TEA CO_2激光模式控制及光束传输特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高能激光是激光发展的重要方向之一,在工业加工,航天,国防等领域应用广泛。高能TEA CO2激光效率高,功率高,光束质量好,是高能激光研究的重要对象,最近国际上的热门研究领域激光推进,TEA CO2激光器被认为是最可选激光器。激光器光束模式是影响这种远距离传输应用的关键因素。本文主要针对TEA CO2激光器光束模式改进以及激光传输特性做了相关方面的工作。
     在总结了激光光束的评价方法的基础上,对实验室中不同结构谐振腔(平平腔,平凹腔,平面-角隅镜以及非稳腔)输出光束进行了测量和分析,发现M=4虚共焦非稳腔结构的高能量TEA CO2激光在单脉冲能量在12J,其衍射极限因子β在2~3之间,具有较好的光束质量。光束质量除了横模,谱线和纵模也是很重要的参数,而TEA CO2激光由于功率大,谐振腔长,所以一般为多纵模输出。我们用注入锁定的方法使激光器在横模和纵模匹配的条件下在一定概率下实现了单纵模运转。实验结果表明,在TEA CO2激光器注入锁定的情况下,TEA CO2激光器的输出激光脉冲宽度比自由运转时变宽,脉冲峰值功率降低,并且激光脉冲产生的时间提前。在实验室环境下进行了脉冲CO2激光束传输的初步实验,由于水气吸收和粉尘散射的影响,将脉冲激光传输至25m和50m,其传输效率为85%和55%,并对强激光在大气中的传播进行了理论上的分析,能比较好地解释实验结果。
     以上研究结果,为高品质TEA脉冲CO2激光器的研制和脉冲CO2激光束的远程应用作了初步的准备。
High energy laser is the most important area of laser technology and it has wide application on industry, aerospace, military and so on. TEA CO2 laser which is characterized by high efficiency, good beam quality and high average power takes an important position in high energy laser. It is considered as the most favorable laser for the application of laser propulsion which is increasingly studied recently. Beam mode is a key factor that has significant influence on this kind of energy transportation application. The thesis mainly focuses on the control of beam mode of TEA CO2 laser and its propagation characteristics.
     First, the methods how to evaluate the beam quality of high power laser were summarized. Then we calculated and measured different cavities in laboratory including plano-plano cavity, plano-concave cavity and unstable cavity, then we made theoretical analysis. Theβfactor of unstable cavity of TEA CO2 laser with M=4 is between 2~3, and with single pulse energy of 12 Joules. Besides transverse mode, spectrum and longitude of the beam are important parameters of a laser, however TEA CO2 laser usually has a long resonator, and work on multi longitudinal mode. Single longitudinal mode operation can be realized in locking injection with traverse and longitudinal matching. The experimental results show that under injection locking the pulse appeared in advance, the temporal of laser pulse prolongs, and its peak power lowers. And we did primary high power pulsed laser transition experiments, the pulsed energy propagated to 25m and 50m with energy efficiency of 85% and 55% in conditions of high humidity and powder, and theoretical analysis agreed with the experimental results.
     The above results are useful for studying high quality of high power pulsed CO2 laser and make primary preparation for its long range applications.
