laser with soliton pulse compression, IEEE Photon. Technol. Lett., 1999, 11(8): 1024~1026.
    D. Huhse and D. Bimberg, Competing mode suppression ratio of electrically wavelength tunable self-seeded lasers, IEEE Photon. Technol. Lett., 1999, 11(2): 167~169.
    S. P. Yam and C. Shu, All-optical wavelength switching in a semiconductor laser using self-seeding and external injection-seeding, Appl. Phys. Lett., 1998, 72(9): 1024~1026.
    D. Huhse, M. Schell, J. Kaessner, et al., Generation of electrically wavelength tunable (Δλ=40nm) singlemode laser pulses from a 1.3um Fabry-Perot laser by self-seeding in a fiber-optic configuration, Electron. Lett., 1994, 30 (2): 157~158.
    Y. C. Lee, C. Shu, Optimized operation of self-seeded gain-switched laser diode for electically wavelength-tunable singlemode pulses, IEEE Photon. Technol. Lett., 1995, 7(3): 275~277.
    Shenping Li, Kam Tai Chan, and Caiyuan Lou, Wavelength switching of picosecond pulses in a self-seeded Fabry-Perot semiconductor laser with
    
    
    external fiber Bragg grating cavities by optical injection, 1998, 10 (8): 1094~1096
    Shenping Li, K. T. Chan, Y. Liu, et al., Multiwavelength picosecond pulses generated from a self-seeded Fabry-Perot laser diode with a fiber external cavity using fiber Bragg gratings, IEEE Photon. Technol. Lett., 1998, 10(12): 1712~1714.
    Hao Ding, Shenping Li, Zujie Fang, et al., Wavelength switching of semiconductor laser pulses by self-seeding from a chirped fiber Bragg grating. IEEE Photon. Technol. Lett., 1997, 9(7): 901~903.
    Shengping Li, K. S. Chiang, W. A. Gambling, Self-seeding of Fabry-Perot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high-sidemode suppression ratio, IEEE Photon. Technol. Lett., 2000, 12 (11): 1441~1443.
    Dong-Sun Seo, Hai-Feng Liu, Dug Y. Kim et al., Injection power and wavelength dependence of an external-seeded gain-switched Fabry-Perot laser, Appl. Phys. Lett., 1995, 67 (11): 1503~1505.
    Yasuhiro Matsui, Satoko Kusuzawa, Shin Arahira, et al., Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding, IEEE Photon. Technol. Lett., 1997, 9 (8): 1087~1089.
    L. P. Barry, P. Anandarajah, A. Kaszubowska, Optical pulse generation at frequencies up to 20 GHz using external-injection seeding of a gain-switched commercial Fabry-Perot laser, IEEE Photon. Technol. Lett., 2001, 13 (9): 1014~1016.
    L. P. Barry and P. Anandarajah, Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems, IEEE Photon. Technol. Lett., 1999, 11 (11): 1360~1362.
    E. A. Chauchard, J. S. Wey, Chi H. Lee and G. Burdge, “Coherent pulsed injection seeding of two gain-switched semiconductor lasers”, IEEE Trans. Photon. Technol. Lett., 1991, 3(12): 1069~1071
    K. Chan and C. Shu, “Electricaqlly wavelength-tunable pulse generated by synchronous two-way injection seeding”, IEEE Photon. Technol. Lett., 1999, 11 (2): 170~172
    G. M. Carter and L. Zheng, Pulse compression of CW injection seeded gain-switched diode laser, IEEE J. Quantum Electron., 1992, 28 (8): 1751~1753
    Schlager J B, Kawanishi S, Saruwatari M, Dual wavelength pulse generation using mode-locked Erbium –doped fiber ring laser, Eletron Lett,
    
