葡萄籽中化学成分的抗氧化作用及对DNA损伤的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄籽中化学成分是一类多酚类化合物,具有明显的抗氧化作用,与其众多的药理作用相关。本论文应用体外脂质过氧化实验方法和单细胞凝胶电泳技术,重点考察了其对氧化应激引起的脂质和DNA损伤的保护作用,以期阐明其抗氧化作用的可能机理。
     体外脂质过氧化实验结果表明:葡萄籽中的化学成分白藜芦醇、原花青素、儿茶素及其低聚体和高聚体、以及单体酚、多酚类化合物(1.0,10.0mg/L),在给药后30、60、90、120、180和240min均可以明显抑制大鼠肝脏脂质过氧化物的生成。其中白藜芦醇、原花青素和儿茶素低聚体的作用强度较高,半数抑制浓度(IC_(50))较小。也可以显著抑制由Fe~(2+)/H_2O_2反应系统产生羟自由基激发的大鼠肝脏脂质过氧化物的生成。
     单细胞凝胶电泳实验表明:单独给予白藜芦醇和原花青素(5,50mg/kg,i. p.)对小鼠外周血液淋巴细胞DNA无明显影响。腹腔注射重铬酸钾(10,20,30,40mg/kg)20min,可以造成小鼠外周血液淋巴细胞DNA明显损伤。白藜芦醇和原花青素(5,50mg/kg,i.p.)显著抑制重铬酸钾(20mg/kg,i.p.)引起的外周血液淋巴细胞和肝细胞DNA损伤。急性乙醇(0.5,1.0,2.0,4.0g/kg,i.p.)对DNA有明显的损伤作用。乙醇(2.0g/kg,i.p.)给药后,其DNA损伤作用在20min时最强,180min时基本恢复。给予白藜芦醇和原花青素(5,50mg/kg,i.p.)可以明显减轻乙醇(2.0g/kg,i.p.,20min)对小鼠外周血液淋巴
    
     沈阳药科大学硕士学位论文 中文摘要
    细胞和肝细胞的DNA损伤作用。
     抗“SARS”方剂*、Ill、IV(l门临床等效量* 床等效量和3倍临床
    等效量X 3d,po.)对小鼠外周血液淋巴细胞 DNA无明显影响。而方剂 I、V、
    VI*门临床等效量* 床等效量和 3倍临床等效量X3d,po.)对小鼠外周血
    液淋巴细胞DNA有明显损伤。给予白蓉芦醇O,100,200 m吵gX3d,po.)
    和维生素C*0,100。200mg/kgX3d,p.o)可以明显减轻方剂1和VI(临床等
    效量 X 3人 p.o)造成的损伤,并有良好的剂量依赖性。
     综上所述,葡萄籽中化学成分具有良好的抗脂质过氧化活性和对药物致
    细胞DNA损伤的抑制作用。
The constituents in grape seeds are mainly polyphenolic compounds with significant antioxidative activities, which are involved in many pharmacological effects. In the present studies, the effects of the constituents in grape seeds on lipid peroxidation, by estimating MDA formation, and on DNA damage induced by oxidative stress, by using single cell gel electrophoresis assay (SCGE), were investigated.
    It was shown that the constituents in grape seeds including resveratrol, proanthocyanidins, catechins and its polymers, monophenols and polyphenols (1.0, 10.0 mg/L), could significantly inhibit the formation of LPO in rat liver homogenate m vitro. Resveratrol, proanthocyanidins and the low-polymers of catechin had more significant effects and the lower IC50 than others. Furthermore, all constituents could inhibit the formation of LPO in rat liver homogenate induced by hydroxyl radical in Fenton system (Fe2+/H2O2) in vitro.
    The results of SCGE were shown that resverstrol and proanthocyanidins (5, 50 mg/kg, i.p.), given alone, had no significant effect on mouse lymphocyte DNA. Potassium dichromate (10, 20, 30, and 40 mg/kg, i.p.) could induce a siginificant DNA damage in mouse lymphocyte 20 minutes after injection. Resveratrol and proanthocyanidins, at the dose of 5 and 50 mg/kg (i.p.), significantly inhibited the DNA damage induced by potassium dichromate (20 mg/kg, i.p.) in mouse lymphocytes and hepatocytes. Moreover, acute ethanol (2.0 g/kg, i.p.) induced lymphocyte DNA damage, which was maximal at 20 min after administration. The DNA damage almost recovered at 180 min.
    
