人参二醇组皂苷改善LPS诱导急性肾损伤小鼠肾功能分子机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     脓毒血症诱发的失控性全身性炎症反应综合征(SIRS)是导致多器官功能衰竭的重要原因,而急性肾损伤(AKI)是其中最严重的并发症,致死率极高。然而,外源性糖皮质激素能逆转这种危机状态,使心血管系统恢复稳态,各器官的功能恢复,从而可挽救患者生命[6]。糖皮质激素(GC)的生物学活性由糖皮质激素受体(Glucocorticoidreceptor,GR)介导,GR调节基因的表达,当GC与GR结合后可导致GR的活化,活化的GR入核后与正调节的糖皮质激素反应元件(Glucocorticoid response element,GRE)结合,能够诱导一些抗炎蛋白的表达,如IκB。目前认为,GR发挥抗炎作用的主要机制是通过蛋白与蛋白之间的相互作用来发挥转录抑制作用;而GC的大多数副作用主要是由其转录激活作用诱导的。实际上,糖皮质激素抢救危症和多种难治性疾病的功能很强大。尽管如此,糖皮质激素的副作用不容忽视,譬如,胃肠道应激性出血可成为各种危症患者的隐形杀手。此外,肥胖、骨质疏松症和胰岛素抵抗等副作用难以防治[7]。因此,临床急需有与糖皮质激素类似疗效而无糖皮质激素样副作用的药物。
     自古以来,人参被誉为“百草之王”。为用现代技术证实人参有“起死回生”的功效,本人就读的学科通过系列研究发现,人参二醇组皂苷(PDS)有与地塞米松相类似地改善失血性休克犬心肺微循环,进而逆转心肺功能等作用;在LPS诱导的急性肺损伤大鼠模型中,PDS和地塞米松都可上调IκB的表达,转位入核的NF-κB减少。使细胞因子的分泌明显减少,从而有效地阻遏了免疫系统的活化,实现对内毒素休克大鼠脏器损伤的逆转作用。特别是PDS没有地塞米松相类似的副作用。
     目的:
     拟在建立LPS诱导急性肾损伤(AKI)小鼠模型的基础上,对比研究PDS和地塞米松逆转LPS诱导AKI肾功能的作用与机制。揭示PDS和地塞米松相类似地改善AKI肾功能作用的分子机制,为人参二醇组皂苷开发成替代地塞米松等糖皮质激素的药物提供理论依据。
     方法与结果:
     1.成功地复制了LPS诱导的AKI早期动物模型,PDS与地塞米松有类似的保护AKI小鼠肾功能的作用
     1.1实验动物分组与处理
     C57BL/6小鼠随机分为4组(n=8):盐水对照组(Control组)、LPS模型组(LPS组)、PDS+LPS组、Dexa+LPS组,对照组经腹腔注射0.9%氯化钠注射液0.5ml,其余三组分别经腹腔注射LPS10mg/kg。PDS+LPS组、Dexa+LPS组小鼠在LPS注射前1h分别经腹腔注射PDS(25.0mg/kg)或地塞米松(2.5mg/kg)。
     LPS处理12h后麻醉下,取肾脏、心脏、肝脏等组织冻存或固定,备蛋白表达与形态学观察;采集血液,全自动生化分析仪检测血清尿素氮(BUN)、肌酐(CREA)、谷丙转氨酶(ALT)、谷草转氨酶(AST)、乳酸脱氢酶(LDH)水平。
     1.2实验结果
     LPS组小鼠血尿素氮和肌酐水平与生理盐水对照组比较极显著增高(P<0.01)。LPS组肾脏组织切片HE染色见轻微改变。说明LPS(10mg/kg,12h)诱导的AKI模型成功,并属于AKI的早期阶段。LPS组血清谷丙转氨酶(ALT)、谷草转氨酶(AST)、乳酸脱氢酶(LDH)含量与对照组比较明显增高(P<0.01),显示LPS组已发生心脏和肝脏细胞的明显损伤,证明LPS诱导了全身炎症反应综合征。血尿素氮和肌酐含量,PDS+LPS组和Dexa+LPS组与LPS组比较均明显降低(P<0.05),说明PDS有与地塞米松相类似地保护肾功能的作用。
     2. PDS和地塞米松有类似的逆转LPS诱导AKI肾功能的机制
     2.1PDS和地塞米松影响LPS诱导的肾脏细胞凋亡相关蛋白表达
     应用免疫组化及免疫印迹法检测不同组凋亡相关蛋白的表达。结果显示LPS组凋亡蛋白Bax、Cleave-caspase3、Cyto C表达增多,而PDS+LPS组及Dexa+LPS组较LPS组表达减少;抗凋亡蛋白Bcl-2在LPS组表达减少,而PDS+LPS组及Dexa+LPS组较LPS组表达增多。提示注射LPS(10mg/kg)12小时后小鼠肾脏细胞发生凋亡,而PDS+LPS组及Dexa+LPS组凋亡程度较LPS组减轻。可见,PDS及地塞米松影响凋亡相关蛋白表达,减少LPS诱导的肾脏细胞凋亡。
     2.2PDS和地塞米松抑制NF-κB信号转导通路,减少AKI小鼠细胞因子的产生与释放
     2.2.1应用免疫印迹的方法检测IκB和NF-κB p65、p50的蛋白表达
     结果表明LPS组IκB的蛋白表达水平与对照组比较明显降低(P<0.05),PDS+LPS组IκB蛋白表达水平明显高于LPS组(P<0.05),Dexa+LPS组的IκB表达水平与LPS组比较也有增加趋势。LPS组的核NF-κB P65和P50的表达水平与对照组比较显著增高(P<0.05)。然而,与LPS组比较,PDS+LPS组和Dexa+LPS组的核NF-κB P50表达水平显著下调(P<0.05),NF-κB P65表达水平有下降趋势。可见,PDS和地塞米松抑制了NF-κB信号通路的活化。
     2.2.2应用酶联免疫法检测血清中TNF-α和IL-6含量
     结果显示,LPS组TNF-α和IL-6含量与对照组比较显著增高(P<0.01)。然而,PDS+LPS组的TNF-α和IL-6含量与LPS组比较均明显降低(P<0.05),Dexa+LPS组与LPS组比较TNF-α有下降趋势,IL-6显著降低(P<0.05)。这是PDS和地塞米松抑制了NF-κB信号通路的结果。
     2.3PDS和地塞米松有抑制肾脏组织氮氧自由基产生和上调SOD活性的作用
     LPS组iNOS蛋白表达水平和NO含量与对照组比较均显著增高(P<0.05)。然而,PDS+LPS组和Dexa+LPS组的iNOS蛋白表达水平和NO含量均显著地低于LPS组(P<0.05)。
     LPS组MDA含量与对照组比较明显增高(P<0.05),而清除氧自由基的酶SOD含量和Mn-SOD的蛋白表达水平明显下降(P<0.05)。LPS诱导的氧化应激加重AKI小鼠的肾脏功能障碍。然而,PDS和地塞米松则通过抗氧化应激作用保护LPS诱导的AKI肾脏功能。
     3.PDS与地塞米松有类似地增加细胞核GR表达的作用,可能是GR的功能配体
     3.1PDS明显增加了细胞核GR的表达
     应用免疫印迹的方法检测GR的表达。结果表明总的GR(t-GR)除对照组表达最低,其余3组t-GR表达水平均明显增高,组间没有差异。LPS组核GR(n-GR)的表达水平在各组中最低,以PDS+LPS组的n-GR表达水平为最高,Dexa+LPS组次之。故推测,对于GR来说,PDS有地塞米松样的GR配体作用。
     3.2PDS可能是糖皮质激素受体的功能配体,并呈剂量依赖性增加GR的转录活性
     在含有糖皮质激素反应元件的荧光素酶报告基因(GRE-Luciferase)与GR共转染293细胞中荧光强度很低。当加入地塞米松100μmol/L时,GR的转录活性增加36.5倍。在用不同剂量PDS取代地塞米松时,GR的转录活性如下:①加入25μg/mlPDS时,对GR的转录活性没有影响;②加入PDS为50μg/ml时GR的转录活性增加5.5倍;③当加入PDS为100μg/ml时,GR的转录活性增至12倍。可见,PDS有与地塞米松样和GR结合作用,并呈剂量依赖性增加GR的转录活性。因此,我们推测PDS可能是GR的功能配体。
     结论:
     1.人参二醇组皂苷有与地塞米松相类似地逆转LPS诱导的小鼠AKI作用。而且,这种逆转作用是通过相同的机制实现的。
     2.人参二醇组皂苷可能是GR功能性配体的依据:PDS和地塞米松有同样的增强细胞核糖皮质激素受体(GR)表达的作用;在含有糖皮质激素反应元件的荧光素酶报告基因(GRE-Luciferase)与GR共转染293细胞反应体系中,PDS有与地塞米松相似的与GR结合作用,并且,PDS呈剂量依赖性增加GR的转录活性,故推测PDS可能是GR的功能配体,尚需进一步研究证实。
     3.人参二醇组皂苷具有潜在临床应用前景。
Background:
     Uncontrolled sepsis-induced systemic inflammatory responsesyndrome (SIRS) induced by sepsis is a main cause of multiple organfailure. And acute kidney injury (AKI) is one of the most seriouscomplications in SIRS with high mortality rate. However, exogenousglucocorticoids can reverse this state of crisis and save the lives of patientsthrough restore the cardiovascular system homeostasis and the organfunction. The biological activity of glucocorticoids (GC) is mediated by theglucocorticoid receptor (GR), which regulate gene expression. GR isactivated when the GC is combined with GR. Then activated GR enter intonucleus to combine with positive regulation GRE, which can induce theexpression of several inflammatory proteins such as IκB. It is believed thatthe transcriptional suppression which induced by the interaction of proteinand protein is the main mechanism of GR anti-inflammatory effects; whilemost of the main side effects of GC are induced by transcriptionalactivation. In fact, glucocorticoids are very powerful in rescuing riskdisease and a variety of refractory disease. However, the side effects ofglucocorticoids can not be ignored, for example, stress-inducedgastrointestinal bleeding can become dangerous in patients with a varietyof invisible killer. In addition, the side effects of obesity, osteoporosis,insulin resistance are difficult to control. Therefore, It is an urgent clinicalneed to find a drug with glucocorticoids similar curative effect without sideeffects of glucocorticoids.
     Since ancient times, ginseng is known as the "King of Herbs." The"revived" effect of Ginseng is confirmed by modern technology. Ourprevious results showed that the effect of panaxdiol saponins (PDS) issimilar to dexamethasone (Dexa) in improving cardiopulmonarymicrocirculation in hemorrhagic shock dogs. PDS and dexamethasone canupregulate the expression of IκB and reduce NF-κB of translocation intothe nucleus in acute lung injury induced by LPS in rat. So that thesecretion of cytokines was significantly reduced, the activation of theimmune system was surpressed, then the organ damage induced byendotoxin shock was reverse in rats. Particularly, PDS hadn’t side effects.
     Purpose:
     To establish acute kidney injury (AKI) induced by LPS in mouse, andexplore the effect and mechanism of PDS and dexamethasone on AKIinduced by LPS. It will provide a theoretical basis for PDS developed intoalternative glucocorticoid dexamethasone drugs.
     Methods and Results:
     1. LPS-induced AKI animal models were successfully established,PDS and dexamethasone had a similar effect in the protection of renalfunction in AKI mice
     1.1Group and Treatment
     C57BL/6mice were randomly divided into four groups (n=8): salinegroup(Control group), LPS model group (LPS group), PDS+LPS group,Dexa+LPS group. The mice were injected intraperitoneally0.9%Nacl0.5ml in the control group, and the remaining mice were injectedintraperitoneally LPS10mg/kg. The mice of PDS+LPS group andDexa+LPS group were respectively injected intraperitoneally PDS(25.0mg/kg) or dexamethasone (2.5mg/kg) before1h of LPS injection.
     12h after LPS treatment, the kidney, heart and liver tissues of mice were taken under anesthesia and frozen or fixed them, prepared for proteinexpression and morphological observation. The blood were collected to testblood urea nitrogen (BUN), serum creatinine (CREA), alanineaminotransferase (ALT), aspartate aminotransferase (AST), lactatedehydrogenase (LDH) level by automatic biochemical analyzer.
     1.2Results
     The blood urea nitrogen and creatinine levels in LPS group mice weresignificantly higher (P<0.01) than that of saline control group. The kidneyin LPS group had minor morphological changes in HE staining. Thissuggested that LPS-induced AKI animal models were successfullyestabalished, and is in the early stages of AKI. Serum alanineaminotransferase (ALT), aspartate aminotransferase (AST), lactatedehydrogenase (LDH) levels in LPS group were significantly higher thanthat of control group (P <0.01). It suggested that the heart and liver cells inthe LPS group was significantly damage. It proved that LPS can induce asystemic inflammatory response syndrome. Blood urea nitrogen andcreatinine levels in PDS+LPS group and Dexa+LPS group weresignificantly lower than that of LPS group (P<0.05). This suggested thatthe PDS and dexamethasone had similarly protection of renal function.