    
    1991, 27 (22): 2072~2073
    C. L. Wang and C. L. Pan, Dual-wavelength actively mode-locked laser-diode array with an external grating-loaded cavity, Opt. Lett., 1994, 19 (18):1456~1458
    Margalit M, Orenstein M, Eisenstein G, Synchronized two-color operation of a passively mode-locked Erbium-doped fiber laser by dual injection locking, Opt. Lett. 1996, 21 (19): 1585~1587
    D. N. Wang, C. Shu, Tunable dual-wavelength picosecind pulse generatio using multiple-optical-path self-seeding approach, IEEE Photo. Technol. Lett., 1997, 9 (9): 1211~1213
    D. Huhse, M. Schell, W. Utz, et al., Fast wavelength switching of semiconductor laser pulses by self-seeding, Appl Phys. Lett. 1996, 69 (14):2018~2020
    Sui-Pan Yam, Chester Shu, Fast wavelength-tunable multichannel switching using a self-injection seeding scheme, IEEE J. Quantum. Electron., 1999,35 (2): 228~233
    Shenping Li, Kam Tai Chan, Caiyum Lou, Wavelength switching of picosecond pulses in a self-seeded Fabry-Perot semiconductor laser with external fiber Bragg grating cavities by optical injection, IEEE Photo. Technol. Lett., 1998, 10 (8): 1094~1096
    Yasuhiro Matsui, Satoko Kutsuzawa, Shin Arahira, et al., Generation of wavelength tunable gain-switched pulses from FP MQW lsers with external injection seeding, IEEE Photo. Technol. Lett., 1997, 9 (8): 1087~1089
    D. N. Wang and C. Shu, Tunable Dual-Wavelength Picosecond Pulse Generation Using Multiple-Optical-Path Self-Seeding Approach, IEEE Photon. Technol. Lett., 1997, 9 (9): 1211~1213
    M. Zhang, D. N. Wang, H. Li, et al., Tunable dual-wavelength picosecond pulse generation by the use of two Fabry-Pérot laser diodes in an external injection seeding scheme, IEEE Photon. Technol. Lett., 2002, 14 (1): 92~94.
    K. Chan and C. Shu, Electrically wavelength-tunable pulse generated by synchronous two-way injection seeding, IEEE Photon. Technol. Lett., 1999, 11 (2): 170~172
    
    第二章
    李晓滨,赵晓晖,李丽君,光码分多址地址码及其构造方法讨论,长春邮电学院学报,1999, 17 (4): 17~21
    
    Pruncnal P R, Santoro M A, Fan T R, Spread spectrum fiber-optic local area networks using optical processing. J. Lightwave Technol., 1986, LT-4 (5): 547~554
    J-G. Zhang and G. Picchi, Tunable prime-code encoder/decoder for all-optical CDMA applications, Elec. Lett., 1993, 29 (13): 1211~1212
    J.-G. Zhang, Improvement in bandwidth efficiency of asynchronous prime-cdoe CDMA networks by error correction coding, Elec. Lett., 1994, 30 (6): 514~515
    G.- C. Yang and W. C. Kwong, Performance analysis of optical CDMA with prime codes, Elec. Lett., 1995, 31 (7): 569~570
     Zhang J-G, Kwong W C, Effective design of optical code-division multiple access networks by using the modified prime code, Elec. Lett., 1997, 33 (3):229~230
    Zhang J-G, Kwong W C, Sharma A B, et al., performance comparison of extended prime codes (=1)and 2n prime codes (=2) in fiber-optic CDMA systems, ICCT’98,1998, S35 (8): 1~4
    Kwong W C, Zhang J-G, Yang G-C, 2n prime-sequence code and its optical CDMA coding architecture, Elec. Lett., 1994,30 (6):509-510
    Wing C. Kwong, Guu-Chang Yang, and Jian-Guo Zhang, 2n prime-sequence codes and coding architecture for optical code-division multiple-access, IEEE Trans. Commun., 1996, 44 (9): 1152~1162
    Chung F R K, Salahi J A, Wei V K, Optical orthogonal codes: Design, analysis, and applications, IEEE Trans Inform. Theory, 1989,35:564~595
    Svetislav V. Maric, Mark D. Hahm, Edward L. Titlebaum, Construction and performance analysis of a new family of optical orthogonal codes for CDMA fiber-optic networks, IEEE Trans. Commun., 1995, 43 (2/3/4): 485~489
    Jian-Guo Zhang, Flexible optical fiber CDMA networks using strict optical orthogonal codes for multimedia Broadcasting and distribution applications, IEEE Trans. Broadcasting, 1999, 45 (1): 106~115
    A. Grunnet-Jepsen, J. N. Sweetser, et al., Code-division-multiplexing- compatible coding and decoding of directly driven DFB laser bit streams. OFC 2000, ThW1: 314~316
    A. Grunnet-Jepsen, A. E. Johnson, et al., Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA, Elec. Lett., 1999, 35 (13): 1096~97.
    Jen-Fa Huang and Dar-Zu Hsu, Fiber-Grating-Based Optical CDMA Spectral coding with Nearly Orthogonal M-Sequence Codes, IEEE Photon.
    
