拉曼散射技术在单细胞检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞是生命体的结构和生命活动的基本单位。早在1925年,生物学大师Wilson就提出:“一切生命的关键问题都要到细胞中去寻找。”生命体的生长发育是依靠细胞增殖、细胞分化与细胞凋亡来实现的。一切疾病的发病机制也要以细胞病变研究为基础。口腔鳞状细胞癌是一种高转移性口腔癌,其发病率占世界恶性肿瘤第六位,复发率高,患者生存率低,对其治疗至今仍缺乏十分有效的手段。肿瘤转移是口腔鳞癌导致患者死亡的重要原因。早期发现和阻断肿瘤的发生发展以及浸润转移是预防与治疗肿瘤的关键所在。传统的细胞生物学方法包括Western Blot,酶联免疫组化(ELISA)和免疫细胞化学(IC)等等,这些技术大多需要复杂的样品前处理,如细胞固定,成分提取和染色等。它们存在侵入性、耗时以及假阳/阴性结果等缺点,无法实时、原位地获得细胞内物质结构的具体信息。
     拉曼光谱是基于光子激发振动而发生非弹性散射而建立起来的一种无损光谱技术,具有指纹识别特征,能从分子水平获得物质的结构及组成信息。而且,表面增强拉曼光谱(SERS)技术的发展极大地提高了检测分析的灵敏度,甚至能够实现单分子检测。与红外、荧光等其他光谱手段相比,它还具有不受水干扰、不易淬灭、可用红光激发、光谱带宽窄等优点,因此非常适合于生物体系,特别是在单个活细胞的研究。
     基于以上,本论文展开了相关研究,其主要内容如下:
     1、采用共聚焦显微拉曼对正常以及癌细胞/组织的生物组成进行研究
     通过采集正常和鳞癌组织、正常和鳞癌细胞的拉曼光谱,对比研究正常和癌变组的光谱差异,进而追踪它们生物组成的变化,并尝试寻找其与病理学相符的致病机理,最后采用主成分分析法对光谱数据进行的归类,为拉曼光谱走进临床奠定基础。
     2、一氧化氮刺激细胞过程的拉曼光谱研究
     采用血管扩张药物硝普钠作为一氧化氮的供应源,通过调节培养液中硝普钠的浓度来控制一氧化氮的浓度,研究一氧化氮刺激癌细胞的作用过程。通过采集不同浓度一氧化氮刺激的细胞的拉曼光谱,研究细胞内各种成分含量和构型的变化情况,并且比较拉曼光谱与传统的流式细胞技术在研究细胞与药物作用上的差别。另外,在培养环境中一氧化氮浓度不变的情况下,研究一氧化氮刺激细胞作用的动力学过程。研究结果显示拉曼光谱是一种可靠、快速、无标记和灵敏的检测手段,有望用于检测新型药物的快速筛选。
     3、膜靶向探针的制备及细胞成像的研究
     首先制备稳定的金纳米粒子,然后通过静电吸附作用将膜抗体(表皮生长因子受体抗体,anti-Epidermal Growth Factor Receptor antibody, EGFR)与金纳米粒子连接,使SERS探针具备细胞膜靶向功能,然后将其与鳞癌细胞(TCA8113)共培养,金纳米粒子在EGFR抗体的帮助下靶向吸附于细胞膜的某些特异位点,采用拉曼成像技术对细胞进行表征,不仅获取了信号分子的SERS光谱,而且还得到细胞膜上蛋白质、脂类、氨基酸等生物分子的振动信息,该SERS探针有望用于药物进入细胞过程的监控以及细胞膜蛋白运输机制的研究。
     4、核靶向探针的制备及细胞成像的研究
     首先制备稳定的金纳米粒子,然后通过化学偶联法将核定位肽(SV-40Large T NLS peptide)与金纳米粒子连接,使SERS探针具备细胞核靶向功能,然后将其与鳞癌细胞共培养,金纳米粒子在NLS(?)太的帮助下靶向在细胞核的某些特异性位点上,采用拉曼成像技术此过程进行表征,光谱成像照片显示SERS探针具有高灵敏性和稳定性。另外,将“膜”与“核”靶向SERS探针与鳞癌细胞进行共培养,首次实现了单个活细胞内不同亚细胞结构的同时靶向成像,有望为细胞信号转导研究和抗癌药物机理的探讨提供一种多靶向成像技术。
Cell is the fundamental unite of life activity and structure in the living body. Early in1925, Wilson, the famous biologist, had proposed:"All of the key problems in the life have to resort to cell." Growth and development of living body rely on proliferation, differentiation and apoptosis of cell. Almost all diseases are caused by the pathologic change of cell. Oral squamous cell carcinoma (OSCC) is a kind of oral cancer with low survival rate, high metastatic and recurrence rate. OSCC ranks the sixth in the world cancer incidence. Up to now, no treatment has shown efficacy. Metastasis is an important reason which leads to the death of OSCC patient. Early detection and blocking of tumor genesis, progenesis, invasion and metastasis is critical for the prevention and treatment of OSCC. Conventional methods of cell biology include Western blot, enzyme-linked immunosorbent assay (ELISA), immunocytochemistry (IC), etc. Most of the techniques require numerous preparation steps, such as cell fixation, extraction or staining. They have many disadvantages such as invasive, time consuming, as well as false positive/negative, and can not get specific structure information of biological composition in cells by real-time and in situ.
     Raman spectroscopy, which is based on inelastic scattering of laser photons by molecular vibrations of biopolymers, is a quantitative and non-destructive optical technique that is capable of acquiring "fingerprint" information derived from the biochemical composition of cells at molecular leval. Moreover, the development of surface enhanced Raman spectroscopy (SERS) greatly improves the sensitivity of detection and analysis. Compared with infrared and fluorescent spectroscopy, Raman spectroscopy has advantages of low aqueous interference, unease to quench, can be excited with red laser, and narrow spectral band width, which make it very suitable for the research in biological system, especially for the study of single living cell.
     Based on all of this, the paper set to study. The main contents are listed as follow:
     1. Investaged normal and malignant tissues/cells by confocal Raman spectroscopy. After acquiring Raman spectroscopy of normal and malignant tissues/cells, spectral difference was obtained, from which the biological composition changes were seeked out, and finally principal component analysis (PCA) was employed to classify the Raman data into normal and malignant groups. The research has laid a foundation for the clinical application of Raman spectroscopy.
     2. Monitored nitric oxide stimulus response of single cancer cell by Raman spectroscopy. Sodium nitroprusside (SNP) was chosed as a NO source. The amount of NO could be controlled by adjusting the SNP concentration in culture solution. TCA8113cells were firstly treated with the indicated concentration of SNP for certain time intervals in incubator, and then Raman spectroscopy was obtained from the cells. Content and structure changes of biological components in cells were observed after NO stimulas. Raman spectral analysis was compared with flow cytometric analysis in the study of NO stimlulus reponse. In addition, kinetic study was carried out to analyze the NO stimulus process. Research results indicated that Raman spectroscopy is a reliable, fast, label-free, and sensitive detection method, and it could potentially be used in rapid screening of novel drugs.
     3. Synthesis of a novel membrane-targeted SERS nanoprobe and its application in cell imaging were presented. At first, highly stable gold nanoparticle with diameter of40nm was synthesized, and then it was linked with EGFR antibody by electrostatic adsorption. After incubating the SERS nanoprobe with TCA8113cells, gold nanoparticles were specifically targeted on the cell membrane with the aid of EGFR antibody. Raman mapping technique was employed to characterize the cells, and the results demonstrated the SERS nanoprobe is of high sensitivity and stability. It will be significant for the establishment of multi-targeted, highly sensitive, in situ and in vivo SERS nanoprobe.
     4. Synthesis of a novel nuclear-targeted SERS nanoprobe and its application in cell imaging were presented. At first, highly stable gold nanoparticle with diameter of20nm was synthesized, and then it was conjugated with SV-40large T nuclear localization signal (NLS) peptide by chemical coupled reaction. After incubating the SERS nanoprobe with TCA8113cells, gold nanoparticles were specifically targeted on the cell nuclear with the aid of NLS peptide. Raman mapping technique was employed to characterize the nuclear-targeted process, and the results demonstrated the SERS nanoprobe is of high sensitivity and stability. In addition, simultaneously targeted detection of different subcellular structure was realized for the first time by incubating both the membrane-and the nuclear-targeted SERS nanoprobe with TCA8113cells. It will provide an effective analysis method for the research of cell signal transduction and anticancer mechanism of novel drugs.
引文
[1]Kragh, H. Quantum Generations:A history of Physics in the twentieth century. Princeton University Press.1999, p.68
    [2]Compton, H. A quantum theory of the scattering of X-rays by light elements. Physical Review.1923,21,483-502.
    [3]朱自莹,顾仁敖,陆天虹,拉曼光谱在化学中的应用,1998,东北大学出版社,沈阳。
    [4]Raman, C. V., Krishnan, K. S. A new type of secondary radiation. Nature.1928,121, 501-502.
    [5]Wood, R. W. Wavelength shifts in scattered light. Nature.1928,122,349.
    [6]吴征铠,唐敖庆,分子光谱学专论,1999,山东科学技术出版社,济南。
    [7]Mizutani, Y., Kitagawa, T. Ultrafast dynamics of myoglobin probed by time-resolved resonance Raman spectroscopy. Chemical Record.2001,1,258-275.
    [8]Ma, C. S., Zuo, P., Kwok, W. M., Chan, W. S., Kan, J. T. M., Toy, P. H., Phillips, D. L. Time-resolved resonance Raman study of the triplet states of p-hydroxyacetophenone and the p-hydroxyphenacyl diethyl phosphate phototrigger compound. Journal of Organic Chemistry.2004,69,6641-6657.
    [9]Sahoo, S. K., Umapathy, S., Parker, A. W. Time-resolved resonance Raman spectroscopy: exploring reactive intermediates. Applied Spectroscopy.2011,65,1087-1115.
    [10]Atkinson, G. H. Advances in infrared and Raman spectroscopy. Clark, R. J. H. and Hester R. E. (Eds.) Heyden and Sons Ltd., Philadelphia.1982,9, p 1.
    [11]Pappas, D., Smith, B. W., Winefordner, J. D. Raman spectroscopy in bioanalysis. Talanta. 2000,51,131-144.