    
    
    Resveratrol and proanthocyanidins (5 and 50 mg/kg, i.p.) showed the obviously inhibiting effects on the DNA damage in mouse lymphocytes and hepatocytes induced by acute ethanol administration (2.0 g/kg, i.p., 20 min).
    The anti-SARS prescription II, III, and IV recommended by Chinese Ministry of Health, at the doses of 1/3,1 and 3 times of the clinical dose (3 days, P.O.), had no significant effect on DNA in mouse lymphocytes. However, the prescription I, V, and VI (also 1/3, 1, and 3 tunes of the clinical dose, 3 days, p.o.) showed the obviously harmful effects on mouse lymphocyte DNA. Resveratrol (50, 100, and 200 mg/kg, 3 days, p.o.) and vitamin C (50, 100, and 200 mg/kg, 3 days, p.o.) could dose-dependently restore the DNA damage induced by prescription I and VI (clinical dose, 3 days, p.o.).
    In conclusion, these results gave the further evidence that the constituents in grape seed had good activities of anti-LPO formation and firstly demonstrated that these compounds protected cellular DNA damage induced by the noxious substances.
引文
[1] Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. J Biochem 1995, 313:17-29.
    [2] Abuja PM, Albertini R. Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clinica Chimica Acta 2001, 306:1-17.
    [3] Bagchi D, Bagchi M, Stohs SJ, et al. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology 2000, 148(2-3): 187-197.
    [4] Bagchi D, Garg A, Krohn RL, et al. Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro. Res Commun Mol Pathol Pharmacol 1997, 95(2): 179-189.
    [5] Bagchi D, Ray SD, Patel D, et al. Protection agsinst drug- and chemical-induced multiorgan toxicity by a novel IH 636 grape seed proanthocyanidins extract. Drugs Exp Clin Res 2001, 27(1): 3-15.
    [6] Castillo J, Benavente-Garcia O, Lorente J, et al. Antioxidant activity and radioprotective effects against chromosomal damage induced in vivo by X-ray of flavan-3-ols (Procyanidins) from grape seeds (Vitis vinifera): comparative study versus other phenolic and organic compounds. J Agric Food Chem 2000, 48(5): 1738-1745.
    [7] Fauconneau B, Waffo-Teguo P, Huguet F, et al. Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vivifera cell cultures using in vitro tests. Life Sci 1997, 61(21): 2103-2110.
    [8] Fremont L, Belguendouz L, Delpal S. Antioxidant activity of resveratrol and alcohol-free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids. Life Sci
    
    1999, 64(26): 2511-2521.
    [9] Roig R, Cascon E, Arola L, et al. Moderate red wine consumption protects the rat against oxidation in vivo. Life Sci 1999, 64(17): 1517-1524.
    [10] Yamaguchi F, Yoshimura Y, Nakazawa H, et al. Free radical scavenging activity of grape seed extract and antioxidants by electron spin resonance spectrometry in an H2O2/NaOH/DMSO system. J Agric Food Chem 1999, 47(7): 2544-2548.
    [11] Zhao J, Wang J, Chen Y, et al. Anti-tumor-promoting activity of a polyphenolic fraction isolated from grape seeds in the mouse skin two-stage initiation-promotion protocol and identification of procyanidin B5-3'-gallate as the most effective antioxidant constituent. Carcinogenesis 1999, 20(9): 1737-1745.
    [12] Salah N, Miller NJ, Paganga G, et al. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breakinng antioxidants. Arch Biochem Biophys 1995, 322(2): 339-346.
    [13] Bagchi M, Balmoori J, Bagchi D, et al. Smokeless tobacco, oxidative stress, apoptosis, and antioxidants in human oral kerationcytes. Free Radio Biol Meal 1999, 26(7-8): 992-1000.
    [14] Chanvitayapongs S, Draczynka-Lusiak B, Sun AY. Amelioration of oxidative stress by antioxidants and resveratrol in PC12 cells. Neuroreport, 1997, 8(6): 1499-1502.
    [15] Wong WS, McLean AE. Effects of phenolic antioxidants and fiavonoids on DNA synthesis in rat liver, spleen and testis in vitro. Toxicology 1999, 139(3): 243-253.
    [16] Shi X, Ye J, Leonard SS, et al. Antioxidant properties of (-)-epicatechin-3-gallate and its inhibition of Cr (Ⅵ)-induced DNA damage and Cr (Ⅵ)- or TPA-stimulated NF-kappaB activation. Mol Cell Biochem, 2000, 206(1-2): 125-132.
    [17] Yang GY, Liao J, Li C, et al. Effect of black and green tea polyphenols on c-jun phosphorylation and H_2O_2 production in transformed and non-transformed human
    