引文
[1] C. K. Patel. Continuous-wave laser action on vibrational-rational transitions of CO2. Phys. Rev, 1964, 136(5A): 1187~1193
    [2] J. A. Beulieu. Transversely excited atmosphere pressure CO2 laser. Phys. Lett, 1970, 16(12): 504~505
    [3] V. Yu. Baranov, S. A, Kazsakov, D. D. Malyuta, V. S. Mezhevov, A. P. Napartoich et al. Appl. Opt, 1980(19): 930~934
    [4] K. R. Rickwood and J. Mclnnes, Rev. Sci. Instrum, 1983(53): 1667
    [5] L. V. Carlson, J. P. Carpenter, et al. Helios: a 15 TW Carbon Dioxide laser-fusion facility. IEEE Journal of Quantum Electronics, 1981, QE-17(9): 662~678
    [6] C. Yamanaka, S. Nakai, M. Matoba, et al. The LEKKO VIII CO2 gas laser system. IEEE Journal of Quantum Electronics, 1981, QE-17(9): 1687~1688
    [7] G. Renz, M. Jung, W. Mayerhofer, et al. Pulsed CO2 laser with 15kW average power at 100Hz rep-rate, in XI International Symposium on Gas Flow and Chemical Lasers and High Power Laser Conference. H. J. Baker, ed. Proc. SPIE 3092, 1997: 114~117
    [8] L. N. Myrabo, et al. Laser-boosted light sail experiments with the 150 kW LHMEL II CO2 laser. SPIE, 2002, 4760: 774~798
    [9] S. G. Kazantsev. Development of transmission optics for high-power IR optics. Russian Physics Journal, 2001, 44(11): 1209~1223
    [10]蔡英时,楼棋洪,丁爱臻.重复脉冲光预电离TEA CO2激光器及其特性.激光, 1979, 6(2): 22~25
    [11] R. Ta, C. Wan, J. Qi, et al. A sequential discharge TEA CO2 laser with surface-wire-corona pre-ionization. Infrared Physics & Technology, 2000, 41: 139~142
    [12] Duluo Zuo, Hong Lu, and Zuhai Cheng. Studies on a 100-Joule-Class UV-Pre-ionized TEA CO2 Laser. Proc. SPIE, 2005(57): 442-445
    [13] I.M.Belousova et al Effect of atmospheric factors on the delivery of repetitively-pulsed CO2-laser radiation energy along paths in the surface layer of the atmosphere. The Optical Society of America, 1999, 66(11): 931~939
    [14]郑义军等.基于调谐TEA CO2激光推进的研究.激光杂志, 2006, 27(2): 22~24
    [15]翟冰洁.空气呼吸模式激光推荐原理研究:[硕士毕业论文].武汉:华中科技大学图书馆, 2006
    [16]王骐,李琦,尚铁梁.激光推进原理与发展状况.激光与红外, 2003
    [17]李小芬. TEA CO2激光器放电特性及电源系统研究:[硕士毕业论文].武汉:华中科技大学图书馆, 2006
    [18]李适民,黄维玲.激光器件原理与设计,第二版.国防工业出版社, 2005: 71~74, 99~101
    [19]杨克成.激光原理与技术(原理部分),华中理工大学激光教研室, 1995, 129~131
    [20]吕百达.激光光学. (第三版).高等教育出版社, 2005
    [21]吴谨.等平均功率脉冲TEA CO2激光器输出光束质量评价.中国激光, 1999, 26(7): 589~592
    [22]谭荣清,万重怡等.高重复频率可调谐TEA CO2激光研究.中国激光, 2005, 32(6): 739~742
    [23]徐华乐,伊景荣,蔡英时.非稳腔TEA CO2激光器注入锁定的试验研究.中国激光, 1986, 13(1): 687~690
    [24]郭建强,兰信距.利用腔倒空注入锁定非稳腔激光器的研究云南工学院学报1990, 1: 165~169
    [25] J. A. Weiss and L. S. Goldberg, Single longitudinal mode operation of transversely excited CO2 laser by means of saturable absorbers, Applied Phys. Lett, 1971