    [12]Adar, F. Evolution and revolution of Raman instrumentation-applications of available technologies to spectroscopy and microscopy, in Handbook of Raman spectroscopy (Lewis, I. R., and Edwards, H. G. M., Eds.) 2001, pp 11-14, Marcel Dekker, New York.
    [13]Fleischmann, M., Hendra, P. J., McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters.1974,26,163-166.
    [14]Jeanmaire, D. L., van Duyne, R. P. Surface Raman spectroelectrochemistry. Part Ⅰ: Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry.1977,84,1-20.
    [15]Albrecht, M. G., Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society.1977,99,5215-5217.
    [16]Nie, S., Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science.1997,275,1102-1106.
    [17]Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R., and Feld, M. S. Ultrasensitive chemical analysis by Raman spectroscopy. Chemical Reviews.1999,99,2957-2976.
    [18]Long, D. A. The Raman effect-A unified treatment of the theory of Raman scattering by molecules 2001, John Wiley & Sons.
    [19]Shen, A. G., Liao, Z. X., Wang, H., Goan, L., Wu, Y., Wang, X. H., Yu, Z. Y., Hu, J. M. Study on the in vitro and in vivo activation of rat hepatic stellate cells by Raman spectroscopy. Journal of Biomedical Optics.2007,12,034003.
    [20]Chan, J. W., Taylor, D. S., Lane, S. M., Zwerdling, T., Tuscano, J., Huser, T. Nondestructive Identification of Individual Leukemia Cells by Laser Trapping Raman Spectroscopy. Analytical Chemistry.2008,80,2180-2187.
    [21]Bakker Schut, T. C., Puppels, G. J., Kraan, Y. M., Greve, J., van de Maas, L. L., Figdor, C. G. Intracellular Carotenoid Levels Measured by Raman Microspectroscopy:Comparison of Lymphocytes from Lung Cancer Patients and Healthy Individuals. International Journal of Cancer.1997,74,20-25.
    [22]de Luca, A. C., Rusciano, G., Ciancia, R., Martinelli, V., Pesce, G., Rotoli, B., Selvaggi, L., Sasso, A. Spectroscopical and Mechanical Characterization of Normal and Thalassemic Red Blood Cells by Raman Tweezers. Optics Express.2008,16,7943-7957.
    [23]Eriksson, E., Scrimgeour, J., Graneli, A., Ramser, K., Wellander, R., Enger, J., Hanstrop, D., Goksor, M. Optical Manipulation and Microfluidics for Studies of Single Cell Dynamics. Journal of Optics A-pure and applied optics.2007,9, S113-S121.
    [24]Wood, B. R., Tait, B., McNaughton, D. Micro-Raman Characterisation of the R to T State Transition of Haemoglobin within a Single Living Erythrocyte. Biochimica et Biophysica Acta-Molecular Cell Research.2001,1539,58-70.
    [25]黄鹰,陶家友,蔺蓉,李毅,侯晓华,易新建,用激光拉曼光谱区分胃癌变细胞与 正常细胞,光谱学与光谱分析,2007,27,2262-2265
    [26]Guo, J. Y., Du, B., Qian, M., Cai, W. Y., Wang, Z. G., Sun, Z. R. Raman Spectroscopic Identification of Normal and Malignant Hepatocytes. Chinese Optics Letters.2009,7, 60-63
    [27]Hawi, S. R., Campbell, W. B., Kajdacsy-Balla, A., Murphy, R., Adar, F., Nithipatikom, K. Characterization of Normal and Malignant Human Hepatocytes by Raman Microspectroscopy. Cancer Letters.1996,110,35-40.
    [28]Oshima, Y., Shinzawa, H., Takenaka, T., Furihata, C., Sato, H. Discrimination Analysis of Human Lung Cancer Cells Associated with Histological Type and Malignancy using Raman Spectroscopy. Journal of Biomedical Optics.2010,15,017009.
    [29]Notingher, I., Jell, G., Notingher, P. L., Bisson, I., Tsigkou, O., Polak, J. M., Stevens, M. M., Hench, L. L. Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells. Journal of Molecular Structure.2005,744,179-185.
    [30]Notingher, I., Jell, G., Lohbauer, U., Salih, V., Hench, L. L. In Situ Non-Invasive Spectral Discrimination between Bone Cell Phenotypes Used in Tissue Engineering. Journal of Cellular Biochemistry.2004,92,1180-1192.
    [31]Hedegaard, M., Krafft, C., Ditzel, H. J., Johansen, L. E., Hassing, S., Popp, J. Discriminating Isogenic Cancer Cells and Identifying Altered Unsaturated Fatty Acid Content as Associated with Metastasis Status, Using K-Means Clustering and Partial Least Squares-Discriminant Analysis of Raman Maps. Analytical Chemistry.2010,82, 2797-2802.
    [32]Yu, C. X., Gestl, E., Eckert, K., Allara, D., Irudayaraj, J. Characterization of Human Breast Epithelial Cells by Confocal Raman Microspectroscopy. Cancer Detection and Prevention.2006,30,515-522.
    [33]Chen, K., Qin, Y. J., Zheng, F., Sun, M. H., Shi, D. R. Diagnosis of Colorectal Cancer Using Raman Spectroscopy of Laser-Trapped Single Living Epithelial Cells. Optics Letters.2006,31,2015-2017.
    [34]Crow, P., Barrass, B., Kendall, C., Hart-Prieto, M., Wright, M., Persad, R., Stone, N. The Use of Raman Spectroscopy to Differentiate between Different Prostatic Adenocarcinoma Cell Lines. British Journal of Cancer.2005,92,2166-2170.
    [35]Harvey, T. J., Faria, E. C., Henderson, A., Gazi, E., Ward, A. D., Clarke. N. W., Brown, M. D., Snook, R. D., Gardner, P. Spectral Discrimination of Live Prostate and Bladder Cancer Cell Lines Using Raman Optical Tweezers. Journal of Biomedical Optics.2008, 13,064004
    [36]Harvey, T. J., Hughes, C., Ward, A. D., Faria, E. C., Henderson, A., Clarke, N. W., Brown, M. D., Snook, R. D., Gardner, P. Classification of Fixed Urological Cells Using Raman Tweezers. Journal of Biophotonics.2009,2,47-69.
    [37]Taleb, A., Diamond, J., McGarvey, J. J., Beattie, J. R., Toland, C., Hamilton, P. W. Raman Microscopy for the Chemometric Analysis of Tumor Cells. Journal of Physical Chemistry B.2006,110,19625-19631.
    [38]Banerjee, H. N., Zhang, L. Deciphering the Finger Prints of Brain Cancer Astrocytoma in Comparison to Astrocytes by Using Near Infrared Raman Spectroscopy. Molecular and Cellular Biochemitry,2007,295,237-240.
    [39]Huser, T., Orme, C. A., Hollars, C. W., Corzett, M. H., Balhorn, R. Raman Spectroscopy of DNA Packaging in Individual Human Sperm Cells Distinguishes Normal from Abnormal Cells. Journal of Biophotonics.2009,2,322-332.
    [40]Krishna, C. M., Sockalingum, G. D., Kegelaer, G., Rubin, S., Kartha, V. B., Manfait, M. Micro-Raman Spectroscopy of Mixed Cancer Cell Populations. Vibrational Spectroscopy. 2005,38,95-100.
    [41]Chan, J. W., Taylor, D. S., Zwerdling, T., Lane, S. M., Ihara, K., Huser, T. Micro-Raman Spectroscopy Detects Individual Neoplastic and Normal Hematopoietic Cells. Biophysical Journal,2006,90,648-656.
    [42]Mourant, J. R., Short, K. W., Carpenter, S., Kunapareddy, N., Coburn, L., Powers, T. M., Freyer, J. P. Biochemical Differences in Tumorigenic and Non-Tumorigenic Cells Measured by Raman and Infrared Spectroscopy. Journal of Biomedical Optics.2005,10, 031106.
    [43]Mourant, J. R., Dominguez, J., Carpenter, S., Short, K. W., Powers, T. M., Michalczyk, R., Kunapareddy, N., Guerra, A., Freyer, J. P. Comparison of Vibrational Spectroscopy to Biochemical and Flow Cytometry Methods for Analysis of the Basic Biochemical Composition of Mammalian Cells. Journal of Biomedical Optics.2006,11,064024.
    [44]Omberg, K. M., Osborn, J. C., Zhang, S. L. L., Freyer, J. P., Mourant, J. R., Schoonover, J. R. Raman Spectroscopy and Factor Analysis of Tumorigenic and Non-Tumorigenic Cells. Applied Spectroscopy.2002,56,813-819.
    [45]Krishna, C. M., Kegelaerl, G., Adt, I., Rubin, S., Kartha, V. B., Manfait, M., Sockalingum, G. D. Combined Fourier Transform Infrared and Raman Spectroscopic Identification Approach for Identification of Multidrug Resistance Phenotype in Cancer Cell Lines. Biopolymers.2006,82,462-470.
    [46]Hamden, K. E., Bryan, B. A., Ford, P. W., Xie, C., Li, Y. Q., Akula, S. M. Spectroscopic analysis of Kaposi's sarcoma-associated herpesvirus infected cells by Raman tweezers. Journal of Virological Methods.2005,129,145-151.
    [47]Peticolas, W. L., Patapoff, T. W., Thomas, G. A., Postlewait, J., Powell, J. W. Laser Raman Microscopy of Chromosomes in Living Eukaryotic Cells:DNA Polymorphism In Vivo. Journal of Raman Spectroscopy.1996,27,571-578.
    [48]Puppels, G. J., de Mul, F. F., Otto, C., Greve, J., Robert-Nicoud, M., Arndt-Jovin, D. J., Jovin, T. M. Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature.1990,347,301-303.
    [49]Puppels, G. J., Garritsen, H. S. P., Segers-Nolten, G. M. J., de Mul, F. F. M., Greve, J. Raman Microspectroscopic Approach to the Study of Human. Biophysical Journal.1991, 1046-1056.
    [50]Takai, Y., Masuko, T., Takeuchi, H. Lipid Structure of Cytotoxic Granules in Living Human Killer T Lymphocytes Studied by Raman Microspectroscopy. Biochimica et BiophysicaActa.1997,1335,199-208.
    [51]Hawi, S. R., Nithipatikom, K., Wohlfeil, E. R., Adar, F., Campbell, W. B. Raman Microspectroscopy of Intracellular Cholesterol Crystals in Cultured Bovine Coronary Artery Endothelial Cells. Journal of Lipid Research.1997,38,1591-1597.