    bronchial cell lines: possible mechanism of cell growth inhibition and apoptosis induction. Carcinogenesis 2000, 21 (11): 2035-2039.
    [18] Shen HM. Mutations of the P53 tumor suppressor gene and ras oncogenes in aflatoxin hepatocarcinogenesis. Mut Res, 1996, 366: 23-27.
    [19] Bruner SD, Norman DPG, Verdine GL. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 2000, 403: 859-866.
    [20] Cooke MS, Lunec J, Evans MD. Progress in the analysis of urinary oxidative DNA damage. Free Radic Biol Med 2002, 33(12): 1601-1614.
    [21] Stecca C, Gerber GB. Adaptive response to DNA-damaging agents. Biochem Pharmacol 1998, 55: 941-951.
    [22] 张洪泉,余文新主编.中华抗衰老医学.科学出版社87-91.
    [23] Ueno SJ, Kashimono T, Susa N, et al. Decetion of Dichromate (Ⅵ)-induced DNA Strand Breaks and Formation of Paramagnetic Chromium in Multiple Mouse Organs. Toxicol Appl Pharmacol 2001, 170: 56-62.
    [24] Luo H, Lu Y, Shi X, et al. Chromium (Ⅵ)-mediated fenton-like reaction causes DNA damage: implication to genotoxicity of chromate. Ann Clin Lab Sci 1996, 26(2): 185-191.
    [25] Tsou TC, Chen CL, Liu TY, et al. Induction of 8-hydroxydeoxyguanosine in DNA by chromium (Ⅲ) plus hydrogen peroxide and its prevention by scavengers. Carcinogenesis 1996, 17(1): 103-108.
    [26] Fanx SP, Gao M, Chipman JK, et al. Production of 8-hydroxydeoxyguanosine in isolated DNA by chromium (Ⅵ) and chromium (Ⅴ). Carcinogenesis 1992, 13(9): 1667-1669.
    [27] Zhitkovich A, Voitkun V, Costa M. Glutathione and free amino acids from stable complexes with DNA following exposure of intact mammalian cells to chromate. Carcinogenesis 1995, 16(4): 907-913.
    
    
    [28] Higuchi H, Kurose I, Kato S, et al. Ethanol-induced apoptosis and oxidative stress in hepatocytes. Alohol Clin Exp Res 1996, 20(suppl): 340A-6A.
    [29] Nordmann R, Ribiere C, Rouaeh H. Ethanol-induced lipid peroxidation and oxidative stress in extrahepatic tissues. Alcohol 1990, 25(2-3): 231-237.
    [30] Cederbaum AI, Dicker E. Inhibition of microsomal oxidation of alcohols and of hydroxyl-radical scavenging agents by the iron-chelating agent desferrioxamine. Biochem J 1983, 210: 107-113.
    [31] Diluzio NR. Prevention of the acute ethanol-induced fatty liver by the simultaneous administration of antioxidants. Life Sci 1964, 3: 113-118
    [32] Reddy SK, Husain K, Schlorff EC, et al. Dose response of ethanol ingestion on antioxidant defense system in rat brain subcellular fractions. Neurotoxicology 1999, 20: 977-987.
    [33] Huang M, Liu W, Li Q, et al, Endogenous released ascorbic acid suppressses ethanol-induced hydroxyl radical generation in rat striatum. Brain Res 2002, 944(1-2): 90-96.
    [34] Deitrich RA, Dunwiddie TV, Harris R, et al. Mechanism of action of ethanol: inhitial central nervous system actions. Pharmac Rev 1989, 41(4): 489-537
    [35] Fairbairn DW, Olive PL, O'Neill KL. The comet assay: a comprehensive review. Mutat Res 1995, 339: 37-59.
    [36] Sasaki YF, Nishidat e E, Izumiyama F, et al. Simple detection of chemical mutagens by the alkaline single-cell gel electrophoresis (comet) assay in multiple mouse organs (liver, lung, spleen, kidney, and bone marrow). Muta Res 1997, 391:215-231.
    [37] Mckelvey-Martin VJ, Green MHL, Schmezer P, et al. The single cell gel electrophoresis assay (comet assay):A European review. Mutat Res 1993,287:1-17.
    [38] Vijayalaxmi, Tice RR, Strauss GHS. Assessment of radiation-induced DNA damage in
    