    
    Technol. Lett., 2000, 12 (9): 1252~1254
    L.R. Chen Seldon D. Benjamin et al., Ultrashort pulse propagation in multiple-grating fiber structures, Opt. Lett., 1997, 22 (6): 402~404
    A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, et al., Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA. Elec. Lett., 1999, 35 (13): 1096~1097
    胡健栋,郑朝晖,龙必起,李兴明著,码分多址与个人通信,人民邮电出版社1996,98~150
    Marhic M E,Coherent optical CDMA networks, J. Lightwave Technol., 1993, 11 (5/6) 854~864
    Marc M. Wefers Keith A. Nelson, Programmable phase and amplitude femtosecond pulse shaping, Opt. Lett., 1993, 18 (23): 2032~2034
    Katsuhiro KAMAKURA, Tomoaki OHTSUKI, Iwao SASASE, Optical spread time CDMA communication systems with PPM signaling, IEICE Trans. Commun., 1999, E82-B (7): 1038~1047
    A. M. Wefers, J. P> Heritage, E. N. Kirschner, High-resolution femtosecond pulse shaping, J. Opt. Soc. Amer. B, 1988, 5 (8): 1563~1572
    第三章
    Marc M. Wefers and Keith A. Nelson, Programmable phase and amplitude femtosecond pulse shaping, Opt. Lett., 1993, 18 (23): 2032~2034
    张湃 余重秀等 光CDMA的编码原理及实现方法 全国第8次光纤通信及第9届集成光学学术会议论文集,P 455~458
    A. M. Wefers, J. P. Heritage, et al., High-resolution femtosecond pulse shaping, J. Opt. Soc. Amer. B., 1988, 5 (8): 1563~1572
    P. C. Tech, P. Petropoulos, et al., A 10 Gbit/s, 160Gchip/s OCDMA coding:decoding system based on superstructured fiber gratings, OFC 2000: PD9
    Lawrance R. Chen, Peter W. E. Smith, et al., Wavelength-encoding/ temporal-spreading optical code division multiple access system with in-fiber chirped moiré gratings, Appl. Opt., 1999, 38 (21): 4500~4508
    A. Grunnet-Jepsen, J. N. Sweetser, et al., Code-division-multiplexing- compatible coding and decoding of directly driven DFB laser bit streams. OFC 2000, ThW1: 314~316
    A. Grunnet-Jepsen, A. E. Johnson, et al., Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA, Elec. Lett., 1999, 35 (13): 1096 ~97
    Jen-Fa Huang and Dar-Zu Hsu, Fiber-Grating-Based Optical CDMA
    
    
    Spectral coding with Nearly Orthogonal M-Sequence Codes, IEEE Photon. Technol. Lett., 2000, 12 (9): 1252~1254
    L.R. Chen Seldon D. Benjamin et al., Ultrashort pulse propagation in multiple-grating fiber structures, Opt. Lett., 1997, 22 (6): 402~404
    A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, et al., Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA. Elec. Lett., 1999, 35 (13): 1096~1097
    Marhic M E,Coherent optical CDMA networks, J. Lightwave Technol., 1993, 11(5/6) 854~864
    Marc M. Wefers Keith A. Nelson, Programmable phase and amplitude femtosecond pulse shaping, Opt. Lett., 1993, 18 (23): 2032~2034
    Katsuhiro KAMAKURA, Tomoaki OHTSUKI, Iwao SASASE, Optical spread time CDMA communication systems with PPM signaling, IEICE Trans. Commun., 1999, E82-B (7): 1038~1047
    Martin McCall, On the Application of Coupled Mode Theory for Modeling Fiber Bragg Gratings, J. Lightwave Technol., 2000, 18(2): 236~242
    Turan Erdogan, Fiber Grating Spectra, J. Lightwave Technol., 1997, 15 (8): 1277~1294
    J. A. Salehi, A. M. Weiner, and J. P. Heritage, Coherent ultrashort pulse code-division multiple access communication systems, J. Lightwave Technol., 1990, 8 (3): 478~491.
    W. Ma, C. Zhou, H. Pu, J. Lin, Performance analysis of phase-encoded OCDMA communication system, J. Lightwave Technol., 2002, 20 (5): 770~775
    第四章
    A. Takada, T. Sugie, and M. Saruwatari, High-speed picosecond optical pulse compression from gain-switched 1.3 distributed feedback-laser diode (DFB-LD) through highly single-mode fiber, J. Lightwave Technol., 1987, LT-5 (5): 1525~1533
    M. Nakazawa, K. Wuzuki, and E. Yamada, Femtosecond optical pulse generation using a distributed-feedback laser diode, Electron. Lett., 1990, 26 (24): 2038~2040
    K. Wakita, K. Yoshino, A. Hirano et al., Very-high-speed and low driving-voltage modulator modules for a short optical pulse generation, IEICE Trans. Electron., 1998, E81-C (2): 175~179
    S. Oshiba, K. Nakamura, and H. Horikawa, Low-drive-voltage MQW electroabsorption modulator for optical short-short generation, IEEE J. Quantum Electron., 1998, 34 (2): 277~281
    