    [52]Ramanauskaite, R. B., SegersNolten, I. G. M. J., deGrauw, K. J., Sijtsema, N. M., vanderMaas, L., Greve, J., Otto, C., Figdor, C. G. Carotenoid Levels in Human Lymphocytes, Measured by Raman Microspectroscopy. Pure and Applied Chemistry. 1997,69,2131-2134.
    [53]Wood, B. R., Tait, B., McNaughton, D. Micro-Raman Characterisation of the R to T State Transition of Haemoglobin within a Single Living Erythrocyte. Biochimica et Biophysica Acta.2001,1539,58-70.
    [54]Sijtsema, N. M., Otto, C., Segers-Nolten, G. M. J., Verhoeven, A. J., Greve, J. Resonance Raman Microspectroscopy of Myeloperoxidase and Cytochrome b558 in Human Neutrophilic Granulocytes. Biophysical Journal.1998,74,3250-3255.
    [55]Notingher, I., Verrier, S., Haque, S., Polak, J. M., Hench, L. L. Spectroscopic Study of Human Lung Epithelial Cells (A549) in Culture:Living Cells Versus Dead Cells. Biopolymers.2003,72,230-240.
    [56]Boydston-White, S., Chernenko, T., Regina, A., Miljkovic, M., Matthaus, C., Diem, M. Microspectroscopy of Single Proliferating HeLa Cells. Vibrational Spectroscopy.2005, 38,169-177.
    [57]Short, K. W., Carpenter, S., Freyer, J. P., Mourant, J. R. Raman Spectroscopy Detects Biochemical Changes Due to Proliferation. Biophysical Journal.2005,88,4274-4288.
    [58]Swain, R. J., Jell, G., Stevens, M. M. Non-Invasive Analysis of Cell Cycle Dynamics in Single Living Cells With Raman Micro-Spectroscopy. Journal of Cellular Biochemistry. 2008,104,1427-1438.
    [59]Uzunbajakava, N., Lenferink, A., Kraan, Y., Willenkens, B., Vrensen, G., Greve, J., Otto, C. Nonresonant Raman Imaging of Protein Distribution in Single Human Cells. Biopolymers.2003,72,1-9.
    [60]Uzunbajakava, N., Lenferink, A., Kraan, Y., Volokhina, E., Vrensen, G., Greve, J., Otto, C. Nonresonant Confocal Raman Imaging of DNA and Protein Distribution in Apoptotic Cells. Biophysical Journal.2003,84,3968-3981.
    [61]Yao, H. L., Tao, Z. H., Ai, M., Peng, L. X., Wang, G. W., He, B. J., Li, Y. Q. Raman Spectroscopic Analysis of Apoptosis of Single Human Gastric Cancer Cells. Vibrational Spectroscopy.2009,50,193-197.
    [62]Moritz, T. J., Taylor, D. S., Krol, D. M., Fritch, J., Chan, J. W. Detection of Doxorubicin-Induced Apoptosis of Leukemic T-Lymphocytes by Laser Tweezers Raman Spectroscopy. Biomedical Optics Express.2010,1,1138-1147.
    [63]Okada, M., Smith, M. I., Palonpon, A. F., Endo, H., Kawata, S., Sodeoka, M., Fujita, K. Label-Free Raman Observation of Cytochrome C Dynamics During Apoptosis. Proceedings of the National Academy of Sciences of the United States of America.2012, 109,28-32.
    [64]Kunapareddy, N., Freyer, J. P., Mourant, J. R. Raman Spectroscopic Characterization of Necrotic Cell Death. Journal of Biomedical Optics.2008,13,054002.
    [65]Pyrgiotakis, G., Kundakcioglu, O. E., Finton, K., Pardalos, P. M., Powers, K., Moudgil, B. M. Cell Death Discrimination with Raman Spectroscopy and Support Vector Machines. 2009,37,1464-1473.
    [66]Ong, Y. H., Lim, M., Liu, Q. Comparison of Principal Component Analysis and Biochemical Component Analysis in Raman Spectroscopy for the Discrimination of Apoptosis and Necrosis in K562 Leukemia Cells. Optics Express.2012,20,22158-22171.
    [67]Mariani, M. M., Maccoux, L. J., Matthaus, C., Diem, M., Hengstler, J. G., Deckert, V. Micro-Raman Detection of Nuclear Membrane Lipid Fluctuations in Senescent Epithelial Breast Cancer Cells. Analytical Chemistry.2010,82,4259-4263.
    [68]Onogi, C., Motoyama, M. Hamaguchi, H. High Concentration Trans Form Unsaturated Lipids Detected in a HeLa Cell by Raman Microspectroscopy. Journal of Raman Spectroscopy.2008,39,555-556.
    [69]Notingher, I., Bisson, I., Polak, J. M., Hench, L. L. In Situ Spectroscopic Study of Nucleic Acids in Differentiating Embryonic Stem Cells. Vibrational Spectroscopy.2004,35, 199-203.
    [70]Notingher, I., Bisson, I., Bishop, A. E., Randle, W. L., Polak, J. M., Hench, L. L. In Situ Spectral Monitoring of mRNA Translation in Embryonic Stem Cells during Differentiation in Vitro. Analytical Chemistry.2004,76,3185-3193.
    [71]Chan, J. W., Lieu, D. K., Huser, T., Li, R. A. Label-Free Separation of Human Embryonic Stem Cells and Their Cardiac Derivatives Using Raman Spectroscopy. Analytical Chemistry.2009,81,1324-1331.
    [72]Chiang, H. K., Peng, F. Y., Hung, S. C., Feng, Y. C. In situ Raman Spectroscopic Monitoring of Hydroxyapatite as Human Mesenchymal Stem Cells Differentiate into Osteoblasts. Journal of Raman Spectroscopy.2009,40,546-549.
    [73]Pully, V V., Lenferink. A., van Manen, H. J., Subramaniam, V., van Blitterswijk, C. A., Otto, C. Microbioreactors for Raman Microscopy of Stromal Cell Differentiation. Analytical Chemistry.2010,82,1844-1850.
    [74]Azrad, E., Zahor, D., Vago, R., Nevo, Z., Doron, R., Robinson, D., Gheber, L. A., Rosenwaks, S., Bar, I. Probing the Effect of an Extract of Elk Velvet Antler Powder on Mesenchymal Stem Cells Using Raman Microspectroscopy:Enhanced Differentiation Toward Osteogenic Fate. Journal of Raman Spectroscopy.2006,37,480-486.
    [75]Kim, B. S., Lee, C. C. I., Christensen, J. E., Huser, T. R., Chan, J. W., Tarantal, A. F. Growth, Differentiation, and Biochemical Signatures of Rhesus Monkey Mesenchymal Stem Cells. Stem Cells and Development.2008,17,185-198.
    [76]Chang, W. T., Lin, H. L., Chen, H. C., Wu, Y. M., Chen, W. J., Lee, Y. T., Liau, I. Real-Time Molecular Assessment on Oxidative Injury of Single Cells Using Raman Spectroscopy. Journal of Raman Spectroscopy.2009,40,1194-1199.
    [77]Otto, C., Sijtsema, N. M., Greve, J. Confocal Raman Microspectroscopy of the Activation of Single Neutrophilic Granulocytes. European Biophysics Journal.1998,27,582-589.
    [78]Sijtsema, N. M., Tibbe, A. G. J., Segers-Nolten, G. M. J., Verhoeven, A. J., Weening, R. S., Greve, J., Otto, C. Intracellular Reactions in Single Human Granulocytes upon Phorbol Myristate Acetate Activation using Confocal Raman Microspectroscopy. Biophysical Journal.2000,78,2606-2613.
    [79]Mannie, M. D., McConnell, T. J., Xie, C., Li, Y. Q. Activation-Dependent Phases of T Cells Distinguished by Use of Optical Tweezers and Near Infrared Raman Spectroscopy. Journal of Immunological Methods.2005,297,53-60.
    [80]Brown, K. L., Palyvoda, O. Y., Thakur, J. S., Nehlsen-Cannarella, S. L., Fagoaga, O. R., Gruber, S. A., Auner, G. W. Raman Spectroscopic Differentiation of Activated versus Non-Activated T Lymphocytes:An In Vitro Study of an Acute Allograft Rejection Model. Journal of Immunological Methods.2009,340,48-54.
    [81]Deng, J. L., Wei, Q., Zhang, M. H., Wang, Y. Z., Li, Y. Q. Study of the Effect of Alcohol on Single Human Red Blood Cells using near-infrared laser tweezers Raman spectroscopy. Journal of Raman Spectroscopy.2005,36,257-261.
    [82]Schulze, H. G., Greek, L. S., Barbosa, C. J., Blades, M. W., Gorzalka, B. B., Turner, R. F. B. Measurement of some small-molecule and peptide neurotransmitters in-vitro using a fiber-optic probe with pulsed ultraviolet resonance Raman spectroscopy. Journal of Neuroscience Methods.1999,92,15-24.
    [83]Ajito, K., Han, C., Torimitsu, K. Detection of Glutamate in Optically Trapped Single Nerve Terminals by Raman Spectroscopy. Analytical Chemistry.2004,76,2506-2510.
    [84]Inya-Agha, O., Klauke, N., Davies, T., Smith, G., Cooper, J. M. Spectroscopic Probing of Dynamic Changes during Stimulation and Cell Remodeling in the Single Cardiac Myocyte. Analytical Chemistry,2007,79,4581-4587.
    [85]Beljebbar, A., Romijn, J. C., Puppels, G. J. Investigation of androgen effects on prostate cancer cell lines by near infrared Raman microspectroscopy. In Biomedical Spectroscopy: Vibrational Spectroscopy and Other Novel Techniques. MahadevanJansen, A., Puppels, G. (Eds.) Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE). 2000,1,161-165.
    [86]Verrier, S., Notingher, I., Polak, J. M., Hench, L. L. In Situ Monitoring of Cell Death Using Raman Microspectroscopy. Biopolymers.2004,74,157-162.
    [87]Notingher, I., Green, C., Dyer, C., Perkins, E., Hopkins, N., Lindsay, C., Hench, L. L. Discrimination between ricin and sulphur mustard toxicity in vitro using Raman spectroscopy. Journal of the Royal Society Interface.2004,1,79-90.