     2. PDS and dexamethasone have a similar mechanism in the reversalof LPS-induced AKI renal function
     2.1The effect of PDS and dexamethasone on apoptosis-relatedproteins in LPS-induced renal cell
     We detected the expression of apoptosis-related proteins in differentgroups by immunohistochemistry and Western blot. The results showedthat the expression of Bax, Cyto C, cleaved caspase3increased in LPSgroup, while the expression in PDS+LPS group and Dexa+LPS group werelower than LPS group; the expression of anti-apoptotic protein Bcl-2in LPS group decreased and the expression in PDS+LPS group andDexa+LPS group increased compared with LPS group. This suggested thatapoptosis occurred in renal cell after12h of LPS (10mg/kg) injection, andthe degree of apoptosis reduced in PDS+LPS group and Dexa+LPS groupcompared with LPS group. it is thus clear that PDS and dexamethasoneaffect the expression of apoptosis-related proteins and reduce LPS-inducedrenal cell apoptosis.
     2.2PDS and dexamethasone can reduce the production and release ofcytokines through inhibiting NF-κB signaling pathway in mice AKI
     2.2.1The expression of IκB and NF-κB p65, p50protein was detectedby Western blot
     The results showed that IκB protein expression levels in LPS groupwere significantly lower than that of control group (P<0.05). IκB proteinexpression levels in PDS+LPS group were significantly higher than that ofthe LPS group (P<0.05). Compaired with LPS group, IκB expression levelsin Dexa+LPS group also had an increasing trend. Nuclear NF-κB P65andP50expression levels in LPS group were significantly higher than that ofcontrol group (P<0.05). However, compared with the LPS group, nuclearNF-κB P50expression levels in PDS+LPS group and Dexa+LPS groupwere significantly reduced (P<0.05),nuclear NF-κB P65expression levelshad a downward trend. So PDS and dexamethasone inhibited the activationof NF-κB signaling pathway.
     2.2.2The serum TNF-α and IL-6levels were tested by enzyme-linkedimmunosorbent assay
     The results showed that TNF-α and IL-6levels in LPS group wassignificantly higher than that of control group (P <0.01). However, TNF-αand IL-6levels in PDS+LPS group were significantly lower than that ofLPS group (P<0.05). Compared with LPS group, TNF-α level in Dexa+LPS group had a downward trend. IL-6of Dexa+LPS group weresignificantly lower (P<0.05). It is due to NF-κB signaling pathway wassuppressed by PDS and dexamethasone.
     2.3PDS and dexamethasone can inhibit nitrogen-oxygen free radicalsproduction and increase SOD activity in kidney tissue
     iNOS protein expression and NO levels in LPS group weresignificantly higher than that of control group (P<0.05). However, iNOSprotein expression and NO levels in PDS+LPS group and Dexa+LPS groupwere significantly lower than that of LPS group (P<0.05).
     MDA levels in LPS group were significantly higher than that ofcontrol group (P<0.05), while the SOD levels and Mn-SOD enzymeprotein expression which scavenging oxygen free radicals decreasedobviously (P<0.05). Oxidative stress induced by LPS aggravated kidneydysfunction in AKI mice. However, PDS and dexamethasone protectedkidney function of LPS-induced AKI through resistance to oxidative stress.
     3. PDS and dexamethasone have a similar effect of increasing nuclearGR expression. PDS may be a functional ligand of GR
     3.1PDS significantly increased the expression of GR in the nucleus
     The expression of glucocorticoid receptor was detected by Westernblot. The results showed that total GR(t-GR) in control group was thelowest and the t-GR expression of remaining three groups weresignificantly increased, no difference between the groups. The nuclear GR(n-GR) expression levels in LPS group was the lowest in each group, then-GR expression levels in PDS+LPS group was highest, Dexa+LPS groupfollowed. It is speculated that for GR, PDS has dexamethasone-like GRligand effects.
     3.2PDS may be a functional ligand of the glucocorticoid receptor andincreases transcriptional activity of GR in a dose-dependent
     The low fluorescence intensity can be found in containingglucocorticoid response element luciferase reporter gene (GRE-Luciferase)and GR co-transfected293cells. When adding dexamethasone(100μmol/L), the transcription activity of GR increased by36.5times.When replacing dexamethasone with different doses of PDS, GRtranscription activity was as follows:①When adding PDS (25μg/ml), thetranscriptional activity of the GR was not affected;②W henadding PDS(50μg/ml), the transcriptional activity of GR increased by5.5times;③When adding PDS(100μg/ml), the transcriptional activity of GRincreased by12times. So, PDS can bind with GR just like dexamethasoneand increase GR transcriptional activity in a dose-dependent. Thus, wethink that PDS may be a functional ligand of GR.
     Conclusion:
     1. Panaxdiol saponins and dexamethasone had similarly reversedeffect on LPS-induced AKI mice. Moreover, this reversed effect wasachieved by the same mechanisms.
     2. PDS may be the functional ligand of GR: PDS and dexamethasonehave the same effect of enhancing the nuclear glucocorticoid receptor (GR)expression. In the reaction system of containing glucocorticoid responseelement luciferase reporter gene (GRE-Luciferase) and GR co-transfected293cells, PDS and dexamethasone have similar effect of binding with GRand PDS increases transcriptional activity of GR in a dose-dependent. Thuswe think that PDS may be a functional ligand of GR. Further research isneeded to confirm the finding.
     3. PDS has potential clinical application prospect.
引文
[1] Ve1nkatachalam M A. Weinberg J M., The tubule pathology of septicAKI. A neglected area of research comes of age, KidneyInternational2012,81,338-340
    [2] Annane D., Corticosteroids for severe sepsis: an evidence-basedguide for physicians. Ann Intensive Care.2011;1:7.
    [3] Regueira T, Andresen M, Mercado M, et al.[Physiopathology ofacute renal failure during sepsis][J]. Med Intensiva.2011,35(7):424-432.
    [4] Choi H M, Jo S K, Kim S H, et al. Glucocorticoids attenuate septicacute kidney injury[J]. Biochem Biophys Res Commun.2013,435(4):678-684.
    [5] Dean B J, Franklin S L, Murphy R J, et al. Glucocorticoids inducespecific ion-channel-mediated toxicity in human rotator cuff tendon:a mechanism underpinning the ultimately deleterious effect of steroidinjection in tendinopathy?[J]. Br J Sports Med.2014.
