基于微环谐振腔的双波长单纵模半导体激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微环谐振腔由于具有体积小,结构简单,集成度高,插入损耗小等优点,在光集成器件中应用十分广泛。微环谐振腔在激光器中,主要是提供对纵模的选择作用。如果使用两个微环进行级联,由于游标效应,可以使自由光谱范围(FSR)增大。太赫兹(THz)辐射由于所处的频谱位置的特殊性,在许多方面有广阔的应用前景。本论文设计的基于微环谐振腔结构的半导体激光器可以产生双波长单纵模的激光,用于拍频产生太赫兹信号。本论文的主要研究内容如下:
     (1)介绍了THz辐射的研究背景及意义,介绍了光学微环谐振腔在光集成器件中的应用,提出了一种新的基于双微环结构的双波长半导体激光器,并可以用来拍频产生THz信号。
     (2)对矩形波导的模场分布特性进行了研究,通过对其特征方程的求解,模拟了E_(mn)~y模的场分布。当直波导尺寸较大时,既有基模又有高阶模。当直波导尺寸比较小时,只存在基模。接着分析了弯曲波导的模场分布特性及波导尺寸对其模场的影响。
     (3)分析了微环谐振条件,以微环与直波导侧向耦合为例,分析了其耦合系数与传播距离的关系,振幅耦合比率与波导尺寸和波长的关系,并进行了模拟仿真。研究了微环内相向传播光方向控制的方法。
     (4)研究了上下载型微环和级联微环的滤波特性,在此基础上,设计了一种新型的双波长单纵模可调谐半导体激光器,建立了该激光器的理论模型,研究了其阈值特性,动态特性和稳态特性。
     (5)通过对不同制作材料进行比较,最终选择InGaAsP/InP材料制作该激光器,研究了InGaAsP/InP材料无源/有源微环侧向耦合结构的加工工艺,研究了无源/有源混合结构的加工工艺,并对本论文提到的新型激光器的加工工艺进行了设计。
With the advantages of small volume, simple structure, high integration density and low insertion loss, microring resonators are widely used in optical integrated devices. Microring resonator acts mainly as a longitudinal mode selector in a laser. If two microrings are cascaded, free spectral range (FSR) can be extended as a result of vernier effect. THz radiation has broad application prospects in lots of fields owing to its special position in the frequency spectrum. In this thesis, a semiconductor laser based on microring resonators is designed. The laser can emit dual-wavelength single longitudinal mode light for generating THz signals by the way of frequency beating. The major research achievements are as the following:
     (1) The research background and significance of THz radiation is introduced. Applications of microring resonators are presented. A novel dual-wavelength semiconductor laser based on double ring structure is proposed, which can be used to generate THz signals.
     (2) Mode distribution in stripe waveguides is researched. Mode distribution of E_(mn)~y mode is simulated by solving characteristic equations. Both basic mode and high order modes exist when the size of the stripe waveguide is large, and only basic mode exists when the size of the stripe waveguide is small. Mode distribution in a bent waveguide, and the effect of the size of the bent waveguide to the distribution is analyzed.
     (3) The resonance condition for a microring is analyzed. To take lateral coupled microring and bus waveguide for an example, the relation between the coupling efficiency and the propagation distance and relation between the coupling ratio and the size of the waveguide is analyzed and simulated. The way for directional control of counter propagating lights in microrings is researched.
     (4) Filtering characteristics of an add/drop ring and cascaded rings are researched, based on which a novel dual-wavelength single longitudinal mode tunable semiconductor laser is presented. Theoretical model of the designed laser is presented and threshold characteristics, dynamic characteristics and stable state characteristics of it is researched.
     (5) Different types of material are compared, and InGaAsP/InP material is finally chosen to fabricate the laser. Fabrication of lateral coupled passive/active microring resonators and mixed construction with passive parts and active parts is researched, and the fabrication method of the designed laser is proposed.