    [26] J. Lachambrc et al. Injection Locking and Mode Selection in TEA CO2 Laser Oscillators. IEEE,1976
    [27]吴谨.高功率TEA CO2激光器的调谐理论研究. [博士学位研究生学位论文].武汉:华中科技大学图书馆, 2004
    [28]安然,谭荣清等.光栅调谐TEA CO2激光器谐振腔自动调整系统.激光与红外, 2007, 37(2): 124~127
    [29]张欣,张韬等.注入锁定掺饵环形腔激光器及波长调谐技术.半导体学报, 2007, 28(2): 257~264
    [30] C. J. Buczek, R.J. Freiberg. Laser injection locking. Proc.IEEE,1973,61:1411
    [31] D. P. Hutchinsom and K. L. Vander Sluis. Injection locking and mode selection in TEA CO2 laser. Applied Optics. 1977, 16(2): 193~294
    [32] J. R. Izatt, C. J. Budhiraja, and P. Mathier. Single-mode TEA CO2 injection laser IEEE J. Quantum Electron, 1977: 396~398
    [33] G. Megie and R. T. Menzies. Tunable single-longitudinal-mode operation of an injection-locked TEA C02 laser. Appl. Phys. Lett. 1979, 35: 835~838
    [34] P. A. Baklanger, R. Tremblay, and P. Lapierre. Injection mode locking of a 200 Joule TEA-C02 laser. Opt. Commun. 1978, 26(2): 256~260
    [35] V. V. Apollonov, P. B. Corkum, R. S. Taylor, A. J. Alcock, and H. A. Baldis. 20-J nanosecond-pulse CO2 laser system based on an injection-mode-locked oscillator. Opt. Lett. 1980, 5: 333~335
    [36] L. R Botha , E. G. Rohwer. Modeling of injection seeding of a pulsed high pressure CO2 laser. Proc S PI E , 2001 , 4184 : 311~314
    [37]张巨权,过已吉等.重复率TEA CO2激光器注入锁定的实验研究.西安电子科技大学学报, 1990, 17(2): 99~103
    [38]詹玉书,过已吉等.小型TEA CO2激光器的锁定技术研究.电子科技杂志, 1996, (3): 31~36
    [39]叶东来,林太基.连续注入式TEA CO2激光器允许失谐频率特性分析.中国激光, 1989, 16(9): 553~555
    [40]过巳吉,詹玉书,王立军.注入锁定TEA CO2激光器激光脉冲特性分析.光子学报, 1995 , 24 (4) : 331~335
    [41] A. L. Buck. Effects of the Atmosphere on Laser Beam Propagation APPLIED OPTICS, 1976, 6(6): 703
    [42] L. R. Botha, E. G. Rohwer. Modeling of injection seeding of a pulsed high pressure CO2 laser. Proc.SPIE, 2001, 4184 : 311~314
    [43] J. Wallace and M. Camac, Effects of Absorption at 10.6μm on Laser-Beam Transmission Journal of the Optical Society of America, 1970, 60(12): 1587~1592
    [44] Turbulence effects on high energy laser beam propagation in the atmosphere Raphael Z. Yahel, APPLIED OPTICS, 1990, 29(21): 3088
    [45]成都电讯工程学院.激光大气通信组. 10.6微米CO2激光大气传输和通信的研究.中国激光, 1976
    [46]季小玲.高功率畸变激光的传输特性和光束控制研究:[博士论文].武汉:华中科技大学图书馆, 2004
    [47]冯晓星,范承玉等.聚焦脉冲激光大气传输热晕效应的数值分析.推进技术, 2007, 28(5): 576~580
    [48] Frederick G. Gebhardt. High power laser propagation. APPLIED OPTICS, 1976, 15(6):1479~1490
    [49]彭健,赵伊君.激光的大气传输问题研究.国防科技大学学报, 1990
    [50]吴际华,孙峰仪等.大气其他溶胶对10.6μm激光衰减的实验研究.光学学报, 1983(6)
    [51]龚知本.激光大气传输研究若干问题进展.量子电子学报, 1998, 15(9): 114~134
    [52]辜建辉,郭振华等,连续波强激光传输的研究.华中理工大学学报, 1994, 22(12): 134~138
    [53]郝作强,张杰.超短脉冲强激光在空气中的传输.前沿进展, 2004, 33(10): 741~748

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700