    [6] Annane D, Bellissant E, Bollaert P E, et al. Corticosteroids for severesepsis and septic shock: a systematic review and meta-analysis[J].BMJ.2004,329(7464):480.
    [7] Brennan-Speranza T C, Henneicke H, Gasparini S J, et al.Osteoblasts mediate the adverse effects of glucocorticoids on fuelmetabolism[J]. J Clin Invest.2012,122(11):4172-4189.
    [8] Ferris H A, Kahn C R. New mechanisms of glucocorticoid-inducedinsulin resistance: make no bones about it [J]. J Clin Invest.2012,122(11):3854-3857.
    [9] Meyer G, Badenhoop K. Glucocorticoid-induced insulin resistanceand diabetes mellitus. Receptor-postreceptor mechanisms, localcortisol action, and new aspects of antidiabetic therapy[J]. Med Klin(Munich).2003,98(5):266-270.
    [10] Choi H M, Jo S K, Kim S H, et al. Glucocorticoids attenuate septicacute kidney injury[J]. Biochem Biophys Res Commun.2013,435(4):678-684.
    [11] Annane D. Corticosteroids for severe sepsis: an evidence-basedguide for physicians[J]. Ann Intensive Care.2011,1(1):7.
    [12] Annane D. Adrenal insufficiency in sepsis[J]. Curr Pharm Des.2008,14(19):1882-1886.
    [13] Dixon W G, Bansback N. Understanding the side effects ofglucocorticoid therapy: shining a light on a drug everyone thinksthey know[J]. Ann Rheum Dis.2012,71(11):1761-1764.
    [14] Mehta R L, Kellum J A, Shah S V, et al. Acute Kidney InjuryNetwork: report of an initiative to improve outcomes in acute kidneyinjury[J]. Crit Care.2007,11(2): R31.
    [15] Hoste E A, Clermont G, Kersten A, et al. RIFLE criteria for acutekidney injury are associated with hospital mortality in critically illpatients: a cohort analysis[J]. Crit Care.2006,10(3): R73.
    [16]张凌,杨莹莹,付平.连续性肾脏替代治疗急性肾损伤的时机模式及剂量[J].中国实用内科杂志.2011(04):301-304.
    [17] Bellomo R, Cass A, Cole L, et al. Intensity of continuousrenal-replacement therapy in critically ill patients[J]. N Engl J Med.2009,361(17):1627-1638.
    [18] Parikh C R, Belcher J. ACP Journal Club. Higher-intensitycontinuous renal-replacement therapy did not reduce mortality incritically ill patients with kidney injury[J]. Ann Intern Med.2010,152(4):25.
    [19] Palevsky P M, Zhang J H, O'Connor T Z, et al. Intensity of renalsupport in critically ill patients with acute kidney injury[J]. N Engl JMed.2008,359(1):7-20.
    [20] Coca S G, Yusuf B, Shlipak M G, et al. Long-term risk of mortalityand other adverse outcomes after acute kidney injury: a systematicreview and meta-analysis[J]. Am J Kidney Dis.2009,53(6):961-973.
    [21]梅长林,刘森炎.急性肾损伤诊治进展[J].解放军医学杂志.2013(05):342-346.
    [22]杨秀川,洪大情.急性肾损伤诊治进展[J].实用医院临床杂志.2012(02):1-3.
    [23] Yang F, Zhang L, Wu H, et al. Clinical analysis of cause, treatmentand prognosis in acute kidney injury patients[J]. PLoS One.2014,9(2): e85214.
    [24] Murugan R, Kellum J A. Acute kidney injury: what's theprognosis?[J]. Nat Rev Nephrol.2011,7(4):209-217.
    [25] Langham R G, Bellomo R, D'Intini V, et al. KHA-CARI Guideline:KHA-CARI Adaptation of the KDIGO Clinical Practice Guidelinefor Acute Kidney Injury[J]. Nephrology (Carlton).2014.
    [26] James M, Bouchard J, Ho J, et al. Canadian Society of Nephrologycommentary on the2012KDIGO clinical practice guideline for acutekidney injury[J]. Am J Kidney Dis.2013,61(5):673-685.
    [27]汤晓静,梅长林. KDIGO指南解读:急性肾损伤的诊治[J].中国实用内科杂志.2012(12):914-917.
    [28] Ricci Z, Cruz D, Ronco C. The RIFLE criteria and mortality in acutekidney injury: A systematic review[J]. Kidney Int.2008,73(5):538-546.
    [29] Duan S, Liu Q, Pan P, et al. RIFLE and AKIN criteria for mortalityand risk factors of acute kidney injury in hospitalized patients[J].Zhong Nan Da Xue Xue Bao Yi Xue Ban.2013,38(12):1243-1252.
    [30] Ali T, Khan I, Simpson W, et al. Incidence and outcomes in acutekidney injury: a comprehensive population-based study[J]. J Am SocNephrol.2007,18(4):1292-1298.
    [31] Hsu C Y, Mcculloch C E, Fan D, et al. Community-based incidenceof acute renal failure[J]. Kidney Int.2007,72(2):208-212.
    [32] Hoste E A, Clermont G, Kersten A, et al. RIFLE criteria for acutekidney injury are associated with hospital mortality in critically illpatients: a cohort analysis[J]. Crit Care.2006,10(3): R73.
    [33] Cruz D N, Bolgan I, Perazella M A, et al. North East ItalianProspective Hospital Renal Outcome Survey on Acute Kidney Injury(NEiPHROS-AKI): targeting the problem with the RIFLE Criteria[J].Clin J Am Soc Nephrol.2007,2(3):418-425.
    [34] Bagshaw S M, George C, Bellomo R. A comparison of the RIFLEand AKIN criteria for acute kidney injury in critically ill patients[J].Nephrol Dial Transplant.2008,23(5):1569-1574.
    [35] Thakar C V, Christianson A, Freyberg R, et al. Incidence andoutcomes of acute kidney injury in intensive care units: a VeteransAdministration study[J]. Crit Care Med.2009,37(9):2552-2558.
    [36] Joannidis M, Metnitz B, Bauer P, et al. Acute kidney injury incritically ill patients classified by AKIN versus RIFLE using theSAPS3database[J]. Intensive Care Med.2009,35(10):1692-1702.
    [37] Uchino S, Bellomo R, Goldsmith D, et al. An assessment of theRIFLE criteria for acute renal failure in hospitalized patients[J]. CritCare Med.2006,34(7):1913-1917.
    [38] Fang Y, Ding X, Zhong Y, et al. Acute kidney injury in a Chinesehospitalized population[J]. Blood Purif.2010,30(2):120-126.