引文
[1] J. Buus, E. J. Murphy. Tunable lasers in optical networks. IEEE J. Lightw Technol, 2006, 24(1) : 5~11
    [2] H. Ishii, K. Kasaya, H. Oohashi. Spectral linewidth reduction in widely wavelength tunable DFB laser array. IEEE J. Sel. Topics Quantum Electron, 2009,15(3) : 514~520
    [3] T. Okamoto, S. Sudo, K. Tsuruoka, et al. A monolithic wideband wavelength-tunable laser diode integrated with a ring/MZI loop filter. IEEE J. Sel. Topics Quantum Electron, 2009, 15(3) : 488~493
    [4] T. Takeuchi, M. Takahashi, K. Suzuki, et al. Wavelength tunable laser with silica-waveguide ring resonators. IEICE Trans. Electron, 2009, 92(2) : 198~204
    [5] T. Matsumoto, A. Suzuki, M. Takahashi, et al. Narrow spectral linewidth full band tunable laser based on waveguide ring resonators with low power consumption. OFC, 2010. 1~3
    [6] Nobuhide Fujioka, Tao Chu. Compact and low power consumption hybrid integrated wavelength tunable laser module using silicon waveguide resonators. IEEE J. Lightw Technol, 2010, 28(21) : 3115~3120
    [7] K. E. Razavi, P. A. Davies. Semiconductor laser sources for the generation of millimeter-wave signals. IEEE Conference on Optoelectronics, 1998. 159~163
    [8] J. J. O’Reilly, P. M. Lane, R. Heidemann, et al. Optical generation of very narrow linewidth millimeter wave signals. Electron. Lett, 1992, 28(25) : 2309~2311
    [9] X. Liu. A novel dual-wavelength DFB fiber laser based on symmetrical FBG structure. IEEE Photonics Technol. Lett, 2007, 19(9) : 632~634
    [10] J. Sun, Y. Dai, Y. Zhang, X. Chen, et al. Dual-wavelength DFB fiber laser based on unequalized phase shifts. IEEE Photonics Technol. Lett, 2006, 18(23) : 2493~2495
    [11] Zhenyang Gao, Lei Wang, Jianjun He. Mode competition analysis in dual-wavelength coupled-cavity semiconductor laser. Optical Society of America J. Opt. Soc. Am. B. 2010, 27(3) : 432~441
    [12] S. Matsuo, T. Segawa, T. Kakitsuka, et al. Widely tunable laser using microring resonators. IEEE Int. Semicond. Laser Conference, 2006. 21~22
    [13] T. Segawa, S. Matsuo, T. Kakitsuka, et al. Tunable double ring resonator coupled laserover full C-band with low tuning current. Indium Phosphide Related Material Conference, 2007. 598~601
    [14]马春生,刘式墉.光波导模式理论. (第二版).吉林:吉林大学出版社, 2007. 1~2
    [15] K. R. Hiremath, M. Hammer, S. Stoffer, et al. Analytic approach to dielectric optical bent slab waveguides. Optical and Quantum Electronics, 2005, 37(3) : 37~61
    [16] M. K. Chin, S. T. Ho. Design and modeling of waveguide coupled single mode microring resonator. J. Lightw Technol, 1998, 16(8) : 1433~1466
    [17] Heiblum, M. harris. Analysis of curved optical waveguide by conformal transformation. Quantum Electronics, 2003, 11(2) : 75~83
    [18] S. J. Garth. Mode behaviour on bent planar dielectric waveguides. IEEE Proc.Optoelectron, 1995, 142(2) : 115~120
    [19] Goyal, I. C. Gallawa, R. L. Ghatak. Bent planar waveguides and whispering gallery modes: a new method of analysis. J. Lightw Technol, 1990, 8(5) : 768~774
    [20] P. L. Liu, Q. Zhao, F. S. Choa. Slow-wave finite-difference beam propagation method. IEEE Photonics Technol. Lett, 1995, 7(8) : 890~892
    [21] J.Shibayama, T.Takahashi, J.Yamauchi, et al. Efficient time-domain finite-difference beam propagation methods for the analysis of slab and circularly symmetric waveguides. J. Lightw Technol, 2000, 18(3) : 437~442
    [22] J. Shibayama, T. Takahashi, J. Yamauchi, et al. Time-domain finite-difference BPM with pade approximants in time axis for analysis of circularly symmetric fields. Electro. Lett, 2000, 36(4) : 319~321
    [23] Y. Yuan, R. Jambunathan, J. Singh, et al. Finite-difference time-domain analysis and experimental examination of the performance of a coupled-cavity MQW laser with active waveguide at 1.54μm. IEEE J. Quantum Electron, 1997, 3(3) : 408~415
    [24] J. Yamauchi, M. Nibe, H. Nakano. Scalar FD-TD method for circularly symmetric waveguides. Opt. Quantum Electron, 1997, 29(4) : 451~460
    [25]梁华伟,石顺祥.非平行波导耦合模理论的研究.物理学报, 2007, 56(4): 2293~2296