    [88]Huang, Y. S., Karashima, T., Yamamoto, M., Ogura, T., Hamaguchi, H. Raman spectroscopic signature of life in a living yeast cell. Journal of Raman Spectroscopy.2004, 35,525-526.
    [89]Owen, C. A., Selvakumaran, J., Notingher, I., Jell, G., Hench, L. L., Stevens, M. M. In vitro toxicology evaluation of pharmaceuticals using Raman micro-spectroscopy. Journal of Cellular Biochemistry.2006,99,178-186.
    [90]Guo, J. Y., Cai, W. Y., Du, B., Qian, M., Sun, Z. R. Raman spectroscopic investigation on the interaction of malignant hepatocytes with doxorubicin. Biophysical Chemistry.2009, 140,57-61.
    [91]Buckmaster, R., Asphahani, F., Thein, M., Xu, J., Zhang, M. Q. Detection of drug-induced cellular changes using confocal Raman spectroscopy on patterned single-cell biosensors. Analyst.2009,134,1440-1446.
    [92]Delhaye, M., Dhamelincourt, P. Raman microprobe and microscope with laser excitation. Journal of Raman Spectroscopy.1975,3,33-43.
    [93]Puppels, G. J., Bakker Schut, T. C., Sijtsema, N. M., Grond, M., Maraboeuf, F., de Grauw, C. G., Figdor, C. G., Greve, J. Development and Application of Raman microspectroscopic and Raman imaging techniques for cell biological studies. Journal of Molecular Structure.1995,347,477-484.
    [94]Krafft, C., Knetschke, T., Siegner, A., Funk, R. H. K., Salzer, R. Mapping of single cells by near infrared Raman microspectroscopy. Vibrational Spectroscopy.2003,32,75-83.
    [95]Krafft, C., Knetschke, T., Funk, R. H. K., Salzer, R. Identification of organelles and vesicles in single cells by Raman microspectroscopic mapping. Vibrational Spectroscopy. 2005,38,85-93.
    [96]Krafft, C., Knetschke, T., Funk, R. H. K., Salzer, R. Studies on Stress-Induced Changes at the Subcellular Level by Raman Microspectroscopic Mapping. Analytical Chemistry. 2006,78,4424-4429.
    [97]Draux, F., Jeannesson, P., Beljebbar, A., Tfayli, A., Fourre, N., Manfait, M., Sule-Suso, J., Sockalingum, G. D. Raman spectral imaging of single living cancer cells:a preliminary study. Analyst.2009,134,542-548.
    [98]Hamada, K., Fujita, K., Smith, N. I., Kobayashi, M., Inouye, Y., Kawata, S. Raman microscopy for dynamic molecular imaging of living cells. Journal of Biomedical Optics. 2008,13,044027.
    [99]Naito, Y., Toh-e, A., Hamaguchi, H. O. In vivo time-resolved Raman imaging of a spontaneous death process of a single budding yeast cell. Journal of Raman Spectroscopy. 2005,36,837-839.
    [100]Matthhaus, C., Chernenko, T., Newmark, J. A., Warner, C. M., Diem, M. Label-free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy. Biophysical Journal.2007,93,668-673.
    [101]Wood, B. R., Chernenko, T., Matthaus, C., Diem, M., Chong, C., Bernhard, U., Jene, C., Brandli, A. A., McNaughton, D., Tobin, M. J., Trounson, A., Lacham-Kaplan, O. Shedding New Light on the Molecular Architecture of Oocytes Using a Combination of Synchrotron Fourier Transform-infrared and Raman Spectroscopic Mapping. Analytical Chemistry.2008,80,9065-9072.
    [102]Matthaus, C., Boydston-White, S., Miljkovic, M., Romeo, M., Diem, M. Raman and infrared microspectral imaging of mitotic cells. Applied Spectroscopy.2006,60,1-8.
    [103]Arzhantsev, S. Y., Chikishev, A. Y., Koroteev, N. I., Greve, J., Otto, C., Sijtsema, N. M. Localization study of Co-phthalocyanines in cells by Raman micro (spectro) scopy. Journal of Raman Spectroscopy.1999,30,205-208.
    [104]Feofanov, A. V., Grichine, A. I., Shitova, L. A., Karmakova, T. A., Yakubovskaya, R. I., Egret-Charlier, M., Vigny, P. Confocal Raman microspectroscopy and imaging study of theraphthal in living cancer cells. Biophysical Journal.2000,78,499-512.
    [105]Ling, J., Weitman, S. D., Miller, M. A., Moore, R. V., Bovik, A. C. Direct Raman imaging techniques for study of the subcellular distribution of a drug. Applied Optics.2002,41, 6006-6017.
    [106]van Apeldoorn, A. A., van Manen, H. J., Bezemer, J. M., de Bruijn, J. D., van Blitterswijk, C. A., Otto, C. Raman imaging of PLGA microsphere degradation inside macrophages. Journal of the American Chemistry Society.2004,126,13226-13227.
    [107]van Manen, H. J., Kraan, Y. M., Roos, D., Otto, C. Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes. Proceedings of the National Academy of Sciences of the United States of America.2005, 102,10159-10164.
    [108]Matthaeus, C., Kale, A., Chernenko, T., Torchilin, V., Diem, M. New ways of imaging uptake and intracellular fate of liposomal drug carrier systems inside individual cells, based on Raman microscopy. Molecular Pharmaceutics.2008,5,287-293.
    [109]Chernenko, T., Matthaus, C., Milane, L., Quintero, L., Amiji, M., Diem, M. Label-Free Raman Spectral Imaging of Intracellular Delivery and Degradation of Polymeric Nanoparticle Systems. ACS Nano.2009,3,3552-3559.
    [110]Arikan, S., Sands, H. S., Rodway, R. G., Batchelder, D. N. Raman spectroscopy and imaging of beta-carotene in live corpus luteum cells. Animal Reproduction Science.2002, 71,249-266.
    [111]van Manen, H. J., Uzunbajakava, N., van Bruggen, R., Roos, D., Otto, C. Resonance Raman imaging of the NADPH oxidase subunit cytochrome b (558) in single neutrophilic granulocytes. Journal of the American Chemistry Society.2003,125, 12112-12113.
    [112]van Manen, H. J., Kraan, Y. M., Roos, D., Otto, C. Intracellular chemical imaging of heme-containing enzymes involved in innate immunity using resonance Raman microscopy. Journal of Physical Chemistry B.2004,108,18762-18771.
    [113]Wood, B. R., Hammer, L., Davis, L., McNaughton, D. Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes. Journal of Biomedical Optics.2005,10,014005.
    [114]Cosgrave, L., Devocelle, M., Forster, R. J., Keyes, T. E. Multimodal cell imaging by ruthenium polypyridyl labelled cell penetrating peptides. Chemical Communications. 2010,46,103-105.
    [115]van Manen, H. J., Otto, C. Hybrid confocal Raman fluorescence microscopy on single cells using semiconductor quantum dots. Nano Letters.2007,7,1631-1636.
    [116]Kneipp, K., Haka, A. S., Kneipp, H., Badizadegan, K., Yoshizawa, N., Boone, C., Shafer-Peltier, K. E., Motz, J. T., Dasari, R. R., Feld, M. S. Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Applied Spectroscopy.2002, 56,150-154.
    [117]Kneipp, J., Kneipp, H., Rice, W. L., and Kneipp, K. Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Analytical Chemistry.2005,77,2381-2385.
    [118]Wabuyele, M. B., Yan, F., Griffin, G. D., and Vo-Dinh, T. Hyperspectral surface-enhanced Raman imaging of labeled silver nanoparticles in single cells. Review of Scientific Instruments.2005,76,7.
    [119]Nithipatikom, K., McCoy, M. J., Hawi, S. R., Nakamoto, K., Adar, F., and Campbell, W. B. Characterization and application of Raman labels for confocal Raman microspectroscopic detection of cellular proteins in single cells. Analytical Biochemistry. 2003,322,198-207.
    [120]Tang, H. W., Yang, X. B., Kirkham, J., and Smith, D. A. Probing intrinsic and extrinsic components in single osteosarcoma cells by near-infrared surface-enhanced Raman scattering. Analytical Chemistry.2007,79,3646-3653.
    [121]Talley, C. E., Jusinski, L., Hollars, C. W., Lane, S. M., Huser, T. Intracellular pH sensors based on surface-enhanced raman scattering. Analytical Chemistry.2004,76,7064-7068.
    [122]Kneipp, J., Kneipp, H., Wittig, B., Kneipp, K. One-and two-photon excited optical ph probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Letters.2007,7,2819-2823.
    [123]Qian, X. M., Peng, X. H., Ansari, D. O., Yin-Goen, Q., Chen, G. Z., Shin, D. M., Yang, L., Young, A. N., Wang, M. D., Nie, S. M. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnology.2008, 26,83-90.
    [124]Hu, Q. Y., Tay, L. L., Noestheden, M., Pezacki, J. P. Mammalian cell surface imaging with nitrile-functionalized nanoprobes:Biophysical characterization of aggregation and polarization anisotropy in SERS imaging. Journal of the American Chemical Society. 2007,129,14-15.
    [125]Noestheden, M., Hu, Q. Y., Tay, L. L., Tonary, A. M., Stolow, A., MacKenzie, R., Tanha, J., Pezacki, J. P. Synthesis and characterization of CN-modified protein analogues as potential vibrational contrast agents. Bioorganic Chemistry.2007,35,284-293.
    [126]Lee, S. Y., Jang, S. H., Cho, M. H., Kim, Y. M., Cho, K. C., Ryu, P. D., Gong, M. S., Joo, S. W. In Situ Single Cell Monitoring by Isocyanide-Functionalized Ag and Au Nanoprobe-Based Raman Spectroscopy. Journal of Microbiology and Biotechnology. 2009,19,904-910.
    [127]Kuhnert, N., Thumser, A. An investigation into the use of Raman microscopy for the detection of labelled compounds in living human cells. Journal of Labelled Compounds & Radiopharmaceutics.2004,47,493-500.
    [128]Kim, J. H., Kim, J. S., Choi, H., Lee, S. M., Jun, B. H., Yu, K. N., Kuk, E., Kim, Y. K., Jeong, D. H., Cho, M. H., Lee, Y. S. Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. Analytical Chemistry.2006,78, 6967-6973.
    [129]Lee, S., Kim, S., Choo, J., Shin, S. Y., Lee, Y. H., Choi, H. Y, Ha, S. H., Kang, K. H., Oh, C. H. Biological imaging of HEK293 cells expressing PLC gamma 1 using surface-enhanced raman microscopy. Analytical Chemistry.2007,79,916-922.