    [39] Murugan R, Kellum J A. Fluid balance and outcome in acute kidneyinjury: is fluid really the best medicine?[J]. Crit Care Med.2012,40(6):1970-1972.
    [40] Murugan R, Karajala-Subramanyam V, Lee M, et al. Acute kidneyinjury in non-severe pneumonia is associated with an increasedimmune response and lower survival[J]. Kidney Int.2010,77(6):527-535.
    [41]李晓庆,王宗谦.急性肾损伤早期生物学标志物研究[J].中国实用内科杂志.2011(10):802-804.
    [42] Barrera-Chimal J, Bobadilla N A. Are recently reported biomarkershelpful for early and accurate diagnosis of acute kidney injury?[J].Biomarkers.2012,17(5):385-393.
    [43] Tarif N, Alwakeel J S, Mitwalli A H, et al. Serum cystatin C as amarker of renal function in patients with acute renal failure[J]. SaudiJ Kidney Dis Transpl.2008,19(6):918-923.
    [44] Herget-Rosenthal S, Marggraf G, Husing J, et al. Early detection ofacute renal failure by serum cystatin C[J]. Kidney Int.2004,66(3):1115-1122.
    [45]钟白云,王堃,廖经忠,等.血清胱抑素-C与危重病人急性肾损伤[J].中国现代医学杂志.2009(11):1705-1709.
    [46]王骞,龚学忠.急性肾损伤早期生物标志物研究及诊治进展[J].世界中西医结合杂志.2014(01):105-108.
    [47]刘红,刘颖,岳华,等.尿肾损伤分子-1在急性肾损伤诊断中的临床价值[J].海南医学.2012(02):95-96.
    [48] Vaidya V S, Niewczas M A, Ficociello L H, et al. Regression ofmicroalbuminuria in type1diabetes is associated with lower levelsof urinary tubular injury biomarkers, kidney injury molecule-1, andN-acetyl-beta-D-glucosaminidase[J]. Kidney Int.2011,79(4):464-470.
    [49] Vaidya V S, Ozer J S, Dieterle F, et al. Kidney injury molecule-1outperforms traditional biomarkers of kidney injury in preclinicalbiomarker qualification studies[J]. Nat Biotechnol.2010,28(5):478-485.
    [50] He Z, Lu L, Altmann C, et al. Interleukin-18binding proteintransgenic mice are protected against ischemic acute kidney injury[J].Am J Physiol Renal Physiol.2008,295(5): F1414-F1421.
    [51] Mommsen P, Frink M, Pape H C, et al. Elevated systemic IL-18andneopterin levels are associated with posttraumatic complicationsamong patients with multiple injuries: a prospective cohort study[J].Injury.2009,40(5):528-534.
    [52] Han W K, Waikar S S, Johnson A, et al. Urinary biomarkers in theearly diagnosis of acute kidney injury[J]. Kidney Int.2008,73(7):863-869.
    [53] Han W K, Wagener G, Zhu Y, et al. Urinary biomarkers in the earlydetection of acute kidney injury after cardiac surgery[J]. Clin J AmSoc Nephrol.2009,4(5):873-882.
    [54] Sinha V, Vence L M, Salahudeen A K. Urinary tubular protein-basedbiomarkers in the rodent model of cisplatin nephrotoxicity: acomparative analysis of serum creatinine, renal histology, andurinary KIM-1, NGAL, and NAG in the initiation, maintenance, andrecovery phases of acute kidney injury[J]. J Investig Med.2013,61(3):564-568.
    [55] Trof R J, Di Maggio F, Leemreis J, et al. Biomarkers of acute renalinjury and renal failure[J]. Shock.2006,26(3):245-253.
    [56] Huang Y C, Wu Y L, Lee M H, et al. Association of renalbiomarkers with3-month and1-year outcomes among critically illacute stroke patients[J]. PLoS One.2013,8(9): e72971.
    [57] Schmidt-Ott K M, Mori K, Li J Y, et al. Dual action of neutrophilgelatinase-associated lipocalin[J]. J Am Soc Nephrol.2007,18(2):407-413.
    [58] Valette X, du Cheyron D. Accuracy of plasma neutrophilgelatinase-associated lipocalin in the early diagnosis ofcontrast-induced acute kidney injury in critical illness: reply toQuartin et al[J]. Intensive Care Med.2013,39(12):2239.
    [59] Valette X, Savary B, Nowoczyn M, et al. Accuracy of plasmaneutrophil gelatinase-associated lipocalin in the early diagnosis ofcontrast-induced acute kidney injury in critical illness[J]. IntensiveCare Med.2013,39(5):857-865.
    [60] Quartin A, Schein R, Cely C. Accuracy of plasma neutrophilgelatinase-associated lipocalin in the early diagnosis ofcontrast-induced acute kidney injury in critical illness[J]. IntensiveCare Med.2013,39(9):1670.
    [61] Evans R G, Gardiner B S, Smith D W, et al. Intrarenal oxygenation:unique challenges and the biophysical basis of homeostasis[J]. Am JPhysiol Renal Physiol.2008,295(5): F1259-F1270.
    [62] Rabelink T J, van Zonneveld A J. Coupling eNOS uncoupling to theinnate immune response[J]. Arterioscler Thromb Vasc Biol.2006,26(12):2585-2587.
    [63] Cooper C E, Giulivi C. Nitric oxide regulation of mitochondrialoxygen consumption II: Molecular mechanism and tissuephysiology[J]. Am J Physiol Cell Physiol.2007,292(6):C1993-C2003.
    [64] Giulivi C, Kato K, Cooper C E. Nitric oxide regulation ofmitochondrial oxygen consumption I: cellular physiology[J]. Am JPhysiol Cell Physiol.2006,291(6): C1225-C1231.
    [65] Deng A, Miracle C M, Suarez J M, et al. Oxygen consumption in thekidney: effects of nitric oxide synthase isoforms and angiotensin II[J].Kidney Int.2005,68(2):723-730.
    [66] Hultstrom M. Neurohormonal interactions on the renal oxygendelivery and consumption in haemorrhagic shock-induced acutekidney injury[J]. Acta Physiol (Oxf).2013.
    [67] Deng A, Miracle C M, Lortie M, et al. Kidney oxygen consumption,carbonic anhydrase, and proton secretion[J]. Am J Physiol RenalPhysiol.2006,290(5): F1009-F1015.
    [68] Johannes T, Mik E G, Klingel K, et al. Low-dosedexamethasone-supplemented fluid resuscitation reversesendotoxin-induced acute renal failure and prevents corticalmicrovascular hypoxia[J]. Shock.2009,31(5):521-528.
