多普勒激光测风雷达控制与数据采集研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光多普勒雷达是目前惟一能提供全球三维风场数据的有效工具。而雷达控制的实现将直接影响系统的性能。由于雷达系统复杂,并且对控制精度、实时性的要求高,这些增加了控制系统的设计难度。另外,由于激光雷达回波信号随距离的衰减快,一般采用光电倍增管(PMT)模拟方式与光子计数方式相结合的探测方法,这样使得数据采集系统都较为复杂,并且也使数据处理的难度增大。
     鉴频系统直接决定着雷达其他子系统的实现方式。本文从雷达系统的探测方式入手,对激光测风雷达控制系统进行了总体设计。确定以虚拟仪器技术来开发整个控制系统,以一台计算机为控制中心,以Lab VIEW作为开发平台,这样在数据传输和数据处理上大大提高系统的效率。然后利用虚拟仪器技术重点研究并实现了基于角度调谐的双边缘技术的鉴频系统初始工作点的定标,实现控制与数据采集的同步和高效的数据处理,使定标过程在较短的时间内完成,达到了所需的控制精度。
     另外,本文以硅光电倍增器SiPM作为探测器,以高速数据采集卡作为硬件核心开发雷达数据采集与处理系统过程。对探测器的光子响应特性和暗计数特性进行了研究,以此为依据设计算法来通过软件实现光子计数。这样使得采集系统大大简化,并且提供统一的数据格式以方便后续的风场反演。
The doppler wind lidar (DWL) is the only effective tool that can provide a global three-dimensional coverage of wind data. And the control system derectly effects the performance of the DWL. As the complexity of lidar systems, and requirements on the control precision and high real-time , increases the difficulty of the control system. As the laser echo signal decay quickly with distance, commonly used photomultiplier tube (PMT) with photon counting mode analog combination of detection methods, which makes data collection systems are more complex, and also make data processing more difficult.
     The frequency discrimination directly determines the implementation of other subsystems. This paper from the lidar detection started the overall design of the DWL control system. This paper used the virtual instrument technology to develop the control system,used a computer as the control center, as the Lab VIEW development platform, so that data transmission and data processing greatly improve the efficiency of the system. Then focus on the design of virtual instrument technology to implement the calibration of the inititial operating point of the frequency discriminationsystem based on angle-tuned dual-edge technology, realize the synchronization of the control and data acquisition , the calibration process in a short time to complete,and achieve the required control accuracy.
     This paper used the virtual instrument technology with SiPM as the detector, and high-speed data acquisition card as hardware core to design the DWL data acquisition and processing system,studied the response characteristics and dark counts characteristics of of the photon detector. As a basis for designing algorithms to achieve photon counting with software This allows the acquisition system greatly simplified, and provide a unified data format to facilitate subsequent wind retrieval.
引文
1 World Meterorological Organization, Proliminary statement of guidance regarding how well statellite capabilitles meet WMO user requirements in several application areas[R].WMO/TD,1998
    2赵文智,付国,栗中华等.风切变雷达原理与应用.中国民航学院学报2004,6(22)
    3 C. She, J.Yue, Z. Yan, J. W. Hair, J. Guo, S. Wu, Z. Liu. Direct-detection Doppler wind measurements with a Cabannes–Mie lidar: A. Comparison between iodine vapor filter and Fabry–Perot interferometer methods. Appl. Opt. 2007, 46(2):4434-4443
    4张成迁.高速数据采集回放系统设计与实现.国防科学技术大学工程硕士学位论文.2009,4
    5姚剑清.简明数字信号处理.人民邮电出版社.2009,3(25)
    6 A.V.Jelailian,R.M.Huffaker.Laser Doppler techniques for remote wind velocity measurements,Molecular.Radiation Conf.1967,10:345-358