    [130]Keren, S., Zavaleta, C., Cheng, Z., de la Zerda, A., Gheysens, O., Gambhir, S. S. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America.2008, 105,5844-5849.
    [131]Yu, K. N., Lee, S. M., Han, J. Y., Park, H., Woo, M. A., Noh, M. S., Hwang, S. K., Kwon, J. T., Jin, H., Kim, Y. K., Hergenrother, P. J., Jeong, D. H., Lee, Y. S., Cho, M. H. Multiplex targeting, tracking, and imaging of apoptosis by fluorescent surface enhanced raman spectroscopic dots. Bioconjugate Chemistry.2007,18,1155-1162.
    [132]Noh, M. S., Jun, B. H., Kim, S., Kang, H., Woo, M. A., Minai-Tehrani, A., Kim, J. E., Kim, J., Park, J., Lim, H. T., Park, S. C., Hyeon, T., Kim, Y. K., Jeong, D. H., Lee, Y. S., Cho, M. H. Magnetic surface-enhanced Raman spectroscopic (M-SERS) dots for the identification of bronchioalveolar stem cells in normal and lung cancer mice. Biomaterials. 2009,30,3915-3925.
    [133]Jun, B. H., Noh, M. S., Kim, J., Kim, G., Kang, H., Kim, S. M., Seo, Y. T., Baek, J., Kim, J. H., Park, J., Kim, S., Kim, Y. K., Hyeon, T., Cho, M. H., Jeong, D. H., Lee, Y. S. Multifunctional Silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small.2010,6,119-125.
    [134]Zavaleta, C. L., Smith, B. R., Walton, I., Doering, W., Davis, G., Shojaei, B., Natan, M. J., Gambhir, S. S. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America.2009,106,13511-13516.
    [135]Kennedy, D. C., Hoop, K. A., Tay, L. L., Pezacki, J. P. Development of nanoparticle probes for multiplex SERS imaging of cell surface proteins. Nanoscale.2010,2, 1413-1416.
    [136]Matschulat, A., Drescher, D., Kneipp, J. Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems. ACS Nano.2010,4, 3259-3269.
    [137]Maiti, K. K., Samanta, A., Vendrell, M., Soh, K. S., Olivo, M., Chang, Y. T. Multiplex cancer cell detection by SERS nanotags with cyanine and triphenylmethine Raman reporters. Chemical Communications.2011,47,3514-3516.
    [138]Woo, M. A., Lee, S. M., Kim, G., Baek, J., Noh, M. S., Kim, J. E., Park, S. J., Minai-Tehrani, A., Park, S. C., Seo, Y. T., Kim, Y. K., Lee, Y. S., Jeong, D. H., Cho, M. H. Multiplex immunoassay using fluorescent-surface enhanced Raman spectroscopic dots for the detection of bronchioalveolar stem cells in murine lung. Analytical Chemistry.2009, 81,1008-1015.
    [139]Liu, Z., Li, X. L., Tabakman, S. M., Jiang, K. L., Fan, S. S., Dai, H. J. Multiplexed Multicolor Raman Imaging of Live Cells with Isotopically Modified Single Walled Carbon Nanotubes. Journal of the American Chemical Society.2008,130,13540-13541.
    [140]van Manen, H. J., Lenferink, A., Otto, C. Noninvasive Imaging of Protein Metabolic Labeling in Single Human Cells Using Stable Isotopes and Raman Microscopy. Analytical Chemistry.2008,80,9576-9582.
    [141]Liu, Z., Tabakman, S., Sherlock, S., Li, X. L., Chen, Z., Jiang, K. L., Fan, S. S., Dai, H. J. Multiplexed Five-Color Molecular Imaging of Cancer Cells and Tumor Tissues with Carbon Nanotube Raman Tags in the Near-Infrared. Nano Research.2010,3,222-233.
    [142]Lamprecht, C., Gierlinger, N., Heister, E., Unterauer, B., Plochberger, B., Brameshuber, M., Hinterdorfer, P., Hild, S., Ebner, A. Mapping the intracellular distribution of carbon nanotubes after targeted delivery to carcinoma cells using confocal Raman imaging as a label-free technique. Journal of Physics-Condensed Matter.2012,24,164206.
    [143]Karmakar, A., Iancu, C., Bartos, D. M., Mahmood, M. W., Ghosh, A., Xu, Y.. Dervishi, E., Collom, S. L., Khodakovskaya, M., Mustafa, T., Watanabe, F., Biris, A. R., Zhang, Y. B., Ali, S. F., Casciano, D., Hassen, S., Nima, Z. Biris, A. S. Raman spectroscopy as a detection and analysis tool for in vitro specific targeting of pancreatic cancer cells by EGF-conjugated, single-walled carbon nanotubes. Journal of Applied Toxicology.2012, 32,365-375.
    [144]Kang, J. W., Nguyen, F. T., Lue, N., Dasari, R. R., Heller, D. A. Measuring Uptake Dynamics of Multiple Identifiable Carbon Nanotube Species via High-Speed Confocal Raman Imaging of Live Cells. Nano Letters.2012,12,6170-6174.
    [145]Kennedy, D. C., Tay, L. L., Lyn, R. K., Rouleau, Y., Hulse, J., Pezacki, J. P. Nanoscale Aggregation of Cellular beta (2)-Adrenergic Receptors Measured by Plasmonic Interactions of Functionalized Nanoparticles. ACS Nano.2009,3,2329-2339.
    [146]Sujith, A., Itoh, T., Abe, H., Yoshida, K. I., Kiran, M. S., Biju, V., Ishikawa, M. Imaging the cell wall of living single yeast cells using surface-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry.2009,394,1803-1809.
    [147]Park, H., Lee, S., Chen, L., Lee, E. K., Shin, S. Y., Lee, Y. H., Son, S. W., Oh, C. H., Song, J. M., Kang, S. H., Choo, J. SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods. Physical Chemistry Chemical Physics.2009,11, 7444-7449.
    [148]Huang, Y., Swarup, V. P., Bishnoi, S. W. Rapid Raman Imaging of Stable, Functionalized Nanoshells in Mammalian Cell Cultures. Nano Letters.2009,9,2914-2920.
    [149]Tay, L. L., Huang, P. J., Tanha, J., Ryan, S., Wu, X. H., Hulse, J., Chau, L. K. Silica encapsulated SERS nanoprobe conjugated to the bacteriophage tailspike protein for targeted detection of Salmonella. Chemical Communications.2012,48,1024-1026.
    [1]Elsheikl, M. N., Rinaldo, A., Hamakawa, H., Mahfouz, M. Z., Rodrigo, J. P., Bernnan, J., Devaney, K. O., Grandis, J. R., Ferlito, A. Importance of molecular analysis in detecting cervical lymph node metastasis in head and neck squamous cell carcinoma. Head and Neck-Journal for the Sciences and Specialities of the Head and Neck.2006,28,842-849.
    [2]Patton, L. L. The effectiveness of community-based visual screening and utility of adjunctive diagnostic aids in the early detection of oral cancer. Oral Oncology.2003,39, 708-723.
    [3]Schliephake, H. Prognostic relevance of molecular markers of oral cancer-A review. International Journal of Oral and Maxillofacial Surgery.2003,32,234-245.
    [4]Wu, H., Xu, X., Ying, H., Hoffman, M. R., Shen, N., Sha, Y., Zhou, L. Preliminary study of indirect CT lymphography-guided sentinel lymph node biopsy in a tongue VX2 carcinoma model. International Journal of Oral and Maxillofacial Surgery.2009,38, 1268-1272.
    [5]Swinson, B., Jerjes W., El-Maaytha, M., Norris, P., Happer, C. Optical techniques in diagnosis of head and neck malignancy. Oral Oncology.2006,42,221-228.
    [6]de Veld, D. C. G., Witjes, M. J. H., Sterenborg, H. J. C. M., Roodenburg, J. L. N. The status of in vivo autofluorescence spectroscopy and imaging for oral oncology. Oral Oncology.2005,41,117-131.
    [7]Jerjes, W., Swinson, B., Pickard, D., Thomas G. J., Hopper, C. Detection of cervical intranodal metastasis in oral cancer using elastic scattering spectroscopy. Oral Oncology. 2004,40,673-678.
    [8]Raman, C. V., Krishnan, K. S. A new type of secondary radiation. Nature.1928,121, 501-502.
    [9]胡继明,激光光谱分析与检测技术,生命分析化学,汀尔康,陈义主编,2006,科学出版社,北京。
    [10]Alfano, R. R., Lui, C. H., Sha, W. L., Zhu, H. R., Akins, D. L., Cleary, J., Prudente, R., Cellmer, E. Human breast tissues studied by IR Fourier transform Raman spectroscopy. Lasers in the Life Sciences.1991,4,23-28.
    [11]Hu, J. M., Shen, A. G., Xie, W., Shen, J. Perspective in Vibrational Spectroscopy, India, 2006
    [12]Das, B. R., Nagpal, J. K. Understanding the biology of oral cancer. Medical Science Monitor.2002,8, RA258-267.
    [13]Venkatakrishna, K., Kurien, J., Pai, K. M., Valiathan, M., Kumar, N. N., Krishna, C. M., Ullas, G., Kartha, V. B. Optical pathology of oral tissue:A Raman spectroscopy diagnostic method.2001,80,665-669.
    [14]Krishna, C. M., Sockalingum, G. D., Kurien, J., Rao, L., Venteo, L., Pluot, M., Manfait, M., Kartha, V. B. Micro-Raman spectroscopy for optical pathology of oral squamous cell carcinoma. Applied Spectroscopy.2004,58,1128-1135.
    [15]de Veld, D. C. G., Schut, T. C. B., Skurichina, M., Witjes, M. J. H., Van der Wal, J. E., Roodenburg, J. L. N., Sterenborg, H. J. C. M. Autofluorescence and Raman microspectroscopy of tissue sections of oral lesions. Lasers in Medical Science.2005,19, 203-209.
    [16]Malini, R., Venkatakrishna, K., Kurien, J., Pai, K. M., Rao, L., Kartha, V. B., Krishna, C. M. Discrimination of normal, inflammatory, premalignant, and malignant oral tissue:A Raman spectroscopy study. Biopolymers.2006,81,179-193.