    [69] Johannes T, Ince C, Klingel K, et al. Iloprost preserves renaloxygenation and restores kidney function in endotoxemia-relatedacute renal failure in the rat[J]. Crit Care Med.2009,37(4):1423-1432.
    [70] Legrand M, Almac E, Mik E G, et al. L-NIL prevents renalmicrovascular hypoxia and increase of renal oxygen consumptionafter ischemia-reperfusion in rats[J]. Am J Physiol Renal Physiol.2009,296(5): F1109-F1117.
    [71] Verstrepen L, Bekaert T, Chau T L, et al. TLR-4, IL-1R and TNF-Rsignaling to NF-kappaB: variations on a common theme[J]. Cell MolLife Sci.2008,65(19):2964-2978.
    [72] Wu H, Chen G, Wyburn K R, et al. TLR4activation mediates kidneyischemia/reperfusion injury[J]. J Clin Invest.2007,117(10):2847-2859.
    [73] Li L, Chen L, Hu L, et al. Nuclear factor high-mobility group box1mediating the activation of Toll-like receptor4signaling inhepatocytes in the early stage of nonalcoholic fatty liver disease inmice[J]. Hepatology.2011,54(5):1620-1630.
    [74] Abdulahad D A, Westra J, Reefman E, et al. High mobility groupbox1(HMGB1) in relation to cutaneous inflammation in systemiclupus erythematosus (SLE)[J]. Lupus.2013,22(6):597-606.
    [75] Lei C, Lin S, Zhang C, et al. Effects of high-mobility group box1oncerebral angiogenesis and neurogenesis after intracerebralhemorrhage[J]. Neuroscience.2013,229:12-19.
    [76] Medzhitov R, Preston-Hurlburt P, Janeway C J. A human homologueof the Drosophila Toll protein signals activation of adaptiveimmunity[J]. Nature.1997,388(6640):394-397.
    [77] Lee J I, Burckart G J. Nuclear factor kappa B: importanttranscription factor and therapeutic target[J]. J Clin Pharmacol.1998,38(11):981-993.
    [78] Lee J I, Ganster R W, Geller D A, et al. Cyclosporine A inhibits theexpression of costimulatory molecules on in vitro-generateddendritic cells: association with reduced nuclear translocation ofnuclear factor kappa B[J]. Transplantation.1999,68(9):1255-1263.
    [79] Lee J W, Kim S C, Ko Y S, et al. Renoprotective effect ofparicalcitol via a modulation of the TLR4-NF-kappaB pathway inischemia/reperfusion-induced acute kidney injury[J]. BiochemBiophys Res Commun.2014,444(2):121-127.
    [80] Xing N, L M M, Bachman L A, et al. Distinctive dendritic cellmodulation by vitamin D(3) and glucocorticoid pathways[J].Biochem Biophys Res Commun.2002,297(3):645-652.
    [81] Tan X, Li Y, Liu Y. Therapeutic role and potential mechanisms ofactive Vitamin D in renal interstitial fibrosis[J]. J Steroid BiochemMol Biol.2007,103(3-5):491-496.
    [82] Tian J, Liu Y, Williams L A, et al. Potential role of active vitamin Din retarding the progression of chronic kidney disease[J]. NephrolDial Transplant.2007,22(2):321-328.
    [83] Borras M, Panizo S, Sarro F, et al. Assessment of the potential roleof active vitamin D treatment in telomere length: a case-control studyin hemodialysis patients[J]. Clin Ther.2012,34(4):849-856.
    [84] Park J W, Bae E H, Kim I J, et al. Paricalcitol attenuatescyclosporine-induced kidney injury in rats[J]. Kidney Int.2010,77(12):1076-1085.
    [85] Park J W, Bae E H, Kim I J, et al. Renoprotective effects ofparicalcitol on gentamicin-induced kidney injury in rats[J]. Am JPhysiol Renal Physiol.2010,298(2): F301-F313.
    [86] Ari E, Kedrah A E, Alahdab Y, et al. Antioxidant and renoprotectiveeffects of paricalcitol on experimental contrast-induced nephropathymodel[J]. Br J Radiol.2012,85(1016):1038-1043.
    [87] Verlinden L, Leyssens C, Beullens I, et al. The vitamin D analogTX527ameliorates disease symptoms in a chemically induced modelof inflammatory bowel disease[J]. J Steroid Biochem Mol Biol.2013,136:107-111.
    [88] Daniel C, Radeke H H, Sartory N A, et al. The new low calcemicvitamin D analog22-ene-25-oxa-vitamin D prominently amelioratesT helper cell type1-mediated colitis in mice[J]. J Pharmacol ExpTher.2006,319(2):622-631.
    [89] Zhang Z, Zhang Y, Ning G, et al. Combination therapy with AT1blocker and vitamin D analog markedly ameliorates diabeticnephropathy: blockade of compensatory renin increase[J]. Proc NatlAcad Sci U S A.2008,105(41):15896-15901.
    [90] Makibayashi K, Tatematsu M, Hirata M, et al. A vitamin D analogameliorates glomerular injury on rat glomerulonephritis[J]. Am JPathol.2001,158(5):1733-1741.
    [91] Sanchez-Nino M D, Bozic M, Cordoba-Lanus E, et al. Beyondproteinuria: VDR activation reduces renal inflammation inexperimental diabetic nephropathy[J]. Am J Physiol Renal Physiol.2012,302(6): F647-F657.
    [92] Xiang G, Seki T, Schuster M D, et al. Catalytic degradation ofvitamin D up-regulated protein1mRNA enhances cardiomyocytesurvival and prevents left ventricular remodeling after myocardialischemia[J]. J Biol Chem.2005,280(47):39394-39402.
    [93] Yu L, Luo Q, Fang H. Mechanism of ulinastatin protection againstlung injury caused by lower limb ischemia-reperfusion[J].Panminerva Med.2014,56(1):49-55.
    [94] Yassin M M, Harkin D W, Barros D A, et al. Lower limbischemia-reperfusion injury triggers a systemic inflammatoryresponse and multiple organ dysfunction[J]. World J Surg.2002,26(1):115-121.
    [95] Santiago-Delpin E A. Lower limb ischemia reperfusion injury as acause of systemic inflammatory response.(DOI:10.1007/s00268-003-7093-6)[J]. World J Surg.2004,28(4):431,431-432.
    [96] Rosero O, Nemeth K, Turoczi Z, et al. Collateral circulation of therat lower limb and its significance in ischemia-reperfusion studies[J].Surg Today.2013.