    human blood lymphocytes using the single cell gel electroohoresis technique. Mutat Res 1992, 271: 243-252.
    [39] 陈奇主编,中药药理实验方法学.北京,人民卫生出版社.1994:191-192.
    [40] 李宝山,孙福祥,巴根那等.蒙药嘎日迪-13 清除和抑制自由基的实验研究.内蒙古医学杂志1998,30(4):203-205.
    [41] Agil A, Fuller CJ, Jialal I. Susceptibility of Plasma to Ferrous Iron/Hydrogen Peroxide-Mediated Oxidation:Demonstration of a Possible Fenton Reaction. Clin Chem, 1995, 41(2): 220-225.
    [42] 安文林,李林,朴景华等.单细胞凝胶电泳技术分析过氧化氢对大鼠外周血淋巴细胞DNA的损伤作用.中国老年学杂志 2000,5(20):296-299.
    [43] Joseph TC and Pamela P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993, 262: 689-695.
    [44] Plumb GW, De Pascual-Teresa S, Santos-Buelga C, et al. Antioxidant properties of catechins and proanthocyanidins: effect of polymerization, galloylation and glycosylation. Free Radic Res 1998, 29(4): 351-358.
    [45] Fremont L. Biological effects ofresveratrol. Life Sci 2000, 66(8): 663-673.
    [46] Burkitt MJ, Duncan J. Effects of trans-resveratrol on copper-dependent hydroxyl radical formation and DNA damage: evidence for hydroxyl radical scavenging and a novel, glutathione-sparing mechanism of action. Arch Biochem Biophys 2000, 381(2): 253-263.
    [47] Tadolini B, Juliano C, Piu L, et al. Resveratrol inhibition of lipid peroxidation. Free Radic Res 2000, 33(1): 105-114.
    [48] Yang B, Kotani A, Arai K, et al. Relationship of electrochemical oxidation of catechins on their antioxidant activity in microsomal lipid peroxidation. Chem Pharm Bull (Tokyo) 2001, 49(6): 747-751.
    [49] Bouhamidi R, Prevost V, Nouvelot A. High protection by grape seed proanthocyanidins
    
    (GSPC) of polyunsaturated fatty acids against UV-C induced peroxidation. C R Acad SciⅢ1998, 321(1): 31-38.
    [50] 童平,张振涛.虎杖中白藜芦醇甙对脂质过氧化的抑制作用.1991,26(6):363.
    [51] 陈嫒,周玫.自由基医学.北京:人民军医出版社1991:18-21.
    [52] 刘翔,刘世杰.重铬酸钾和氧化还原物质反应致质粒DNA断链.中华预防医学杂志1999,33(6):354-356.
    [53] 余日安,陈学敏,鲁文清.硒对大鼠肝细胞DNA损伤的体内体外研究.同济医科大学学报2000,29(3):212-214.
    [54] 李达圣,Morimoto K,Takeshita T等.砷对人淋巴细胞DNA损伤的作用.中华预防医学杂志2002,36(1):12-15.
    [55] 刘晓梅,孙志伟,石龙.甲基汞致小鼠肝细胞DNA的损伤.中华预防医学杂志 2002,36(1):5-7.
    [56] WHO. Environmental Health Criterial 61: Chromum. Geneva: World Health Organization 1988, 91
    [57] Baisch H, Bollmann S. Degradation of apoptotic cells and fragment in HL-60 suspension cultures after induction of apoptosis by camptothecin and ethanol. Cell Prolif 1999, 3: 303-319.
    [58] Kurose I, Higuchi H, Miura S, et al. Oxidative stress-mediated apoptpsis of hepatoccytes exposed to acute ethanol intoxication. Hepatology 1997, 25(2): 368-378.
    [59] Mantle D, Preddy VR. Free radical as mediators of alcohol toxicity. Adverse Drug React Toxicol Rev 1999, 18: 235-252.
    [60] Ross AD, Varghese G, Oporto B, et al. Effect of propylthiouracil treatment on NADPH-cytochrome P450 reductase levels, oxygen consumption and hydroxyl radical formation in liver microsomes from rats fed ethanol or acetone chronically. Biochem Pharmacol 1995, 49(7): 979-989.
    
    
    [61] Kukielka E, Cederbaum AI. DNA strand cleavage as a sensitive assay for the production of hydroxyl radicals by microsomes: role of cytochrome P4502E1 in the increased activity after ethanol treatment. Biochem J. 1994, 302(3): 773-779.
    [62] Vallett M, Tabatabaie T, Briscoe R J, et al. Free radical production during ethanol intoxication, dependence, and withdrawal. Alcohol Clin Exp Res 1997, 21 (2): 275-285.
    [63] 周君富,杜雨红,王也玲等.滥用酒精与抗氧化剂和抗氧化酶的关系.中华预防医学杂志1998.32(5):303-305.
    [64] Win W, Cao Z, Peng X, et al. Different effects of genistein and resveratrol on oxidative DNA damage in vitro. Mutat Res 2002, 513(1-2): 113-120.
    [65] Russo A, Acquaviva R, Campisi A, et al. Bioflavonoids as antiradicals, antioxidants and DNA cleavage protectors. Cell Biol Toxicol 2000, 16(2): 91-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700