    7 Z. Zelinger, M. Strizik, P. Kubat, Z. Janour, P. Berger, A. Cerny, P. Engst. Laser remote sensing and photoacoustic spectrometry applied in air pollution investigation. Optics and Lasers in Engineering. 2004,42:403~412
    8 H. Delbarre, P. Augustin, F. Said, et.al. Ground-based remote sensing observation of the complex behaviour of the Marseille boundary layer during ESCOMPTE. Atmospheric Research 2005,74:403~433
    9 J. Rothermel, L. D. Olivier, R. M. Banta, et.al. Remote sensing of multi-level wind fields with high-energy airborne scanning coherent Doppler lidar. Opt. Exp. 1998,2(2):41~50
    10薛峰.多普勒测风激光雷达鉴频系统的研究.哈尔滨工业大学硕士论文.2006,6:12-13
    11 Albert Ansmann, Ulla Wandinger, Olivier Le Rille, Dulce Lajas, and Anne Grete Straume, "Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations," Appl. Opt. 46, 6606-6622 (2007)
    12 J. G. Yoe, M. K. Rama Varma Raja, R. Michael Hardesty, et. al. Groudwinds 2000 field campaign: demonstration of new Doppler lidar technology and wind lidar date intercomparison, Proceedings of SPIE. Hangzhou, China. 2003:327-336
    13 F. F. Hall, R. M. Huffaker, R. M. Hardesty, et.al. Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar. Appl. Opt. 1984, 23:2503~2506
    14 Claude Souprayen,Anne Gamier,Alber Hertzog.Rayleigh-Mie Doppler Wind Lidar for Atmospheric Measurements.Applied.Optics.1999,38(12):2410-2420
    15 Jack A. McKay, "Modeling of Direct Detection Doppler Wind Lidar. II. The Fringe Imaging Technique," Appl. Opt. 37, 6487-6493 (1998)
    16 Y. Shibata, C. Nagasawa, M. Abo, T. Nagai. Wind measurement accuracy with incoherent Doppler lidar using an iodine vapor filter. Lidar Remote Sensing for Industry and Environment Monitoring III, Proc. of SPIE. Hangzhou, China. 2003:529-535
    17 Y. Shibata, C. Nagasawa. Incoherent Doppler lidar using 355-nm wavelength for wind measurement. Lidar Remote Sensing for Industry and Environment Monitoring, Proc. of SPIE. Sendai, Japan. 2001:615~622
    18 M. Imaki, D. Sun, T. Kobayashi. Direct-detection Doppler lidar for two-dimensional wind field measurements of the troposphere. Lidar Remote Sensing for Industry and Environment Monitoring III, Proc. of SPIE. Hangzhou, China. 2003:303~310
    19 H. Kawai, Y. Iwasaki, M. Imaki, T. Kobayashi. Ultraviolet high-spectral resolution lidar with polarization detection for accurate measurement of optical properties of aerosol and clouds. Lidar Remote Sensing for Environmental Monitoring VIII, Proc. of SPIE. San Diego, CA, USA. 2007:668103-1~9
    20 M. Imaki, T. Kobayashi. Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties. Appl. Opt. 2005,44 (28):6023~6030
    21 C. L. Korb, B. M. Gentry, C. Y. Weng. Edge technique: theory and application to the lidar measurement of atmospheric wind. Appl. Opt. 1992, 31 (21): 4202-4212
    22 Bruce M. Gentry, C. L. Korb. Edge technique for high-accuracy Doppler Velocimetry. Appl. Opt. 1994, 33(24):5770-5777
    23 C. L. Korb, B. M. Gentry, S. Xingfu Li. Spaceborne lidar wind measurement with the edge technique. Lidar Techniques for Remote Sensing,Proc. of SPIE. Rome, Italy. 1994:206-213