    Y. Katagiri, A. Takada, S. Nishi et al., Passively mode-locked micromechanically-tunable semiconductor lasers, IEICE Trans. Electron., 1998, E81-C(2): 151~159
    K. Sato, I. Kotaka, A. Hirano et al., High-repetition frequency pulse generation at 102 GHz using modelocked lasers integrated with electroabsorption modulators, Electron, Lett., 1998, 34 (7):790~792
    H. Takara, S. Kawanishi, and M. Saruwatari, 20 GHz Transform-limited optical pulse generation and bit-error-free operation using a tunable, actively mode-locked erbium-doped fiber ring laser, Electron. Lett., 1993, 29 (12): 1149~1150
    J. S. Wey, J. Goldhar, and G. L. Burdge, Active harmonic modelocking of an erbium fiber laser with intravity Fabri-Perot filters, J. Lightwave Technol., 1997, 15 (7):1171~1180
    T. Morioka, K. Uchiyama, S. Kawanishi et al., Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200-nm supercontinuum fiber, Electron. Lett., 1995, 31 (13): 1064~1066
    K. Mori, H. Takara, S. Kawanishi et al., Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fiber with convx dispersion profile, Electron. Lett., 1997, 33 (21): 1806~1807
    Dong-Sun Seo, Hai-Feng Liu, Dug Y. Kim et al., Injection power and wavelength dependence of an external-seeded gain-switched Fabry-Perot laser, Appl. Phys. Lett., 1995, 67 (11): 1503~1505
    Yasuhiro Matsui, Satoko Kusuzawa, Shin Arahira, et al., Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding, IEEE Photon. Technol. Lett., 1997, 9 (8): 1087~1089
    L. P. Barry, P. Anandarajah, A. Kaszubowska, Optical pulse generation at frequencies up to 20 GHz using external-injection seeding of a gain-switched commercial Fabry-Perot laser, IEEE Photon. Technol. Lett., 2001, 13 (9): 1014~1016
    L. P. Barry and P. Anandarajah, Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems, IEEE Photon. Technol. Lett., 1999, 11 (11): 1360~1362
    E. A. Chauchard, J. S. Wey, Chi H. Lee and G. Burdge, Coherent pulsed injection seeding of two gain-switched semiconductor lasers, IEEE Trans. Photon. Technol. Lett., 1991, 3 (12): 1069~1071
    K. Chan and C. Shu, “Electricaqlly wavelength-tunable pulse generated by synchronous two-way injection seeding”, IEEE Photon. Technol. Lett., 1999,
    
    
    11 (2): 170~172
    第五章
    Schlager J B, Kawanishi S, Saruwatari M, Dual wavelength pulse generation using mode-locked Erbium –doped fiber ring laser, Eletron Lett, 1991, 27 (22): 2072~2073
    C. L. Wang and C. L. Pan, Dual-wavelength actively mode-locked laser-diode array with an external grating-loaded cavity, Opt. Lett., 1994, 19 (18):1456~1458
    Margalit M, Orenstein M, Eisenstein G, Synchronized two-color operation of a passively mode-locked Erbium-doped fiber laser by dual injection locking, Opt. Lett. 1996, 21 (19): 1585~1587
    D. N. Wang, C. Shu, Tunable dual-wavelength picosecind pulse generatio using multiple-optical-path self-seeding approach, IEEE Photo. Technol. Lett., 1997, 9 (9): 1211~1213
    D. Huhse, M. Schell, W. Utz, et al., Fast wavelength switching of semiconductor laser pulses by self-seeding, Appl Phys. Lett. 1996, 69 (14):2018~2020
    Sui-Pan Yam, Chester Shu, Fast wavelength-tunable multichannel switching using a self-injection seeding scheme, IEEE J. Quantum. Electron., 1999, 35 (2): 228~233
    Shenping Li, Kam Tai Chan, Caiyum Lou, Wavelength switching of picosecond pulses in a self-seeded Fabry-Perot semiconductor laser with external fiber Bragg grating cavities by optical injection, IEEE Photo. Technol. Lett., 1998, 10 (8): 1094~1096
    Yasuhiro Matsui, Satoko Kutsuzawa, Shin Arahira, et al., Generation of wavelength tunable gain-switched pulses from FP MQW lsers with external injection seeding, IEEE Photo. Technol. Lett., 1997, 9 (8): 1087~1089
    D. N. Wang and C. Shu, Tunable Dual-Wavelength Picosecond Pulse Generation Using Multiple-Optical-Path Self-Seeding Approach, IEEE Photon. Technol. Lett., 1997, 9 (9): 1211~1213
    M. Zhang, D. N. Wang, H. Li, et al., Tunable dual-wavelength picosecond pulse generation by the use of two Fabry-Pérot laser diodes in an external injection seeding scheme, IEEE Photon. Technol. Lett., 2002, 14 (1): 92~94
    K. Chan and C. Shu, Electrically wavelength-tunable pulse generated by synchronous two-way injection seeding, IEEE Photon. Technol. Lett., 1999, 11 (2): 170~172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700