    [97] Thota C, Farmer T, Garfield R E, et al. Vitamin D elicitsanti-inflammatory response, inhibits contractile-associated proteins,and modulates Toll-like receptors in human myometrial cells[J].Reprod Sci.2013,20(4):463-475.
    [98] Haussler M R, Jurutka P W, Mizwicki M, et al. Vitamin D receptor(VDR)-mediated actions of1alpha,25(OH)(2)vitamin D(3): genomicand non-genomic mechanisms[J]. Best Pract Res Clin EndocrinolMetab.2011,25(4):543-559.
    [99] Murillo G, Nagpal V, Tiwari N, et al. Actions of vitamin D aremediated by the TLR4pathway in inflammation-induced coloncancer[J]. J Steroid Biochem Mol Biol.2010,121(1-2):403-407.
    [100] Censani M, Stein E M, Shane E, et al. Vitamin D Deficiency IsPrevalent in Morbidly Obese Adolescents Prior to BariatricSurgery[J]. ISRN Obes.2013,2013.
    [101] Roth C L, Elfers C, Kratz M, et al. Vitamin d deficiency in obesechildren and its relationship to insulin resistance and adipokines[J]. JObes.2011,2011:495101.
    [102] Olson M L, Maalouf N M, Oden J D, et al. Vitamin D deficiency inobese children and its relationship to glucose homeostasis[J]. J ClinEndocrinol Metab.2012,97(1):279-285.
    [103] Velija-Asimi Z. Evaluation of the association of vitamin D deficiencywith gonadotropins and sex hormone in obese and non-obesewomen with polycystic ovary syndrome[J]. Med Glas (Zenica).2014,11(1):170-176.
    [104] Hwang H S, Yang K J, Park K C, et al. Pretreatment with paricalcitolattenuates inflammation in ischemia-reperfusion injury via theup-regulation of cyclooxygenase-2and prostaglandin E2[J]. NephrolDial Transplant.2013,28(5):1156-1166.
    [105] Ranganathan P V, Jayakumar C, Mohamed R, et al. Netrin-1regulates the inflammatory response of neutrophils and macrophages,and suppresses ischemic acute kidney injury by inhibiting COX-2-mediated PGE2production[J]. Kidney Int.2013,83(6):1087-1098.
    [106]冉瑞琼,付华,王国平,等.糖皮质激素对人胃癌细胞肿瘤坏死因子受体的调节[J].中国免疫学杂志.1997(02):19-21.
    [107] Saif Z, Hodyl N A, Hobbs E, et al. The human placenta expressesmultiple glucocorticoid receptor isoforms that are altered by fetal sex,growth restriction and maternal asthma[J]. Placenta.2014,35(4):260-268.
    [108] Lee M J, Fried S K. The glucocorticoid receptor, not themineralocorticoid receptor, plays the dominant role in adipogenesisand adipokine production in human adipocytes[J]. Int J Obes (Lond).2014.
    [109] Rulcova A, Krausova L, Smutny T, et al. Glucocorticoid receptorregulates organic cation transporter1(OCT1, SLC22A1) expressionvia HNF4alpha upregulation in primary human hepatocytes[J].Pharmacol Rep.2013,65(5):1322-1335.
    [110] Dobos J, Kenessey I, Timar J, et al. Glucocorticoid receptorexpression and antiproliferative effect of dexamethasone on humanmelanoma cells [J]. Pathol Oncol Res.2011,17(3):729-734.
    [111] Hong L, Wei N, Joshi V, et al. Effects of glucocorticoid receptorsmall interfering RNA delivered using poly lactic-co-glycolic acidmicroparticles on proliferation and differentiation capabilities ofhuman mesenchymal stromal cells[J]. Tissue Eng Part A.2012,18(7-8):775-784.
    [112] Newton R, Holden N S. Separating transrepression andtransactivation: a distressing divorce for the glucocorticoid receptor?[J]. Mol Pharmacol.2007,72(4):799-809.
    [113] King E M, Holden N S, Gong W, et al. Inhibition ofNF-kappaB-dependent transcription by MKP-1: transcriptionalrepression by glucocorticoids occurring via p38MAPK[J]. J BiolChem.2009,284(39):26803-26815.
    [114] Ishani A, Xue J L, Himmelfarb J, et al. Acute kidney injury increasesrisk of ESRD among elderly[J]. J Am Soc Nephrol.2009,20(1):223-228.
    [115] Basu R K, Wang Y, Wong H R, et al. Incorporation of Biomarkerswith the Renal Angina Index for Prediction of Severe AKI inCritically Ill Children[J]. Clin J Am Soc Nephrol.2014.
    [116] Chawla L S, Amdur R L, Shaw A D, et al. Association between AKIand Long-Term Renal and Cardiovascular Outcomes in United StatesVeterans[J]. Clin J Am Soc Nephrol.2014,9(3):448-456.
    [117] Chawla L S, Kellum J A. Acute kidney injury in2011: Biomarkersare transforming our understanding of AKI[J]. Nat Rev Nephrol.2012,8(2):68-70.
    [118] Coca S G, Yusuf B, Shlipak M G, et al. Long-term risk of mortalityand other adverse outcomes after acute kidney injury: a systematicreview and meta-analysis[J]. Am J Kidney Dis.2009,53(6):961-973.
    [119] Annane D. Corticosteroids for severe sepsis: an evidence-based guidefor physicians [J]. Ann Intensive Care.2011,1(1):7.
    [120] Bandyopadhyay U, Biswas K, Bandyopadhyay D, et al.Dexamethasone makes the gastric mucosa susceptible to ulcerationby inhibiting prostaglandin synthetase and peroxidase--two importantgastroprotective enzymes[J]. Mol Cell Biochem.1999,202(1-2):31-36.
    [121] Yoon H Y, Won Y Y, Chung Y S. Poncirin prevents bone loss inglucocorticoid-induced osteoporosis in vivo and in vitro[J]. J BoneMiner Metab.2012,30(5):509-516.
    [122] Kim B Y, Yoon H Y, Yun S I, et al. In vitro and in vivo inhibition ofglucocorticoid-induced osteoporosis by the hexane extract ofPoncirus trifoliata[J]. Phytother Res.2011,25(7):1000-1010.
    [123]张冬梅,谷秀彬,石育原,等.人参叶皂甙对大鼠海马盐皮质激素受体的影响[J].白求恩医科大学学报.1991(02):134-136.
    [124]张冬梅,于肇英,吕怡芳.人参茎叶皂甙对大鼠海马糖皮质激素受体及cAMP的影响[J].白求恩医科大学学报.1990(01):6-9.