    [26] Trang Trinh. Coupling characteristics of planar dielectric waveguides of rectangular cross section. IEEE transactions on microwave theory techniques, 1981, 29(9): 875~880
    [27] Jia Yubin, Hao Yilong. Power exchange between two nonparallel waveguides.光子学报, 2005, 34(6) : 852~855
    [28]王现银.聚合物微环谐振波分复用器的优化设计与特性分析: [博士学位论文].吉林:吉林大学, 2004
    [29]佘守宪.导波光学物理基础. (第一版).北京:北方交通大学出版社, 2002. 160~165
    [30] M. Sorel, P. J. R. Laybourn. Alternate oscillations in semiconductor ring laser. Optics Letters, 2002, 27(22) : 1992~1994
    [31] M. Sorel, P. J. R. Laybourn. Coupled_mode equations for monolithic semiconductor ring lasers: numerical simulations and experimental results. IEEE, 2003, 35(13) : 30~32
    [32] M. Sorel, G..Giuliani, A. Scire, et al. Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model. IEEE, J. quantum electronics, 2003, 39(10): 1187~1195
    [33] Hongjun Cao. Monolithically integrated semiconductor ring lasers: design, fabrication, and directional control: [Ph.D paper]. USA: The university of New Mexico, 2004
    [34] J. P. Hohimer, G. A. Vawter, D. C. Craft. Unidirectional operation in a semiconductor ring diode laser. Appl. Phys. Lett, 1993, 62(11) : 1185~1187
    [35] J. P. Hohimer, G. A. Vawter, D. C. Craft. Unidirectional semiconductor ring lasers with racetrack cavities. Appl. Phys. Lett, 1993, 63(18) : 2457~2459
    [36]江剑平.半导体激光器. (第一版).北京:电子工业出版社, 2000. 335~336
    [37] K. R. Hiremath. Couple mode theory based modeling and analysis of circylar optical microresonators: [Ph.D paper]. Holland: The university of Twente, 2005
    [38] Rsoft. Optical software. USA: www.rsotfdesign.com, 2005. 115~117
    [39] J. Haavisto, G. A. Pajer. Resonance effects in low-loss ring waveguides. Opt. Lett, 1980, 5(12) : 510~512
    [40] A. Mahauatra, W. C. Robinson. Integrated-optic ring resonators made by proton exchange in lithium nioba. Appl. Opt, 1985, 24(5) : 2285~2286
    [41]陈丽梅.玻璃基微环谐振器的设计与制作: [硕士学位论文].杭州:浙江大学, 2007
    [42] John Heebner, Rohit Grover, Tarek A. Lbrahim. Optical microresonators: theory, fabrication, and applications. Springer, 2008. 225~235
    [43] S. Adachi. Material parameters of In1-x GaxAsy P1-y and related binaries. Journal of Applied Physics, 1982, 53(11) : 8775~8792
    [44] S. Adachi. Properties of Aluminium Gallium Arsenide: [Ph.D paper]. UK: Institution of Engineering and Technology, 1993
    [45] S. Adachi. Refractive indices of III–V compounds Key properties of InGaAsP relevant to device design. J. Applied Physics, 1982, 53(8): 5863~5869
    [46] R. J. Deri, M. A. Emanuel. Consistent formula for the refractive index of AlxGa1-xAs below the band edge. J. Applied Physics, 1995, 77(9): 4667~4672
    [47] M. V. Sullivan, G. A. Kolb. The chemical polishing of gallium arsenide in bromine-methanol. Journal of the Electrochemical Society, 1963, 110(6): 585~587
    [48] H. Fourre, F. Diette, A. Cappy. Selective wet etching of lattice-matched InGaAs/ InAlAs on InP and metamorphic InGaAs/InAlAs on GaAs using succinic acid/ hydrogen peroxide solution. Journal of Vacuum Science&Technology, 1996, 14(5): 3400~3402
    [49] R. Grover, T. A. Ibrahim, T. N. Ding, et al. Laterally coupled InP-based single-mode microracetrack notch filter. IEEE Photonics Technology Letters, 2003, 15(8): 1082~ 1084
    [50] R. Grover. Indium phosphide based optical micro-ring resonators: [Ph.D paper]. USA: Department of Electrical and Computer Engineering, University of Maryland, College Park, 2003
    [51] P. V. Studenkov, M. R. Gokhale, S. R. Forrest. Efficient coupling in integrated twin-waveguide lasers using waveguide tapers. IEEE Photonics technology letters, 1999, 11(9) : 1096~1098
    [52] Joo-Heon Ahn, Kwang Ryong Oh, Chan-Yong Park, et al. Fabrication of a high-performance InGaAsP/InP integrated laser with butt-coupled passive waveguides utilizing CH4/H2 reactive ion etching. Semiconductor Science Technology, 1998, 13(7) : 1205~1208
    [53] Su Hwan Oh, Chul-Wook Lee, Ji-Myon Lee, et al. The design and the fabrication of monolithically integrated GaInAsP MQW laser with butt-coupled waveguide. IEEE Photonics technology letters, 2003, 15(10) : 1339~1341

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700