    [17]Oliveira, A. P., Bitar, R. A., Silveira, L., Zangaro, R. A., Martin, A. A. Near-infrared Raman spectroscopy for oral carcinoma diagnosis. Photomedicine and Laser Surgery. 2006,24,348-353.
    [18]Proenza, A. M., Oliver, J., Palou, A., Roca, P. Breast and lung cancer are associated with a decrease in blood cell amino acid content. Journal of Nutritional Biochemistry.2003,14, 133-138.
    [19]Hu, S. L., Shen, G., Yin, S., Xu, W. P., Hu, B. Melatonin and Tryptophan Circadian Profiles in Patients with Advanced Non-Small Cell Lung Cancer. Advances in Therapy. 2009,26,886-892.
    [20]Tankiewicz, A., Dziemianczyk, D., Buczko, P., Szarmach, I. J., Grabowska, S. Z., Pawlak, D. Tryptophan and its metabolites in patients with oral squamous cell carcinoma: preliminary study. Advances in Medical Sciences.2006,51 (Suppl.1),221-224.
    [21]Movasaghi, Z., Rehman, S., Rehman, I. U. Raman spectroscopy of biological tissues. Applied Spectroscopy Reviews.2007,42,493-541.
    [22]Lin, S. Y., Li, M. J., Cheng, W. T. FT-IR and Raman vibrational microspectroscopies used for spectral biodiagnosis of human tissues. Spectroscopy-An International Journal.2007, 21,1-30.
    [23]Krafft, C., Sergo, V. Biomedical applications of Raman and infrared spectroscopy to diagnose tissues. Spectroscopy-An International Journal.2006,20,195-218.
    [24]Robbins, S. L., Cotran, R. S., Kumar, V. Pathoolgic Basis of Disease. Saunders, W. B. 1994, Philadelphia.
    [1]Chan, J. W., Taylor, D. S., Lane, S. M., Zwerdling, T., Tuscano, J., Huser, T. Nondestructive Identification of Individual Leukemia Cells by Laser Trapping Raman Spectroscopy. Analytical Chemistry.2008,80,2180-2187.
    [2]Bakker Schut, T. C., Puppels, G. J., Kraan, Y. M., Greve, J., van de Maas, L. L., Figdor, C. G. Intracellular carotenoid levels measured by Raman microspectroscopy:comparison of lymphocytes from lung cancer patients and healthy individuals. International Journal of Cancer.1997,74,20-25.
    [3]de Luca, A. C., Rusciano, G., Ciancia, R., Martinelli, V., Pesce, G., Rotoli, B., Selvaggi, L., Sasso, A. Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman Tweezers. Optics Express.2008,16,7943-7957.
    [4]Eriksson, E., Scrimgeour, J., Graneli, A., Ramser, K., Wellander, R., Enger, J., Hanstrop, D., Goksor, M. Optical manipulation and microfluidics for studies of single cell dynamics. Journal of Optics A-pure and applied optics.2007,9, S113-S121.
    [5]Wood, B. R., Tait, B., McNaughton, D. Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte. Biochimica et Biophysica Acta-Molecular Cell Research.2001,1539,58-70.
    [6]黄鹰,陶家友,蔺蓉,李毅,侯晓华,易新建,用激光拉曼光谱区分胃癌变细胞与正常细胞,光谱学与光谱分析,2007,27,2262-2265。
    [7]Guo, J. Y., Du, B., Qian, M., Cai, W. Y, Wang, Z. G., Sun, Z. R. Raman spectroscopic identification of normal and malignant hepatocytes. Chinese Optics Letters.2009,7, 60-63
    [8]Hawi, S. R., Campbell, W. B., Kajdacsy-Balla, A., Murphy, R., Adar, F., Nithipatikom, K. Characterization of normal and malignant human hepatocytes by Raman microspectroscopy. Cancer Letters.1996,110,35-40.
    [9]Oshima, Y., Shinzawa, H., Takenaka, T., Furihata, C., Sato, H. Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy. Journal of Biomedical Optics.2010,15,017009.
    [10]Notingher, I., Jell, G., Notingher, P. L., Bisson, I., Tsigkou, O., Polak, J. M., Stevens, M. M., Hench, L. L. Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells. Journal of Molecular Structure.2005,744,179-185.
    [11]Notingher, I., Jell, G., Lohbauer, U., Salih, V., Hench, L. L. In situ non-invasive spectral discrimination between bone cell phenotypes used in tissue engineering. Journal of Cellular Biochemistry.2004,92,1180-1192.
    [12]Hedegaard, M., Krafft, C., Ditzel, H. J., Johansen, L. E., Hassing, S., Popp, J. Discriminating Isogenic Cancer Cells and Identifying Altered Unsaturated Fatty Acid Content as Associated with Metastasis Status, Using K-Means Clustering and Partial Least Squares-Discriminant Analysis of Raman Maps. Analytical Chemistry.2010,82, 2797-2802.
    [13]Yu, C. X., Gestl, E., Eckert, K., Allara, D., Irudayaraj, J. Characterization of human breast epithelial cells by confocal Raman microspectroscopy. Cancer Detection and Prevention. 2006,30,515-522.
    [14]Chen, K., Qin, Y. J., Zheng, F., Sun, M. H., Shi, D. R. Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells. Optics Letters. 2006,31,2015-2017.
    [15]Crow, P., Barrass, B., Kendall, C., Hart-Prieto, M., Wright, M., Persad, R., Stone, N. The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines. British Journal of Cancer.2005,92,2166-2170.
    [16]Harvey, T. J., Faria, E. C., Henderson, A., Gazi, E., Ward, A. D., Clarke, N. W., Brown, M. D., Snook, R. D., Gardner, P. Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers. Journal of Biomedical Optics.2008,13,064004
    [17]Harvey, T. J., Hughes, C., Ward, A. D., Faria, E. C, Henderson, A., Clarke, N. W., Brown, M. D., Snook, R. D., Gardner, P. Classification of fixed urological cells using Raman tweezers. Journal of Biophotonics.2009,2,47-69.
    [18]Taleb, A., Diamond, J., McGarvey, J. J., Beattie, J. R., Toland, C., Hamilton, P. W. Raman microscopy for the chemometric analysis of tumor cells. Journal of Physical Chemistry B. 2006,110,19625-19631.
    [19]Banerjee, H. N., Zhang, L. Deciphering the finger prints of brain cancer astrocytoma in comparison to astrocytes by using near infrared Raman spectroscopy. Molecular and Cellular Biochemitry,2007,295,237-240.
    [20]Huser, T., Orme, C. A., Hollars, C. W., Corzett, M. H., Balhorn, R. Raman spectroscopy of DNA packaging in individual human sperm cells distinguishes normal from abnormal cells. Journal of Biophotonics.2009,2,322-332.
    [21]Krishna, C. M., Sockalingum, G. D., Kegelaer, G., Rubin, S., Kartha, V. B., Manfait, M. Micro-Raman spectroscopy of mixed cancer cell populations. Vibrational Spectroscopy. 2005,38,95-100.
    [22]Chan, J. W., Taylor, D. S., Zwerdling, T., Lane, S. M., Ihara, K., Huser, T. Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells. Biophysical Journal,2006,90,648-656.
    [23]Mourant, J. R., Short, K. W., Carpenter, S., Kunapareddy, N., Coburn, L., Powers, T. M., Freyer, J. P. Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy. Journal of Biomedical Optics.2005,10,031106.
    [24]Mourant, J. R., Dominguez, J., Carpenter, S., Short, K. W., Powers, T. M., Michalczyk, R., Kunapareddy, N., Guerra, A., Freyer, J. P. Comparison of vibrational spectroscopy to biochemical and flow cytometry methods for analysis of the basic biochemical composition of mammalian cells. Journal of Biomedical Optics.2006,11,064024.
    [25]Omberg, K. M., Osborn, J. C., Zhang, S. L. L., Freyer, J. P., Mourant, J. R., Schoonover, J. R. Raman spectroscopy and factor analysis of tumorigenic and non-tumorigenic cells. Applied Spectroscopy.2002,56,813-819.
    [26]Krishna, C. M., Kegelaerl, G., Adt, I., Rubin, S., Kartha, V. B., Manfait, M., Sockalingum, G. D. Combined Fourier transform infrared and Raman spectroscopic identification approach for identification of multidrug resistance phenotype in cancer cell lines. Biopolymers.2006,82,462-470.
    [27]Venkatakrishna, K., Kurien, J., Pai, K. M., Valiathan, M., Kumar, N. N., Krishna, C. M., Ullas, G., Kartha, V. B. Optical pathology of oral tissue:A Raman spectroscopy diagnostic method.2001,80,665-669.
    [28]Krishna, C. M., Sockalingum, G. D., Kurien, J., Rao, L., Venteo, L., Pluot, M., Manfait, M, Kartha, V. B. Micro-Raman spectroscopy for optical pathology of oral squamous cell carcinoma. Applied Spectroscopy.2004,58,1128-1135.
    [29]de Veld, D. C. G., Schut, T. C. B., Skurichina, M., Witjes, M. J. H., Van der Wal, J. E., Roodenburg, J. L. N., Sterenborg, H. J. C. M. Autofluorescence and Raman microspectroscopy of tissue sections of oral lesions. Lasers in Medical Science.2005,19, 203-209.
    [30]Malini, R., Venkatakrishna, K., Kurien, J., Pai, K. M., Rao, L., Kartha, V. B., Krishna, C. M. Discrimination of normal, inflammatory, premalignant, and malignant oral tissue:A Raman spectroscopy study. Biopolymers.2006,81,179-193.
    [31]Oliveira, A. P., Bitar, R. A., Silveira, L., Zangaro, R. A., Martin, A. A. Near-infrared Raman spectroscopy for oral carcinoma diagnosis. Photomedicine and Laser Surgery. 2006,24,348-353.
    [1]Bogdan, C. Nitric oxide and the immune response. Nature.2001,2,907-916
    [2]Wink, D. A., Vodovotz, Y., Laval, J., Laval, F., Dewhirst, W. M., Mitchell, J. B. The multifaceted roles of nitric oxide in cancer. Carcinogenesis.1998,19,711-721.
    [3]Hajri, A., Metzger, E., Vallat, F., Coffy, S., Flatter, E., Evrard, S., Marescaux, J., Aprahamian, M. Role of nitric oxide in pancreatic tumour growth:in vivo and in vitro studies. British Journal of Cancer.1998,78,841-849.