    [125]张冬梅,孙秀月.参松养心胶囊治疗病毒性心肌炎合并室性心律失常疗效观察[J].中国误诊学杂志.2011(09):2084-2085.
    [126]尤艳利,封颖璐,蔡青,等.人参皂苷联合强的松治疗系统性红斑狼疮的前瞻性随机双盲对照试验[J].中西医结合学报.2010(08):762-766.
    [127]封颖璐,凌昌全,朱德增,等.人参皂苷联合地塞米松防治经动脉化疗栓塞术后综合征的前瞻性双盲随机对照研究[J].中西医结合学报.2005(02):99-102.
    [128]封颖璐,凌昌全,陈喆,等.人参皂苷联合地塞米松防治经动脉化疗栓塞术后肝肾功能损伤的前瞻性研究[J].中华肿瘤杂志.2006(11):844-847.
    [129]林桦,李杨,赵雪俭,等.人参二醇组皂甙对休克细胞的保护作用及其机理的实验研究[J].白求恩医科大学学报.1992(02):123-125.
    [130]赵丹,赵雪俭,林桦,等.人参二醇组皂甙对失血性休克犬血清5-HT的影响及对血小板的保护作用[J].中国病理生理杂志.1992(01):50-54.
    [131]刘复兴,王忠山,赵学俭,等.人参二醇组皂甙对失血性休克犬血气和酸硷平衡的影响[J].白求恩医科大学学报.1990(04):346-349.
    [132]刘媛媛,吕美德,赵雪俭,等.人参二醇组皂甙对内毒素休克鼠组织过氧化脂质的影响[J].白求恩医科大学学报.1990(04):342-345.
    [133]刘媛媛,吕美德,赵雪俭,等.人参二醇组皂甙对内毒素休克鼠5-羟色胺含量的影响[J].白求恩医科大学学报.1991(04):365-367.
    [134]徐琳,赵雪俭,赵丹,等.人参二醇皂甙对失血性休克犬单胺类递质和单胺氧化酶的影响[J].中国病理生理杂志.1990(02):69-72.
    [135]赵雪俭,王忠山,赵丹,等.人参二醇组皂甙与地塞米松对失血性休克犬心肌收缩性保护作用及机制的探讨[J].中国病理生理杂志.1992(03):320.
    [136]王石麟,盛瑞红,王忠山,等.人参二醇皂甙对失血性休克犬心肺超微结构和功能的保护作用[J].中日友好医院学报.1990(02):67-70.
    [137]刘洁,夏映红,李天舒,等.人参二醇皂苷对失血性休克犬过氧化脂质和超微结构的影响[J].中国实验方剂学杂志.2007(07):41-43.
    [138]刘洁,王秋静,刘芬,等.人参二醇皂苷对急性心源性休克犬血清IL-1水平的影响[J].中成药.2005(11):1304-1307.
    [139] Bradley J R. TNF-mediated inflammatory disease[J]. J Pathol.2008,214(2):149-160.
    [140] Fiorino G, Danese S, Pariente B, et al. Paradoxical immune-mediatedinflammation in inflammatory bowel disease patients receivinganti-TNF-alpha agents[J]. Autoimmun Rev.2014,13(1):15-19.
    [141] Huang W C, Hung M C. Beyond NF-kappaB activation: nuclearfunctions of IkappaB kinase alpha[J]. J Biomed Sci.2013,20:3.
    [142] Venkatachalam M A, Weinberg J M. The tubule pathology of septicacute kidney injury: a neglected area of research comes of age[J].Kidney Int.2012,81(4):338-340.
    [143] Annane D. Corticosteroids for severe sepsis: an evidence-based guidefor physicians[J]. Ann Intensive Care.2011,1(1):7.
    [144]徐琳,赵雪俭,王忠山,等.兔输精管结扎与吻合术后睾丸、糖浆血管紧张素转换酶活力变化的研究[J].生殖与避孕.1991(02):21-24.
    [145] Dixon W G, Bansback N. Understanding the side effects ofglucocorticoid therapy: shining a light on a drug everyone thinksthey know[J]. Ann Rheum Dis.2012,71(11):1761-1764.
    [146] Gupta A, Rhodes G J, Berg D T, et al. Activated protein Cameliorates LPS-induced acute kidney injury and downregulatesrenal INOS and angiotensin2[J]. Am J Physiol Renal Physiol.2007,293(1): F245-F254.
    [147] Bradley J R. TNF-mediated inflammatory disease[J]. J Pathol.2008,214(2):149-160.
    [148] Naito M, Bomsztyk K, Zager R A. Endotoxin mediates recruitmentof RNA polymerase II to target genes in acute renal failure[J]. J AmSoc Nephrol.2008,19(7):1321-1330.
    [149] Holthoff J H, Woodling K A, Doerge D R, et al. Resveratrol, adietary polyphenolic phytoalexin, is a functional scavenger ofperoxynitrite[J]. Biochem Pharmacol.2010,80(8):1260-1265.
    [150] Wu L, Gokden N, Mayeux P R. Evidence for the role of reactivenitrogen species in polymicrobial sepsis-induced renal peritubularcapillary dysfunction and tubular injury[J]. J Am Soc Nephrol.2007,18(6):1807-1815.
    [151] Hsing C H, Chou W, Wang J J, et al. Propofol increases bonemorphogenetic protein-7and decreases oxidative stress in sepsis-induced acute kidney injury[J]. Nephrol Dial Transplant.2011,26(4):1162-1172.
    [152] Kruzel M L, Actor J K, Radak Z, et al. Lactoferrin decreasesLPS-induced mitochondrial dysfunction in cultured cells and inanimal endotoxemia model[J]. Innate Immun.2010,16(2):67-79.
    [153] Sanchez-Nino M D, Benito-Martin A, Goncalves S, et al. TNFsuperfamily: a growing saga of kidney injury modulators [J].Mediators Inflamm.2010,2010.
    [154] Chvojka J, Sykora R, Karvunidis T, et al. New developments inseptic acute kidney injury [J]. Physiol Res.2010,59(6):859-869.
    [155] Wu L, Gokden N, Mayeux P R. Evidence for the role of reactivenitrogen species in polymicrobial sepsis-induced renal peritubularcapillary dysfunction and tubular injury[J]. J Am Soc Nephrol.2007,18(6):1807-1815.
    [156] Mayeux P R, Macmillan-Crow L A. Pharmacological targets in therenal peritubular microenvironment: implications for therapy forsepsis-induced acute kidney injury [J]. Pharmacol Ther.2012,134(2):139-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700