    24 C. L. Korb, B. M. Gentry, S. Xingfu Li, Cristina Flesia. Theory of the double edge technique for Doppler lidar wind measurement. Appl. Opt. 1998, 37(15):3097-3104
    25 B. M. Gentry, H. Chen. Tropospheric wind measurements obtained with the Goddard Lidar observatory for winds (GLOW): validation and perfor- mance.Singh. Lidar Remote Sensing for Industry and Environment Monitoring II. San Diego, CA, USA. 2002: 74-81
    26 B. M. Gentry, H. Chen, S. X. Li. Glow-The Goddard Lidar Observatory for Winds. Proceedings of SPIE. Sendai, Japan. 2001:314-320
    27 M. T. Dehring, J. M. Ryan, P. B. Hays, B. Moore III, J. Wang. GroundWindsballoon fringe-imaging Doppler lidar mission concept and instrument performance. Lidar Remote Sensing for Industry and Environmental Monitoring V. Honolulu, HI, USA. 2005:210-219
    28 T. D. Irgang, P. B. Hays, W. R. Skinner. Two-channel direct-detection Doppler lidar employing a charge-coupled device as detector. Appl. Opt. 2002,41(6): 1145~1154
    29 M. J. McGill, James D. Spinhirne. Comparison of two direct-detection Doppler lidar techniques. Opt. Eng. 1998,37 (10) :2675-2686
    30莫霜.激光多普勒测风雷达鉴频系统的自动化控制.哈尔滨工业大学硕士论文.2007.7:9-10
    31 Y. Durand, E. Chinal, M. Ecdemann, et. Al. Aladin airborne demonstrator: a Doppler wind lidar to prepare ESA’s ADE-Aeolus explorer mission. Earth Observing Systems XI, Proc. of SPIE. San Diego, CA, USA. 2006:62961D1-13
    32 D. Morancais,F. Fabre, M. Endemann,A. Culoma. ALADIN Doppler wind lidar: recent advances. Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing III, Proc. of SPIE. Florence, Italy. 2007:675014-1-12
    33 Z.S.Liu,W.B.Chen,T.L.Zhang,et al.An incoherent Doppler lidar for ground~based atmospheric wid profiling.Appl.phys.B.1997,64:561-566
    34郭金家,刘智深,孙大鹏等.高光谱碘分子和双边缘多普勒测风激光雷达技术比较.中国海洋大学学报.2004,34(3):489-495
    35张博,刘智深,张凯临.固体激光测风雷达扫描镜旋转控制系统.青岛海洋大学学报.2003,33(4):621-626
    36周军,岳古明,金传佳等.探测对流层气溶胶的双波长米氏散射激光雷达.光学学报.2000,20(10):1412-1417
    37夏海云,孙东松,沈法华,董晶晶.双边缘技术多普勒测风激光雷达标准具的优化.强激光与粒子束. 2006,18(11):1774-1778
    38迟如利,刘东,钟志庆等.双F-P标准具在直接测风激光雷达系统中的应用与分析.强激光与粒子束. 2007,19(2): 202-206
    39王邦新,沈法华,孙东松等.直接探测多普勒激光雷达的光束扫描和风场测量.红外与激光工程. 2007,36(1): 69-72
    40沈法华,孙东松,陈敏等.对基于Fizeau干涉仪的测风激光雷达的研究.红外与激光工程. 2006,35(6):691-695
    41陈卫标,周军,刘继桥,朱小磊.多普勒激光雷达及其单纵模全固态激光器.红外与激光工程. 2008,37(1):57-60
    42陆绮荣.基于虚拟仪器技术个人实验室的构建.电子工业出版社.2006:9
    43江建军,刘继光.LabVIEW程序设计教程.电子工业出版社.2008:2-3
    44刘君华.基于LabVIEW的虚拟仪器设计.电子工业出版社,2003: 20-21
    45阮奇桢.我和LabVIEW——一个NI工程师的十年编程经验,北京航空航天大学出版社.2010:1-2
    46康浩.单多普勒雷达资料风场反演方法的试验与研究.南京信息工程大学硕士学位论文.2008,(09)
    47方德贤,刘国庆,董新宁,慕熙昱,葛文忠.单多普勒雷达二维风场反演——Extent VPP方法.气象学报.2007,65(4):231-232
    48张合勇.基于边缘技术多普勒测风雷达的精度研究.哈尔滨工业大学硕士论文.2009,7
    49宋宝安.基于角度调谐F-P标准具的测风激光雷达若干问题研究.哈尔滨工业大学博士论文.2009,3
    50阮奇桢.我和LabVIEW—一个NI工程师的十年编程经验,北京航空航天大学出版社.2010:197-200
    51 B. Dolgoshein et al.,—Silicon Photomultipliers in Particle Physics: Possibilities and Limitations“, Proc. of 42nd Workshop "Innovative Detectors for Supercolliders" Erice, Italy, 28 Sep - 4 Oct 2003. Publ.: World Scientific, 2004, pp.442-456
    52殷登平.胡春周.胡小波.硅光电倍增器(SiPM)研究进展.第十五届全国核电子学与核探测技术学术年会论文集.2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700