    [4]Brennan, P. A., Downie, I. F., Langdon, J. D., Zaki, G. A. Emerging role of nitric oxide in cancer. British Journal of Oral and Maxillofacial Surgery.1999,37,370-373.
    [5]Su, L., Sun, Y. F., Chen, Y, Chen, P., Shen, A. G., Wang, X. H., Jia, J., Zhao, Y. F., Zhou, X. D., Hu, J. M. Raman spectral properties of squamous cell carcinoma of oral tissues and cells. Laser Physics.2012,22,311-316.
    [6]Mourant, J. R., Short, K. W., Carpenter, S., Kunapareddy, N., Coburn, L., Powers, T. M., Freyer, J. P. Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy. Journal of Biomedical Optics.2005,10,031106.
    [7]Owen, C. A., Selvakumaran, J., Notingher, I., Jell, G., Hench, L. L., Stevens, M. M. In vitro toxicology evaluation of pharmaceuticals using Raman micro-spectroscopy. Journal of Cellular Biochemistry.2006,99,178-186.
    [8]Verrier, S., Notingher, I., Polak, J. M., Hench, L. L. In situ monitoring of cell death using Raman microspectroscopy. Biopolymers.2004,74,157-162.
    [9]Notingher, I., Green, C., Dyer, C., Perkins, E., Hopkins, N., Lindsay, C., Hench, L. L. Discrimination between ricin and sulphur mustard toxicity in vitro using Raman spectroscopy. Journal of the Royal Society Interface.2004,1,79-90.
    [10]Singh, G. P., Creely, C. M., Volpe, G., Grotsch, H., Petrov, D. Real-Time Detection of Hyperosmotic Stress Response in Optically Trapped Single Yeast Cells Using Raman Microspectroscopy. Analytical Chemistry.2005,77,2564-2568.
    [11]Chen, P., Tian, Q., Baek, S. J., Shang, X. L., Park, A., Liu, Z. C., Yao, X. Q., Wang, J. Z., Wang, X. H., Cheng, Y., Peng, J., Shen, A. G., Hu, J. M. Laser Raman detection of platelet as a non-invasive approach for early and differential diagnosis of Alzheimer's disease. Laser Physics Letters.2011,8,547-552.
    [12]Shen, A. G., Peng, J., Zhao, Q. H., Su, L., Wang, X. H., Hu, J. M., Yang, Q. Accurate and noninvasive embryos screening during in vitro fertilization (IVF) assisted by Raman analysis ofembryos culture medium. Laser Physics Letters.2012,9,322-328.
    [13]Gonchukov, S., Sukhinina, A., Bakhmutov, D., Minaeva, S. Raman spectroscopy of saliva as a perspective method for periodontitis diagnostics. Laser Physics Letters.2012,9, 73-77.
    [14]Virkler, K., Lednev, I. K. Forensic body fluid identification:The Raman spectroscopic signature of saliva. Analyst.2010,135,512-517.
    [15]Schuster, K. C., Reese, I., Urlaub, E., Gapes, J. R., Lendl, B. Multidimensional Information on the Chemical Composition of Single Bacterial Cells by Confocal Raman Microspectroscopy. Analytical Chemistry.2000,72,5529-5534.
    [16]Huang, W. E., Griffiths, R. I., Thompson,1. P., Bailey, M. J., Whiteley, A. S. Raman Microscopic Analysis of Single Microbial Cells. Analytical Chemistry.2004,76, 4452-4458.
    [17]Harz, M., Rosch, P., Peschke, K. D., Ronneberger, O., Burkhardt, H., Popp, J. Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions. Analyst.2005,130,1543-1550.
    [18]Xie, C, Mace, J., Dinno, M. A., Li, Y. Q., Tang, W., Newton, R. J., Gemperline, P. J. Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy. Analytical Chemistry.2005,77,4390-4397.
    [19]Chen, D., Shelenkova, L., Li, Y., Kempf, C. R. Sabelnikov, A. Laser tweezers Raman spectroscopy potential for studies of complex dynamic cellular processes:single cell bacterial lysis. Analytical Chemistry.2009,81,3227-3238.
    [20]Hibbs, J. B., Taintor, R. R., Vavrin, Z., Rachlin, E. M. Nitric oxide:A cytotoxic activated macrophage effector molecule. Biochemical and Biophysical Research Communications. 1988,157,87-94.
    [21]Sumitani, K., Kamijo, R., Nagumo, M. Cytotoxic effect of sodium nitroprusside on cancer cells:involvement of apoptosis and suppression of c-myc and c-myb proto-oncogene expression. Anticancer Research.1997,17 (2A),865-871.
    [22]Zhao, S. F., Tong, X. Y., Zhu, F. D. Nitric oxide induces oral squamous cell carcinoma cells apoptosis with p53 accumulation. Oral Oncology.2005,41,785-790.
    [23]Swain, R. J., Jell, G., Stevens, M. M. Non-invasive analysis of cell cycle dynamics in single living cells with Raman micro-spectroscopy. Journal of Cellular Biochemistry. 2008,104,1427-1438.
    [24]Roach, C. A., Simpson, J. V., Jiji, R. D. Evolution of quantitative methods in protein secondary structure determination via deep-ultraviolet resonance Raman spectroscopy. Analyst.2012,137,555-562.
    [25]Huang, C. Y., Balakxishnan, G., Spiro, T. G. Protein secondary structure from deep-UV resonance Raman spectroscopy. Journal of Raman Spectroscopy.2006,37,1-3.
    [26]Ngarize, S., Herman, H., Adams, A., Howell, N. Comparison of changes in the secondary structure of unheated, heated, and high-pressure-treated ss-lactoglobulin and ovalbumin proteins using Fourier transform Raman spectroscopy and self-deconvolution. Journal of Agricultural and Food Chemistry.2004,52,6470-6477.
    [27]Kinalwa, M. N., Blanch, E. W., Doig, A. J. Accurate Determination of Protein Secondary Structure Content from Raman and Raman Optical Activity Spectra. Analytical Chemisty. 2010,82,6347-6349.
    [1]Schena, M., Shalon, D., Davis, R. W., Brown, P. O. Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science.1995, 467-470.
    [2]Castro, A., Williams, J. G. K. Single-molecule detection of specific nucleic acid sequences in unamplified genomic DNA. Analytical Chemistry.1997,69,3915-3920.
    [3]Pirrung, M. C., Connors, R. V., Odenbaugh, A. L., Montague-Smith, M. P., Walcott, N. G., Tollett, J. J. The arrayed primer extension method for DNA microchip analysis. Molecular computation of satisfaction problems. Journal of the American Chemical Society.2000, 122,1873-1882.
    [4]Duhachek, S. D., Kenseth, J. R., Casale, G. P., Small, G. J., Porter, M. D., Jankowiak, R. Monoclonal antibody-gold biosensor chips for detection of depurinating carcinogen-DNA adducts by fluorescence line-narrowing spectroscopy. Analytical Chemistry.2000,72, 3709-3716.
    [5]He, B., Burke, B. J., Zhang, X., Zhang, R., Regnier, F. E. A picoliter-volume mixer for microfluidic analytical systems. Analytical Chemistry.2001,73,1942-1947.
    [6]Peruski, A. H., Johnson, L. H., Peruski, L. F. Rapid and sensitive detection of biological warfare agents using time-resolved fluorescence assays. Journal of Immunological Methods.2002,263,35-41.
    [7]Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A. P. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science.1998,281,2013-2016.
    [8]Chan, W. C. W., Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science.1998,281,2016-2018.
    [9]Yang, C. S., Kauzlarich, S. M., Wang, Y. C. Synthesis and characterization of germanium/Si-alkyl and germanium/silica core-shell quantum dots. Chemistry of Materials.1999,11,3666-3670.
    [10]Mattoussi, H., Mauro, J. M., Goldman, E. R., Anderson, G. P., Sundar, V. C., Mikulec, F. V., Bawendi, M. G. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. Journal of the American Chemical Society.2000,122, 12142-12150.
    [11]Goldman, E. R., Balighian, E. D., Mattoussi, H., Kuno, M. K., Mauro, J. M., Tran, P. T., Anderson, G. P. Avidin:A natural bridge for quantum dot-antibody conjugates. Journal of the American Chemical Society.2002,124,6378-6382.
    [12]Gao, X. H., Cui, Y. Y., Levenson, R. M., Chung, L. W. K., Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology.2004,22, 969-976.
    [13]Ellis, D. I., Goodacre, R. Metabolic fingerprinting in disease diagnosis:biomedical applications of infrared and Raman spectroscopy. Analyst.2006,131,875-885.
    [14]Krafft, C, Sergo, V. Biomedical applications of Raman and infrared spectroscopy to diagnose tissues. Spectroscopy-An International Journal.2006,20,195-218.
    [15]Naumann, D. FT-infrared and FT-Raman spectroscopy in biomedical research. Applied Spectroscopy Reveiws.2001,36,239-298.
    [16]Fleischmann, M., Hendra, P. J., McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters.1974,26,163-166
    [17]Nie, S., Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science.1997,275,1102-1106.
    [18]Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R., Feld, M. S. Ultrasensitive chemical analysis by Raman spectroscopy. Chemical Reviews.1999,99,2957-2976.
    [19]Kneipp, K., and Kneipp, H. Single molecule Raman scattering. Applied Spectroscopy. 2006,60,322A-334A.
    [20]Cui, Y, Ren, B., Yao, J. L., Gu, R. A., Tian, Z. Q. Multianalyte immunoassay based on surface-enhanced Raman spectroscopy. Journal of Raman Spectroscopy.2007,38, 896-902.
    [21]Rodriguez-Lorenzo, L., Fabris, L., Alvarez-Puebla, R. A. Multiplex optical sensing with surface-enhanced Raman scattering:A critical review. Analytica Chimica Acta.2012,745, 10-23.
    [22]Dougan, J. A., Faulds, K. Surface enhanced Raman scattering for multiplexed detection. Analyst,2012,137,545-554.
    [23]Wang, Z. Plasmon-resonant gold nanoparticles for cancer optical imaging. Science China-Physics Mechanics & Astronomy.2013,56,506-513.
    [24]Huang, X. H., Jain, P. K., El-Sayed, I. H., El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science.2008,23, 217-228.
    [25]Chourpa, I., Lei, F. H., Dubois, P., Manfait, M., Sockalingum, G D. Intracellular applications of analytical SERS spectroscopy and multispectral imaging. Chemical Society Reveiws.2008,37,993-1000.
    [26]Zhang, Y., Hong, H., Mykejord, D. V., Cai, W. B. Molecular Imaging with SERS-Active Nanoparticles. Small,2011,3261-3269.
    [27]Kneipp, K., Haka, A. S., Kneipp, H., Badizadegan, K., Yoshizawa, N., Boone, C., Shafer-Peltier, K. E., Motz, J. T., Dasari, R. R., Feld, M. S. Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Applied Spectroscopy.2002, 56,150-154.
    [28]Kim, J. H., Kim, J. S., Choi, H., Lee, S. M., Jun, B. H., Yu, K. N., Kuk, E., Kim, Y. K., Jeong, D. H., Cho, M. H., Lee, Y. S. Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. Analytical Chemistry.2006,78, 6967-6973.
    [29]Lee, S., Kim, S., Choo, J., Shin, S. Y., Lee, Y. H., Choi, H. Y., Ha, S. H., Kang, K. H., Oh, C. H. Biological imaging of HEK293 cells expressing PLC gamma 1 using surface-enhanced raman microscopy. Analytical Chemistry.2007,79,916-922.
    [30]Park, H., Lee, S., Chen, L., Lee, E. K., Shin, S. Y., Lee, Y. H., Son, S. W., Oh, C. H., Song, J. M., Kang, S. H., Choo, J. SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods. Physical Chemistry Chemical Physics.2009,11, 7444-7449.
    [31]Qian, X. M., Peng, X. H., Ansari, D. O., Yin-Goen, Q., Chen, G. Z., Shin, D. M., Yang, L., Young, A. N., Wang, M. D., Nie, S. M. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnology.2008, 26,83-90.
    [32]Carpenter, G. Receptors for epidermal growth factor and other polypeptide mitogens. Annual Review of Biochemistry.1987,56,881-914.
    [33]Maruo, T., Yamasaki, M., Ladines-Llave, C. A., Mochizuki, M. Immunohistochemical demonstration of elevated expression of epidermal growth factor receptor in the neoplastic changes of cervical squamous epithelium. Cancer.1992,69,1182-1187.
    [34]Pfeiffer, D., Stellwag, B., Pfeiffer, A., Borlinghaus, P., Meier, W., Scheidel, P. Clinical implications of the epidermal growth factor receptor in the squamous cell carcinoma of the uterine cervix. Gynecologic Oncology.1989,33,146-150.
    [35]Todd, R., Wong, D. T. W. Epidermal growth factor receptor (EGFR) biology and human oral cancer. Histology and Histopathology.1999,14,491-500.
    [1](a) Kole, R., Sanzani, P. Antisense effects in the cell nucleus:Modification of splicing. Current Opinion in Molecular Therapeutics.2001,3,229-234. (b) Bilbao, G, Gomez-Navarro, J., Curiel, D. In Targeted Adenoviral Vectors for Cancer Genen Therapy. Walden, P., et al., Eds. Plenum Press:New York.1998,57,365-372.
    [2]Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G, Wu, A. M., Gambhir, S. S., Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science.2005,307,538-544.
    [3]Parak, W. J., Pellegrino, T., Plank, C. Labelling of cells with quantum dots. Nanotechnology.2005,16, R9-R25.
    [4]Walling, M. A., Novak, J. A., Shepard, J. R. E. Quantum dots for live cell and in vivo imaging. International Journal of Molecular Sciences.2009,10,441-491.
    [5]Biju, V., Itoh, T., Ishikawa, M. Delivering quantum dots to cells:bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chemical Socitey Reviews.2010,39,3031-3056.
    [6]Jayaraman, V., Rodgers, K. R., Mukerji, I., Spiro, T. G. Hemoglobin allostery:resonance Raman spectroscopy of kinetic intermediates. Science.1995,269,1843-1848.
    [7]Tenne, D. A., Bruchhausen, A., Lanzillotti-Kimura, N. D., Fainstein, A., Katiyar, R. S., Cantarero, A., Soukiassian, A., Vaithyanathan, V., Haeni, J. H., Tian, W., Schlom, D. G., Choi, K. J., Kim, D. M., Eom, C. B., Sun, H. P., Pan, X. Q., Li, Y. L., Chen, L. Q., Jia, Q. X., Nakhmanson, S. M., Rabe, K. M., Xi, X. X. Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy. Science.2006,313,1614-1616.
    [8]Puppels, G. J., de Mul, F. F., Otto, C, Greve, J., Robert-Nicoud, M., Arndt-Jovin, D. J., Jovin, T. M. Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature.1990,347,301-303.
    [9]胡继明,激光光谱分析与检测技术,生命分析化学,汪尔康,陈义主编,2006,科学出版社,北京。
    [10]Fleischmann, M., Hendra, P. J., McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters.1974,26,163-166.
    [11]Nie, S., Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science.1997,275,1102-1106.
    [12]Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R., and Feld, M. S. Ultrasensitive chemical analysis by Raman spectroscopy. Chemical Reviews.1999,99,2957-2976.
    [13]Kneipp, K., and Kneipp, H. Single molecule Raman scattering. Applied Spectroscopy. 2006,60,322A-334A.
    [14]Kneipp, K., Haka, A. S., Kneipp, H., Badizadegan, K., Yoshizawa, N., Boone, C., Shafer-Peltier, K. E., Motz, J. T., Dasari, R. R., Feld, M. S. Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Applied Spectroscopy.2002, 56,150-154.
    [15]Kim, J. H., Kim, J. S., Choi, H., Lee, S. M., Jun, B. H., Yu, K. N., Kuk, E., Kim, Y. K., Jeong, D. H., Cho, M. H., Lee, Y. S. Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. Analytical Chemistry.2006,78, 6967-6973.
    [16]Lee, S., Kim, S., Choo, J., Shin, S. Y., Lee, Y. H., Choi, H. Y., Ha, S. H., Kang, K. H., Oh, C. H. Biological imaging of HEK293 cells expressing PLC gamma 1 using surface-enhanced raman microscopy. Analytical Chemistry.2007,79,916-922.
    [17]Park, H., Lee, S., Chen, L., Lee, E. K., Shin, S. Y., Lee, Y. H., Son, S. W., Oh, C. H., Song, J. M., Kang, S. H., Choo, J. SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods. Physical Chemistry Chemical Physics.2009,11, 7444-7449.
    [18]Qian, X. M., Peng, X. H., Ansari, D. O., Yin-Goen, Q., Chen, G. Z., Shin, D. M., Yang, L. Young, A. N., Wang, M. D., Nie, S. M. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnology.2008, 26,83-90.
    [19]Kennedy, D. C., Tay, L. L., Lyn, R. K., Rouleau, Y., Hulse, J., Pezacki, J. P. Nanoscale aggregation of cellular beta (2)-adrenergic receptors measured by plasmonic interactions of functionalized nanoparticles. ACS Nano.2009,3,2329-2339.
    [20]Sujith, A., Itoh, T., Abe, H., Yoshida, K. I., Kiran, M. S., Biju, V., Ishikawa, M. Imaging the cell wall of living single yeast cells using surface-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry.2009,394,1803-1809.
    [21]Tay, L. L., Huang, P. J., Tanha, J., Ryan, S., Wu, X. H., Hulse, J., Chau, L. K. Silica encapsulated SERS nanoprobe conjugated to the bacteriophage tailspike protein for targeted detection of Salmonella. Chemical Communications.2012,48,1024-1026.
    [22]Yu, K. N., Lee, S. M., Han, J. Y., Park, H., Woo, M. A., Noh, M. S., Hwang, S. K., Kwon, J. T., Jin, H., Kim, Y. K., Hergenrother, P. J., Jeong, D. H., Lee, Y. S., Cho, M. H. Multiplex targeting, tracking, and imaging of apoptosis by fluorescent surface enhanced raman spectroscopic dots. Bioconjugate Chemistry.2007,18,1155-1162.
    [23]Woo, M. A., Lee, S. M., Kim, G., Baek, J., Noh, M. S., Kim, J. E., Park, S. J., Minai-Tehrani, A., Park, S. C., Seo, Y. T., Kim, Y. K., Lee, Y. S., Jeong, D. H., Cho, M. H. Multiplex immunoassay using fluorescent-surface enhanced Raman spectroscopic dots for the detection of bronchioalveolar stem cells in murine lung. Analytical Chemistry.2009, 81,1008-1015.
    [24]Noh, M. S., Jun, B. H., Kim, S., Kang, H., Woo, M. A., Minai-Tehrani, A., Kim, J. E., Kim, J., Park, J., Lim, H. T., Park, S. C, Hyeon, T., Kim, Y. K., Jeong, D. H., Lee, Y. S., Cho, M. H. Magnetic surface-enhanced Raman spectroscopic (M-SERS) dots for the identification of bronchioalveolar stem cells in normal and lung cancer mice. Biomaterials. 2009,30,3915-3925.
    [25]Jun, B. H., Noh, M. S., Kim, J., Kim, G., Kang, H., Kim, S. M., Seo, Y. T., Baek, J., Kim, J. H., Park, J., Kim, S., Kim, Y. K., Hyeon, T., Cho, M. H., Jeong, D. H., Lee, Y. S. Multifunctional Silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small.2010,6,119-125.
    [26]Zavaleta, C. L., Smith, B. R., Walton, I., Doering, W., Davis, G., Shojaei, B., Natan, M. J., Gambhir, S. S. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America.2009,106,13511-13516.
    [27]Kennedy, D. C., Hoop, K. A., Tay, L. L., Pezacki, J. P. Development of nanoparticle probes for multiplex SERS imaging of cell surface proteins. Nanoscale.2010,2, 1413-1416.
    [28]Matschulat, A., Drescher, D., Kneipp, J. Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems. ACS Nano.2010,4, 3259-3269.
    [29]Maiti, K. K., Samanta, A., Vendrell, M., Soh, K. S., Olivo, M., Chang, Y. T. Multiplex cancer cell detection by SERS nanotags with cyanine and triphenylmethine Raman reporters. Chemical Communications.2011,47,3514-3516.
    [30]Xie, W., Wang, L., Zhang, Y. Y., Su, L., Shen, A. G., Tan, J. Q., Hu, J. M. Nuclear targeted nanoprobe for single living cell detection by Surface-Enhanced Raman scattering. Bioconjugate Chemistry.2009,20,768-773.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700